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Abstract 

The ability to provide differentiated services to users with 
widely varying requirements is becoming increasingly im- 
portant, and Internet Service Providers would like to pro- 
vide these differentiated services using the same shared net- 
work infrastructure. The key mechanism, that enables dif- 
ferentiation in a connectionless network, is the packet clas- 
sification function that parses the headers of the packets, 
and after determining their context, classifies them based 
on administrative policies or real-time reservation decisions. 
Packet classification, however, is a complex operation that 
can become the bottleneck in routers that try to support 
gigabit link capacities. Hence, many proposals for differ- 
entiated services only require classification at lower speed 
edge routers and also avoid classification based on multiple 
fields in the packet header even if it might be advantageous 
to service providers. In this paper, we present new packet 
classification schemes that, with a worst-case and traffic- 
independent performance metric, can classify packets, by 
checking amongst a few thousand filtering rules, at rates of 
a million packets per second using range matches on more 
than 4 packet header fields. For a special case of classifica- 
tion in two dimensions, we present an algorithm that can 
handle more than 128K rules at these speeds in a traffic in- 
dependent manner. We emphasize worst-case performance 
over average case performance because providing differenti- 
ated services requires intelligent queueing and scheduling of 
packets that precludes any significant queueing before the 
differentiating step (i.e., before packet classification). The 
presented filtering or classification schemes can be used to 
classify packets for security policy enforcement, applying re- 
source management decisions, flow identification for RSVP 
reservations, multicast look-ups, and for source-destination 
and policy based routing. The scalability and performance 
of the algorithms have been demonstrated by implementa- 
tion and testing in a prototype system. 

1 Introduction 

The transformation of the Internet into an important com- 
mercial infrastructure has significantly changed user expec- 
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tations in terms of performance, security, and services. In- 
ternet Service Providers, while using a shared backbone in- 
frastructure, would like to provide different services to dif- 
ferent customers based on different service pricing or based 
on widely varying customer requirements. For providing this 
differentiated service, service providers need mechanisms for 
isolating traffic from different customers, for preventing unau- 
thorized users from accessing specific parts of the network, 
and for providing customizable performance and bandwidth 
in accordance with customer expectations and pricing. In 
addition, service providers need mechanisms that allow rout- 
ing decisions to be made not just based on destination ad- 
dresses and the shortest path to it, but also based on con- 
tracts between service providers or between a service provider 
and a customer [14]. Consequently, routers (or packet for- 
warding engines in general) used in both enterprise and 
backbone environments should be able to provide network 
managers with the proper mechanisms that will allow the 
provisioning of these features. 

Forwarding engines must be able to identify the context 
of packets and must be able to apply the necessary actions 
so as to satisfy the user requirements. Such actions may be 
the dropping of unauthorized packets, redirection of packets 
to proxy servers, special queueing and scheduling actions, 
or routing decisions based on a criteria other than the des- 
tination address. In the paper, we use interchangeably the 
terms packet filtering or packet class$cation to denote the 
mechanisms that support the above functions. 

Specifically, the packet filtering mechanisms should parse 
a large portion of the packet header, including information 
on the transport protocols, before a forwarding decision is 
made*. The parsing results in the incoming packet being 
classified using a set of rules that have been defined by net- 
work management software or real-time reservation proto- 
cols such as RSVP. 

Packet filtering functionality is required for example when 
a router is placed between an enterprise network and a core 
backbone network. The router must have the ability to block 
all unauthorized accesses that are initiated from the public 
network and are destined to the enterprise network. On 
the other hand, if accesses are initiated from a remote site 
of the enterprise network, they can be forwarded into the 
intranet and this requires filtering ability. If this level of 
security is not enough, another policy requirement might 
be that authorized access attempts from the public network 
be forwarded to an application level proxy server that will 

*Forwarding based on transport level information is also referred 
to as layer-4 forwarding. 
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authenticate the access. Clearly, filtering mechanisms are 
very useful at the edge of an enterprise network. In an edge 
network node, the router might need to identify the traffic 
that is initiated from specific customers, and either police 
it or shape it to meet a predefined contract. Indeed, these 
are the actions that are required by some of the differenti- 
ated services model proposals that are being considered for 
standardization by the IETF [lo]. 

It is evident that most filter rules naturally apply to a 
whole range of addresses, port numbers, or protocols, and 
not just to single predefined hosts or applications. Aggre- 
gation, for instance of addresses, is not only required be- 
cause customers are usually allocated blocks of addresses, 
but also because it is necessary to keep the network manage- 
able. Therefore, the specification of the packet classification 
policies must allow aggregations in their definitions. This 
means that packet classification algorithms must be be able 
to process rules that define combinations of ranges of values. 
If the algorithms can only handle exact values and do not 
support aggregation, preprocessing is required to translate 
the ranges to exact values. This is infeasible since ranges 
can grow exponentially with length of the packet field on 
which the ranges are defined. 

A trend worth noting is that even though packet filtering 
was thought of as a tool necessary only at the network ac- 
cess points and mainly for firewall or security applications, 
it is now becoming apparent that it is a valuable tool for 
performing traffic engineering and meeting the new service 
requirements of the commercial Internet. Filtering policies 
that use the full information of the packet header can be 
defined for distributing the available system or network re- 
sources. The main consequence of these new uses is that 
all packet classification actions must be performed at wire- 
speed, i.e., the forwarding engines must have enough pro- 
cessing power to be able to process every arriving packet 
without queueing since without header processing it is not 
possible to differentiate packets to provide differentiated ser- 
vices. 

The main contributions of this paper are algorithms that 
use multi-dimensional range matching that enable Gigabit 
routers to provide wire-speed packet filtering and classi- 
fication in a traffic independent manner (i.e. we do not 
rely on traffic dependent caching or average case results to 
achieve fast execution times). To our knowledge, our pro- 
posed schemes are the first schemes that allow thousands of 
filter rules to be processed at speeds of millions of packets 
per second with range matches on 5 or more packet fields 
in a traffic independent manner. Specifically, we present 
three algorithms: The first algorithm takes advantage of 
bit-level parallelism which combined with very elementary 
bit-operations results in a scheme that supports a large num- 
ber of filter rules. The second algorithm extends the perfor- 
mance of the first algorithm by making efficient use of mem- 
ory. It provides a means for balancing the the time-space 
tradeoff in implementation, and allows optimization for a 
particular system taking into account the available time for 
packet processing, the available memory, and the number 
of filter rules to be processed. Furthermore, the algorithm 
allows on-chip memory to be used in an efficient and traffic 
independent manner for reducing worst-case execution time. 
This is unlike typical caching schemes which are heavily traf- 
fic dependent and only improve average case performance. 
The performance metric for all our schemes is worst-case 
execution time, simple operations to make it amenable to 
hardware implementation if necessary, and space require- 
ments which are feasible with current memory technology 

and costs. The implementation simplicity, scalability and 
performance of our filtering have been demonstrated in a 
prototype router with interfaces operating at a million pack- 
ets per second. 

Our third algorithm considers the special case of filter 
rules on two fields. This is motivated by important appli- 
cations such look-ups for multicast traffic forwarding and 
policy-based routing. To elaborate on this example, when 
a forwarding engine supports a multicast protocol like PIM 
(sparse mode or dense mode) [13] or DVMRP [26], the for- 
warding decision has to be made on both the source address 
value and the multicast group value. Depending on the pro- 
tocol, the forwarding engine may have a forwarding entry 
for a given group value irrespective of source addresses, and 
also have forwarding entries for a given group value and 
source subnet. Given the increasing importance of multi- 
cast forwarding in the Internet, it would be ideal if a simple 
algorithm could be used for making multicast forwarding 
decisions. Since the search for the source addresses may use 
the same forwarding information base as that used for uni- 
cast routing, the same type of CIDR (Classless Inter-Domain 
Routing) aggregations [15] are likely to be used. CIDR ag- 
gregations introduced the notion of prefix in the definition 
of routing entries. In other words an entry in the forwarding 
base is defined as a value and a mask. The mask defines the 
number of bits of the destination address of a packet that 
can be ignored when trying to match the destination ad- 
dress of the packet to the particular entry of the forwarding 
base. The bits that can be masked-out are always in the 
less significant portion of the address. Thus, the values in 
the forwarding engines can thought as prefixes. For the case 
of IPv4, prefixes can have a length between 1 and 32 bits. 
We present a linear space, O(prefix length) scheme which 
can be used to implement P-dimensional lookups at rates of 
millions of packets per second for more than 128K entries in 
the forwarding table. Considering that multicast forwarding 
tables in the core backbone might include several hundreds 
of thousands of entries, even a solution that uses O(n log n) 
space with a moderate constant or O(Zog2n) time may not 
be feasible when the number of entries n is that high. 

2 Design Goals 

We first try to identify the main requirements that a packet 
classification algorithm must satisfy in order to be useful in 
practice. 

2.1 The Requirement for Real-Time Operation 

Traditional router architectures are based on flow-cache ar- 
chitectures to classify packets. The basic idea is that packet 
arrivals define flows [9, 171, in the sense that if a packet be- 
longing to a new flow arrives, then more packets belonging 
to that flow can be expected to arrive in the near future. 
With this expected behavior, the first packet of a flow is 
processed through a slow path that analyzes the complete 
header. The header of the packet is then inserted into a 
cache or hash table together with the action that must be 
applied to the first packet as well as to all other packets of 
the flow. When subsequent packets of that flow arrive the 
corresponding action can be determined from the cache or 
hash table. 

There are three main problems associated with this archi- 
tecture or any similar cache-based architecture when applied 
to current Internet requirements: 
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1. In current backbone routers, the number of flows that 
are active at a given interface is extremely high. Re- 
cent studies have shown that an OC-3 interface might 
have an average of 256K flows active concurrently [24] 

t” For this many number of flows, use of hardware 
caches is extremely difficult, especially if we consider 
the fact that a fully-associative hardware cache may be 
required. Caches of such size will most likely be imple- 
mented as hash tables since hash tables can be scaled 
to these sizes. However, the O(1) look-up time of a 
hash table is an average case result and the worst-case 
performance of a hash table can be poor since multiple 
headers might hash into the same location. The num- 
ber of bits in the packet headers that must be parsed 
is typically between 100 and 200 bits, and even hash 
tables are limited to only a couple of million entries. 
So any hash function that is used must be able to ran- 
domly distribute 100 to 200 bit keys of the header to 
no more than 20-24 bits of hash index. Since there is 
no knowledge about the distribution of the header val- 
ues of the packets that arrive to the router, the design 
a good hash function is not trivial. 

2. Due to the large number of flows that are simultane- 
ously active in a router and due to the fact that hash 
tables generally cannot guarantee good hashing under 
all arrival patterns, the performance of cache based 
schemes is heavily traffic dependent. If a large num- 
ber of new flows arrive at the same time, the slow path 
of the system that implements the complete header 
matching can be temporarily overloaded. This will re- 
sult in queueing of packets before they are processed. 
But in this case, no intelligent mechanism can be ap- 
plied for buffering and scheduling of these packets be- 
cause without header processing there is no informa- 
tion available about the destination of the packets or 
about any other fields relevant to differentiation. So it 
is possible that congestion and packet dropping hap- 
pen due to processing overload and not due to output 
link congestion. 

To better illustrate this, consider the model in Fig- 
ure 1. Packets arrive to the interfaces and are placed 
in a queue for processing. After the packet classifi- 
cation and next-hop lookup operations are performed, 
they are forwarded to the outgoing interfaces where 
they are queued for transmission. Clearly, some inter- 
faces may be idle even though there are packets waiting 
to be transmitted in the input queues. For example, 
all packets destined for output 1 can be blocked in 
the slow path processing module behind packets that 
are destined to other outputs. Output 1 remains idle, 
although there are packets in the buffers available for 
transmission. Obviously such a system will suffer from 
Head-of-Line blocking that will limit the throughput 
substantially. Note, that the Head-of-Line problem 
can be diminished, if there is knowledge about the 
destination of more than one enqueued packet [20]. 
However, the fundamental problem of the system of 
Figure 1 is that the destination or the context of the 
packet is not actually known before the packet is pro- 
cessed. Thus, it is impossible to apply any intelligent 

‘Note the by active we do not imply that the flow currently has 
a backlog of packets to be served. The definition of active flows 
for caching look-up information is different from the definition for 
scheduling because caching information changes at a slower time scale. 

3. 

queueing mechanisms at the input queues and head- 
of-line blocking cannot be eliminated. 

A commercial Internet infrastructure should be ro- 
bust and should provide predictable performance at 
all times. Variations in the throughput of forwarding 
engines based on traffic patterns are undesirable and 
make network traffic engineering more difficult. In ad- 
dition, the network should not be vulnerable to at- 
tacks from malicious users. A malicious user or group 
of users discovering the limitations of the hash algo- 
rithms or caching techniques, can generate traffic pat- 
terns that force the router to slow down and drop a 
large portion of the packets arriving at a particular 
interface. 

Summarizing, we claim that any packet queueing delays 
are only acceptable after the classification step is performed, 
if provisioning of differentiated services and robustness are 
important. In particular, the queueing delays before the 
complete processing of a packet can be no larger than the 
maximum allowed delay for the flow with the minimum de- 
lay requirement (which could be extremely small if constant 
bit rate flows are supported). This no-qzleueing before pro- 

cessing principle applies because it is the header process- 
ing (including packet filtering) operation that enables the 
router to determine the quality-of-service (&OS) level to be 
accorded to a particular packet. Hence, large queues formed 
while waiting for the filtering operation can violate quality- 
of-service for some flows even before the router determines 
the QoS to be accorded to the flow. The implication that 
this has on the design of packet filtering algorithms is that 
it is the worst-case performance of the algorithms that de- 
termines the true maximum packet processing rate and not 
the average case performance (the averaging being done on 
filter rule combinations and traffic arrival patterns). If aver- 
age case performance is used to determine supported packet 
processing speeds, then buffering is needed before filtering. 
To estimate delays in this undifferentiated-traffic buffer, we 
need a characterization of the the variance in execution 
times (which is difficult to determine) and we need to pre- 
dict traffic patterns at different interfaces. The delay in this 
pre-filtering buffer can cause QoS to be violated for flows 
with stringent delay constraints if there is any error in es- 
timating these quantities. Hence, it is preferable to avoid 
queueing before header processing. 

2.2 Criteria for efFicient packet classification and system 
constraints 

We can now outline, based on the prior discussion, the cri- 
teria that an efficient classification algorithm must meet: 

The algorithm must be fast enough for use in routers 
with Gigabit links. Internet Service Providers are en- 
visaged to build networks with link capacities of 2.4 
Gigabits/s and more. Any packet classification scheme 
for use in core networks must be scalable to these 
speeds. 

The algorithm must be able to process every packet 
arriving to the physical interfaces at wire-speed. Re- 
cent traffic studies have shown that 75% of the packets 
are smaller than the typical TCP packet size of 552 
bytes. In addition, nearly half the packets are 40 to 44 
bytes in length, comprising of TCP acknowledgments 
and TCP control segments [24]. Since the algorithm 
cannot use buffering to absorb variation in execution 
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Figure 1: Queueing model of a system that uses a cache-based architecture for packet classification. 

times, it must operate at wire-speed when all packets 
are as small as 44 bytes. This means that the algo- 
rithm must have provably small worst-case execution 
times which are independent of traffic patterns. 

3. Classification rules must be based on several fields of 
the packet header, including among others source and 
destination IP addresses, source and destination port 
numbers, protocol type and Type-of-Service. The rules 
must be able to specify ranges and not just exact values 
or simple prefixes 

4. For some applications, it might be possible to limit 
the requirements to only two dimensions and to have 
ranges defined only as prefixes. This is a more re- 
stricted problem than the general classification prob- 
lem but it has a very useful application in both multi- 
cast lookups and in RSVP reservations that use either 
wild-card filters or CIDR aggregations [15, 281. 

5. It is possible that some packets may match more than 
one rule. The algorithm must allow arbitrary priorities 
to be imposed on these rules, so that only one of these 
rules will finally be applicable to the packet. 

6. Updates of rules are rare compared to searches in the 
data structures. In particular, the frequency of up- 
dates is in the time-scale of tens of seconds or longer 
whereas look-ups happen for every processed packet. 
At a packet processing rate of lo6 packets per second, 
the ratio of look-ups to updates is 107. Hence, the al- 
gorithms can be optimized for lookups even if it means 
degrading update performance to some extent. 

7. Memory accesses are expensive and are the dominant 
factor in determining the worst-case execution time. 

8. Memory is organized in words of size w and the cost 
of accessing a word is the same as the cost of accessing 
any subset of bits in a word. 

9. Memory cost can be relatively low if technologies such 
as Synchronous Dynamic RAMS (SDRAMs) are used. 
These devices can provide very large capacity com- 
bined with a high access speed, provided that accesses 
are sequential. A packet classifier implementation that 
requires multiple sequential accesses in a high-speed 
SDRAM memory might be more affordable than an 
algorithm of lower time-complexity that uses higher- 
cost, lower capacity memories like SRAMs. 

10. For operation at very high speed the algorithm must be 
amenable to hardware implementation. While we do 
not preclude software implementations of our proposed 
algorithms, we are primarily interested in algorithms 
that are implementable in hardware as well and are 
not restricted to only a software implementation. 

3 Previous Work 

The idea for packet filtering, or classification in general, was 
initiated in [16] and was later expanded in [19, 271. The 
architectures and algorithms presented in these papers were 
targeted mainly for an end-point and their main goal was 
to isolate packets that are destined to specific protocols or 
to specific connections. The algorithms used, although they 
involved a linear parsing of all the filters, were fast enough 
to operate at end-point link capacities. Obviously these im- 
plementations do not scale to very high speeds. 

An interesting variation was presented in [l] where the 
first hardware implementation of packet filters was reported. 
The implementation, although fast enough to support an 
OC-12 link, is restricted to only a small number of rules 
(< 12) and is not general enough for a commercial high- 
speed router. The implementation uses a pipelined architec- 
ture, resulting in O(1) performance using O(N) processing 
elements for O(N) rules. Clearly, such an algorithm cannot 
scale to a large number of filter rules since it requires a linear 
number of processing elements. Moreover, this scheme was 
designed for rules that required exact matching and not for 
rules defined as ranges. 

The general packet classification problem that we con- 
sider can be viewed as a point location problem in multidi- 
mensional space. This is a classic problem in Computational 
Geometry and numerous results have been reported in the 
literature [5, 6, 111. The point-location problem is defined 
as follows: Given a point in a d-dimensional space, and a 
set of n d-dimensional objects, find the object that the point 
belongs to. Most algorithms reported in the literature deal 
with the case of non-overlapping objects or specific arrange- 
ments of hyperplanes or hypersurfaces of bounded degree 
1221. When considering the general case of d > 3 dimen- 
sions, as is the problem of packet classification, the best algo- 
rithms considering time or space have either an O(logd-’ n) 
complexity with O(n) space, or an O(log n) time-complexity 

with O(nd) space. [22]. Though algorithms with these com- 
plexity bounds are useful in many applications, they are 
mostly not directly useful for packet filtering. For packet 



filtering, the algorithms must complete within a specified 
small amount, of time for n, the number of filters, in the 
range of a few thousands to tens of thousands. So even 
the algorithms with poly-logarithmic time bounds are not 
practical for use in a high-speed router. 

To illustrate this, let us assume that we would like the 
router to be able to process 1K rules of 5 dimensions within 
1~s (to sustain a 1 million packets per second throughput). 
An algorithm with log4 n execution time and O(n) space 
requires 10K memory accesses per packet. This is impracti- 
cal with any current technology. If we use an O(logn) time 
O(n4) space algorithm, then the space requirement becomes 
prohibitively large since it is in the range of 1000 Gigabytes. 

To the best of our knowledge, there is no algorithm re- 
ported in the literature for the general d-dimensional prob- 
lem, of point-location with non-overlapping object, with lower 
asymptotic space-time bounds. In addition, our require- 
ments are not for point location given non-overlapping ob- 
jects, but for point location with overlaps being permitted 
and prioritization used to pick one object out of many over- 
lapping solutions. 

For the special case of two dimensions and non-overlapping 
rectangles a number of solutions have been reported with 
logarithmic complexity and near-linear space complexity [12]. 
However, these algorithms do not consider the special prob- 
lem related to longest-prefix matches where arbitrary over- 
laps may be present and overlaps are resolved through the 
longest prefix priority. An even better solution has been 
reported in [2] where the time complexity is O(log log N). 
However, the algorithm is based on the stratified trees pro- 
posed by van Emde Boas [23, 31 for searches in a finite space 
of discrete values. The data structures used require a per- 
fect hashing operation in every level of the tree. The prepro- 
cessing complexity, without using a randomized algorithm, 
of calculating the perfect hash is O(min(hV, n3)) where h is 
the number of hash functions that must be calculated and V 

is the size of the space. Note, that for 2-dimensional longest- 
prefix lookups this can result, even for a small number of 
rules, in executions requiring 232 cycles which is impracti- 
cal, even if preprocessing is only required once every several 
seconds. 

4 General Packet Classification Algorithms 

A simple approach to the problem of multi-dimensional search, 
as used for packet filtering, is to use decomposable search. 
Here the idea is to state the original query as the intersection 
of a few numbers of simpler queries. The challenge then, for 
instance to obtain a poly-logarithmic solution, is to decom- 
pose the problem such that the intersection step does not 
take time more than the required bound. To achieve these 
poly-logarithmic execution times, various sophisticated de- 
compositions and query search data structures have been 
proposed. However, as was pointed out before, even a log4 n 
solution for 5 dimensional packet filtering is not practical for 
our application where n can be in the thousands. Therefore, 
we need to employ parallelism of some sort. Moreover, we 
require simple elemental operations to make the algorithm 
amenable to hardware implementation. Our cost metric of 
memory accesses being of unit cost till a word length is ex- 
ceeded implies that bit level parallelism in the algorithm 
would give speed-ups. Instead of looking for data structures 
which give the best asymptotic bounds, we are interested 
in decomposing the queries such that sub-query intersection 
can be done fast (as per our memory-access cost metric) 
for n in the thousands and memory word-lengths that are 

feasible with current technology. 
The first point to note is that our packet-filtering prob- 

lem involves orthogonal rectangular ranges. This means that 
a natural decomposition of a k-dimensional query in a k- 
dimensional orthogonal rectangular range is to decompose 
it into a set of l-dimensional queries on l-dimensional inter- 
vals. The problem is that when we do this for our problem, 
each simple query can generate a solution of O(n) size. This 
is because we can have arbitrary overlaps and so O(n) ranges 
may overlap a query point in 1 dimension. Consequently, the 
intersection step can take time O(n). Nevertheless, this so- 
lution is far more practical for our packet filtering problem 
than other poly-log solutions because we can take advantage 
of bit-level parallelism. 

To summarize, given our constraints (particularly the 
need for hardware implementation) and cost metrics (in par- 
ticular memory access cost per bit incrementing only at word 
boundaries), the number of filter rules being of the order of 
a few thousands, and the number of dimensions being 5, the 
simple approach of decomposing the search in each dimen- 
sion (which can be done in parallel) followed by a linear time 
combining step is more useful than a sophisticated O(log4 n) 
(n being the number of filter rules) time algorithm. 

Below, we describe an algorithm which needs k*n’+O(n) 
bits of memory for each dimension, rlog(2n)l + I compar- 
isons per dimension (which can be done in parallel for each 
dimension), and [n/w1 memory accesses for a pairwise com- 
bining operation. We then present a second algorithm which 
can reduce memory requirements to O(nlog n) bits while 
increasing the execution time by only a constant (as long 
as logn <= w which would certainly be the case). This 
second algorithm has two other benefits. The constant in- 
crease in execution time can be traded off for increased mem- 
ory, allowing the algorithm to be optimized for the available 
time and memory budget. Also, it can exploit on-chip mem- 
ory in a traffic independent manner to speed up worst-case 
bounds (unlike typical caching schemes which only speed up 
average-case bounds and are traffic dependent). Specifically, 
if there is (Ic * n2)/1 bits of on-chip memory then the number 
of off-chip memory accesses is [log(n)/wl/(21)1 where w is 
the word length. The number of on-chip memory accesses is 
[n/won+,+,1 where U&-&p is the on-chip memory word 
length. 

4.1 Packet Classification based on Bit-Parallelism 

Although, the algorithm we will describe has linear time 
complexity, its use of bit-level parallelism significantly ac- 
celerates the filtering operation for any practical implemen- 
tation. The filtering rules are changed very infrequently in 
comparison to the frequency of search operations. Hence, 
extra preprocessing can be used to speed up searches. 

We assume that a set of n packet filtering rules in Ic 
dimensions are defined. Let rm = { ei ,m, ee,m, , ek,m} de- 
note the set of ranges that define rule rm in the k: dimensions. 

The preprocessing part of the algorithm is as follows: 

For each dimension j, 1 <= j <= Ic, project all in- 
tervals ej,i, 1 <= i <= n on the j-axis, by extracting 

‘th the J element of every filter rule for all n filter rules. 
There are a maximum of 2n + 1 non-overlapping inter- 
vals that are created on each axis. Let us denote by 
Pj, 1 <= j <= k the k sets of such intervals. 

For each interval i E Pj, Vj E (1 k}, create sets of 
rules Ri,j, 1 5 i 5 2n + I, 1 5 j < k, such that a rule 
TV belongs in set &,j if and onlyif, the corresponding 
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Figure 2: General packet classification using bit-parallelism. 

interval i overlaps in the jth dimension with ej,m, i.e. 
iff i C e(,,,) where e(,,,) is the jth element of rule rm. 

Without loss of generality, we assume that rules are sorted 
based on their priorities. Assume that a packet with fields 
Ei, Ez, El, arrives to the system. The classification of the 
packet involves the following steps. 

1. For each dimension j, find the interval, say ij on set I’3 
that E3 belongs to. This is done using binary search 
(requiring [log(2n + l)] + 1 comparisons) or using any 
other efficient search algorithm. 

2. Create intersection of all sets Rzj,J, ij E {1,2,. . .2n+ 
l}” This can be done by taking the conjunction of the 
corresponding bit vectors in the bit arrays associated 
with each dimension and then determining the highest 
priority entry in the resultant bit vector (see explana- 
tion below). 

3. The rule corresponding to the highest priority entry 
must be applied to the arriving packet. 

Note, that the on-line processing step involves an inter- 
section among the potential sets of applicable filter rules 
which are obtained considering only one dimension at a 
time. These potential solution sets may have cardinality 
O(n) since we have assumed that rules may have arbitrary 
overlaps. The intersection step involves examining each of 
these rules at least once and hence the algorithm has time 
complexity O(n). 

To accelerate the execution time, we can take advantage 
of bit-level parallelism. Each set R;,, is represented by a 
bitmap n-bits long which acts as t,he indicator function for 
the set. Let Bj [i, m] be a (2n+l) x n array of bits associated 
with each dimension j. We can store each set Ri,j as a bit 
vector in column i of the bit array Bj [i, m], 1 <= m <= n, 

where bit Bj [i, m] is set if and only if, the rule rm. belongs 
in set R;,,. The intersection operation is then reduced to 
a logical-AND among the bitmaps that are retrieved after 
the search in each direction. To be able to select the highest 

priority rule, we rely on the rules being ordered based on 
priorities. The bitmaps are organized in memory into words 
of width w where each word is the unit of memory access. 
We can implement the intersection by reading sequentially 
the words of all dimensions and implementing the logical- 
AND. The first rule that we find through this process is the 
highest priority rule. Clearly this takes [k * n/w] memory 
accesses. By making w large, the worst-case execution time 
can be reduced further. 

Let us consider the example in 2-dimensions, shown in 
Figure 2, to illustrate the functioning of the algorithm. Rules 
are represented by 2-dimensional rectangles that can be arbi- 
trarily overlapped. The preprocessing step of the algorithm 
projects the edges of the rectangles to the corresponding 
axis. In the example shown, the four rectangles create seven 
intervals in each axis. In the worst case, the projection re- 
sults in a maximum of 2n + 1 intervals on each dimension. 
We next associate a bitmap with each dimension, as is shown 
in Figure 2. A bit in the bitmap is set, if and only if, the 
corresponding rectangle overlaps with the interval that the 
bitmap corresponds to. Note, that because of the method 
by which the intervals were created, it is not possible for 
a rectangle to overlap, say, only with half an interval. As- 
sume that the packet represented by point Pl arrives to the 
system. During the first on-line step, we locate the inter- 
vals in both axis that contain this point. In the example, 
these are intervals X2 and Y4 for the X and Y axis respec- 
tively. In the second step, we use the bitmaps to locate the 
highest priority rectangle that covers this point. Note that 
rectangles are numbered based on their priorities. After the 
logical-AND of the bitmaps, the first bit that is set in the re- 
sulting bitmap is that corresponding to rectangle 3 which is 
the highest priority rectangle, amongst all those overlapping 
point Pl. 

4.1.1 Hardware Implementation 

The key point behind the hardware implementation is that 
the algorithm performs only very simple operations. Since 
the only hardware elements that are required for the binary 
search operation ( to locate enclosing intervals) are an inte- 
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Figure 3: Architecture block diagram of a parallel imple- 
mentation. 

ger comparator and counter, and the only operation for the 
intersection is a parallel AND operation, the complexity of 
such a processing element is very low. The straightforward 
approach is to use a different processing element for each 
dimension (see Figure 3). Each processing element consists 
of a single comparator, a state machine and 2 local registers. 
The processing elements implement the binary search on all 
intervals in parallel. The result of this search is a pointer 
to a bitmap for each direction. The second step of the algo- 
rithm requires a parallel access to all bitmaps and a logical 
AND operation amongst them. The first time that this op- 
eration results in a non-zero value, the corresponding filter 
has been located. The algorithm requires one more access to 
the memory to retrieve the actions that may be associated 
with this filter. 

The algorithm has been implemented in 5 dimensions in 
a high-speed router prototype using a single FPGA device 
and five 128 Kbyte Synchronous SRAMs chips supporting 
up to 512 rules and processing 1 million packets per second 
in the worst case. This is achievable despite the device being 
run at a very low speed of 33 MHz. Since we used the same 
memory chips as those used in the LZ-caches of personal 
computers, the cost of the memories is trivial. The device 
can be used as a co-processor, next to a general purpose 
processor that handles all the other parts of IP forwarding 
or firewall functions. 

4.2 Packet Classification based on Incremental Reads 

The next algorithm we propose uses incremental reads to re- 
duce the space requirements. The algorithm allows designers 
to optimize time-complexity and space. Since the dominant 
factor determining execution times is off-chip memory ac- 
cesses, the availability of on-chip memory and the use of 
the proposed algorithm can significantly increase the num- 
ber of filter rules that can be applied within the given time 
constraint. 

The main idea used in developing the proposed algorithm 
is the following. Consider a specific dimension j. There are 
at most 2n + 1 non-overlapping intervals that are projected 
onto this dimension. Corresponding to each of these inter- 
vals there is a bitmap of n bits with the positions of the Is 
in this bitmap indicating the filter rules that overlap this 
interval. The boundary between intervals is a point where 
some the projections of some filter rules terminate and those 
of some filter rules start. If we have exactly 2n + 1 intervals, 
then the set of filter rules that overlap any two adjacent 
intervals 1 and m differ by only one rule (i.e., at the bound- 
ary between interval I and m either a filter rule’s projection 

starts, or a filter rule’s projection ends). This implies that 
the corresponding bitmaps associated with these two inter- 
vals differ in only bit. Hence the second bit map can be 
reconstructed from the first by just storing, in place of the 
second bit map, a pointer of size logn which indicates the 
position of the single bit which is different between these 
two bit maps. Carrying this argument further, a single bit 
map and 2n pointers of size log n can be used to reconstruct 
any bit map. This cuts the space requirement to O(nlogn) 
from O(n2) but increases the number of memory accesses 

by T(2nlogn)lw)l. 
The above argument is not changed when more than one 

filter starts or terminates at a particular boundary point 
between two adjacent intervals. This is because if a bound- 
ary point has more than one, say i, filters terminating or 
starting at that point then the number of intervals in that 
dimension is reduced by i - 1. Hence, we still need only 2n 
pointers (each filter terminating or starting needs exactly 
one pointer even if they all terminate or start at the same 
boundary point). 

We can now generalize this basic idea by storing (2n + 
1)/1 complete bitmaps instead of just one bitmap. These 
bitmaps are stored such that at most only [(2n + 1)/211 
pointers (pointer are stored such that retrieval starts from 
the nearest lower or higher position where a complete bitmap 
is stored) need to be retrieved to construct the bitmap for 
any interval. The preprocessing phase is as follows: 

1. 

2. 

3. 

4. 

5. 

For each dimension j E (1.. k) do 

Determine the, at most 2n + 1, non-overlapping inter- 
vals for dimension j by projecting all intervals ej,i, P <= 
i <= n on the j-axis. This step is the same as the pro- 
jection step for the algorithm proposed in the previous 
sections. 

Generate set of overlapping rules for first interval and 
store its bit map in storage associated with this inter- 
val. 

For all intervals i E (2 . .2n + 1) do 
Generate set of overlapping rules for interval i. If this 
bit map has 1 or more bits different from most recent 
bit map which was stored, then store this bit map in 
storage associated with interval i. Otherwise, incre- 
ment i. At most [2n + l/11 bit maps are stored since 
there are n bits, each bit can change at most twice, 
and the successive bit maps have at least 1 bits which 
are different. 

Fill in pointers indicating changed bits from previous 
interval. There are at most k - I intervals between 
intervals for which bitmaps have been stored. Starting 
from each bit map, store pointers which indicate the 
bits which have changed from the preceding interval. 
“Preceding interval” is the interval with lower index 
for bit maps in lower half of the l- 1 intervals between 
stored bit maps and it is the interval with the higher 
index for bit maps at the mid-point or upper half of 
the I - 1 intervals. 

The per-packet processing performed to find the appli- 
:able filter rule, if any, is as follows: 

1. For each dimension j E { 1. k} do 

2. Find the interval, say i, on set Pj that EJ belongs to. 
This is done by binary search (requiring rlog(2n + l)] + 
1 comparisons) or using any other efficient search al- 
gorithm. 
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3. If this interval has its complete bit map, bi, stored then 
retrieve this bit map. This require [n/w] memory ac- 
cesses. Otherwise, first retrieve the bit map for the 
interval closest to i with a stored bit map. This bit 
map has at most [(l - 1)/2] bits different from the re- 
trieved bit map. Fetch the, at most [(l- 1)/2] pointers 
corresponding to all intervals in between i and the in- 
terval whose bit map was received. This case requires 
~n/w] + [((1-1)/2)*(log n)/w] memory accesses. Con- 
struct the bit map for i using the pointers in sequence. 

4. Create a new bit map as the logical-AND of the re- 
trieved bit maps for all Ic dimensions. Note that the 
AND operation can be done progressively as the bit 
maps are being constructed and does not necessarily 
require the entire bit map for each dimension to be 
completely retrieved. 

5. The index of the leading 1 in this bit map gives the 
applicable filter rule. 

4.3 Choice of 1 

One possible criteria for choice of I is to lower the memory 
requirement from O(n’). Setting 1 = 2n + 1 is an extreme 
case which reduces memory requirements to O(n log n) but 
requires retrieving n - 1 pointers. Let us present the tradeoff 
with an example. If we assume that bits of the bitmap are 
retrieved through pointers, as is the case when 1 = 2n + 1, 
then the total time for retrieving the bitmaps in each direc- 
tion becomes r2n log nf w] which can be much higher than 
the [n/w] time required by the first algorithm. However, at 
the expense of higher execution time, the space requirement 
is reduced substantially. 

If on-chip memory is available however, complete bitmaps 
may be retrieved together with the pointers. The basic as- 
sumption behind the utilization of on-chip RAMS is that 
they be designed to be extremely wide. It is thus possible 
to increase the data bus width by at least a factor of 4 over 
an off-chip RAM. Current technologies, such as the ones of- 
fered by major ASIC vendors [25, 211, allow large portions 
of Synchronous Dynamic RAMS (SDRAMs) to be allocated 
in the same chip as logic. Note, that SDRAMs are ideal 
for retrieving bitmaps since they offer the best performance 
when accesses are sequential. 

So, let us assume that on-chip memory can be QI times as 
wide as off-chip memory. Let us assume that a full bitmap 
is kept in the on-chip memory for every 1 words. The total 
time required for retrieving this bitmap can be calculated 
as t = n/cyw. This time must be equal to the time required 
to retrieve at least l/2 pointers from the off-chip memory, 
or t = 1 log n/2w off-chip memory accesses. From the above 
two relations, we can easily calculate the optimal value of 1 
for a given technology as 

For example, if we assume (Y = 4 and n = 8K we get 1 = 315 
and we will need approximately 64 cycles to complete the 
operation. This will translate, using a 66MHz clock, to a 
processing rate of 1 million packets per second. Note, that, 
the total space requirement for the 8K filters is 32 Kbytes 
of on-chip memory and 32 Kbytes of off-chip memory for 
each dimension. This is definitely within the capabilities of 
current technology. 

5 Classification in Two Dimensions 

The 2-dimensional classification problem is of increasing im- 
portance in the evolving Internet architecture of the future. 
Drastically changing user expectations will necessitate the 
offering of different types of services and service guaran- 
tees by the network. Although RSVP, or similar reservation 
protocols, can offer end-to-end Quality-of-Service guaran- 
tees for specific flows, it is not clear whether such a reser- 
vation based model can be scaled for operation over high- 
speed backbones where a very large number of flows can be 
concurrently active. An alternative approach that has been 
proposed is route aggregated flows along specific traffic engi- 
neered paths. This directed routing is based not only on the 
destination address of packets, but on the source address as 
well [18]. RSVP or similar reservation protocols can be used 
for setting the aggregation and routing rules [18, 41. How- 
ever, the key mechanism needed to support such a scheme in 
a high-speed core router is a 2-dimensional classification or 
lookup scheme that determines the next hop, and the asso- 
ciated resource allocations, for each packet as a function of 
both the source and destination addresses. In addition, mul- 
ticast forwarding requires lookups based on both the source 
address and multicast groups [13, 261. 

The P-dimensional look-up problem is defined as follows: 
A query point p is a pair (s,d). For the forwarding prob- 
lem, these values could correspond to source and destination 
addresses. For the multicast look-up application, the query 
point can correspond to the source address of a packet and 
to a group id that identifies the multicast group that the 
packet belongs to. A 2-dimensional look-up table consists 
of pairs (si,&) where each sI is a prefix of possible source 
addresses and each di is a contiguous range or point, of pos- 
sible group identifiers or destination addresses. Each pair 
defines a rectangle in 2-dimensions. Note that rectangles 
can have arbitrary overlaps. Given a query point p, the 
search or look-up problem is to find an enclosing rectangle 
(if any), say rj = (sj, dj), such that p = (s, d) is contained in 
r3, and such that sj is the most specific (longest) matching 
prefix of s. The dj can be ranges including prefix ranges. 
The matching dj, when multiple matches occur for a spe- 
cific sj due to overlaps in the d direction, is taken to be the 
one of highest priority. Note that the d dimension allows 
any contiguous range and is not restricted to prefix ranges 
only. Therefore, if the d direction corresponds to destina- 
tion addresses, then ranges in the destination addresses do 
not have to be in powers of 2 (which would be the case with 
prefix ranges). This might be particularly useful if desti- 
nation addresses are concatenated with layer-4 destination 
ports or some other similar header field (to form a”2 l/2 
dimensional” lookup). 

We are interested in solutions for use in IP routers. This 
means that the look-up tables may have as many as 216 
entries and perhaps more. Also, we are interested in only 
worst-case performance of the algorithms since we want to 
avoid queueing for header processing in order to provide QoS 
guarantees. 

Let n denote the number of entries in the multicast for- 
warding table. A simple solution that takes only O(logn) 
time and O(n’) space is to have an n x n array with each en- 
try representing the highest priority rectangle that encloses 
the point corresponding to the coordinates represented by 
the entry. The look-up is done with two binary searches. 
However, this is clearly impractical in space when the num- 
ber of filtering rules is n = 216. The O(n2) space is because 
the same rectangle can be represented in O(n) locations. 
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Figure 4: Operation of the 2-dimensional algorithm when one dimension includes only intervals created by prefixes 

We would like to maintain the same time complexity 
while storing all the rectangles using only O(n) space. We 
cannot directly use known solutions to the problem of rect- 
angular point location since we can have arbitrary overlap- 
ping rectangles. In the proposed algorithm, we make use of 
the fact that in the s dimension our rectangles have lengths 
which are in powers of 2. This is because these s ranges are 
always prefix ranges. 

The restriction of ranges in one dimension to be prefix 
ranges provides constraints that can be exploited. To illus- 
trate this consider Figure 4. All prefix range intervals can 
only have sizes which are powers of two and totally arbitrary 
overlaps are not possible (two prefixes of the same length do 
not overlap). also, a range can only start from an even point 
and terminate at an odd point. Based on these observations, 
we can split the set of ranges into several distinct cells dis- 
tinguished by the length of the prefix (or, equivalently the 
size of the range). 

Let the s field be of length 1s bits and the d field be of 
length Id bits. Let RI, Rs, , Rl, denote subsets of the set 
R of n rectangles such that subset Ri consists of all rect- 
angles formed from prefixes that are i bits long. Let nz 
denote the number of prefixes of length i that are present 
in the lookup table. Assume that these prefixes in the s 
dimension are numbered in ascending order of values ob- 
tained by extending all prefixes to their maximum length 1s 
by adding sufficient zero bits to each of the specified pre- 
fixes. Denote the ni prefixes of length i by P,‘, P,“, . . . , PF’. 

With each prefix P: there is an associated set of rectangles, 

Ri = {(P,j,d,I),(P~,dT),......,}, that have Pi as one of 

their sides. Here, the {df,dF,..“.. ,}, Are ranges in the d 
dimension and can overlap. The set of rectangles R,i is the 
union of sets Ri, Rp, , , Rtyi where each of the R;’ is the 

set of rectangles associated with the jth prefix of length i. 
Note that the sets R: are disjoint and that all rectangles in 

Ri that match p have higher priority than rectangles in R{ 

that match p if i > t. This is because rectangles in Ri are 

formed with longer prefixes than those in Ri since i > t. 
In the example of Figure 4, the set of rectangles with 

prefix equal to 1 is RI = {{el}, {e6}}. Note that each prefix 
of length m covers l/Zm of the total s range. There is a 

1 

total of 7~2 = 1 prefixes of length 2. The set Rz of rectangles 
formed with prefixes of length 2 consists of the rectangles 
(e2, e3, e4). From Figure 4, we see that these rectangles can 
overlap in the d dimension. There is one prefix of length 3 
and one rectangle formed using it. So set R3 has one set of 
rectangles and that set contains one rectangle e5. 

Let us assume that the size of the list of ranges d{ is 

denoted by l~i. From each list of ranges consisting of di s, 

we derive a list of non-overlapping intervals D{s. The size 

of this new set l?{ is Kf <= 2ki + 1, i.e. by represent- 

ing the original ki overlapping intervals as non-overlapping 
intervals we increase the space by only a constant factor 
of 2. The purpose of replacing overlapping intervals by 
non-overlapping intervals is to locate the d from the query 
point into one of these non-overlapping rectangles during 
the search procedure and then to find the associated enclos- 
ing rectangle. Hence, when many intervals overlap a given 
interval, the rectangle associated with the interval (during 
the overlap eliminating phase) is the one with the highest 
priority that overlaps the interval. In Figure 4, the set of 
intervals that are created after this overlap elimination for 
d$ is 0; = {ae, ai, &j}. Let us also assume that from the 
set of rectangles Ri, rectangle e3 has the highest priority. 
Then this will be the rectangle associated with interval ~2, 
although there are other rectangles overlapping this range. 

The preprocessing phase of the algorithm is as follows: 

Store the set of prefixes Pj using any efficient trie rep- 
resentation. 

i := 1 

For each prefix, P!, store the list of non-overlapping 

intervals D!s in sorted sequence using either an array 
or a binary tree. 

Repeat for all prefix lengths i 

Essentially, in the preprocessing step we perform two op- 
erations: First, we separate the rectangles based on the pre- 
fix length in the s dimension. Then, for each prefix, we 
project all its associated rectangles to the corresponding axis 



to obtain first the overlapping intervals d: in the d dimen- 

sion. From these we create the non-overlapping sets 0:. 

The non-overlapping intervals are created by a scan of the 
overlapping intervals from lower to higher co-ordinates in 
the d dimension. The procedure is: 

1. doforalli 

2. Sort the set of overlapping intervals d{ into ascending 
sequence of their starting points. 

3. If an interval starts or ends, generate Us for previous 
interval. Store the interval and pointer to actions for 
highest priority rectangle that overlaps this interval” If 
newly created interval, and its previously stored adja- 
cent interval point to the same rectangle, merge these 
two intervals. Since a new interval 0;’ is created, at 
most, when an overlapping interval begins or termi- 
nates, the size of this new set 0: is Kf <= 2$ + 1 

where ki is the size of the set of overlapping intervals 

d; 

At the end of the pre-processing step each rectangle is 
stored in exactly one location on the s-axis, i.e, it is stored 
in a structure associated with the the prefix used to form 
this rectangle. Its d range is in sorted sequence within the 
structure, with the other entries in this structure being the 
d intervals of other rectangles formed using the same prefix. 
The set of rectangles associated with a prefix is stored as 
a list of non-overlapping intervals and requires space only 
proportional to the size of the set. Only O(n) space is needed 
to store all the rectangles since each rectangle appears only 
in one set and therefore the size of the union of all sets is 
O(n). 

The look-up algorithm operates in the following phases. 

i := 1; solution := nil 

Let Pi = {P,‘,P,“,... , PFi} be the set of all prefixes of 

length i. Find the prefix P! of length i which matches 

s determined by the query point. If match Pj is found 

then search in the structure associated with P/ to find 
the non-overlapping interval 0,” that contains d given 

by the query point. Solution = rectangle associated 
with (Pi, Dp). This is the best solution among all 
prefixes searched so far. 

Repeat till all prefix lengths have been searched. 

The total execution time of the algorithm as presented is 
O(Zs log n). This is because the number of iterations of the 
algorithm in the worst case is equal to the number of possible 
prefix lengths Is. If use a trie structure ( note that the 
use of other data structures is not precluded) to determine 
prefixes of each length then total cost in time for determining 
prefixes is O(ls). The list of 0:s can be of size O(n). Hence, 
O(logn) time is needed to search each list for a matching 
entry (we will later show this factor can be eliminated for all 
but one list by cascading the search through these multiple 
lists). The search could have been started from the longest 
possible prefix so as to improve average execution times but 
since we are only interested in worst-case performance this 
optimization is not used. 

Consider the example of Figure reflpexample. Assume 
that a packet with header Pl = (OllO,OlOl) arrives. We 
first find a matching prefix (0) of length 1 and search for en- 
closing rectangles formed with this prefix. We search the d 

dimension and we find that rectangle el is a first candidate 

solution. Note that rectangles el, e6 are the only rectangles 
in the set of rectangles with prefixes of length equal to 1. 
Next, we search using prefixes of length 2. The matching 
prefix is (01). We now get rectangle e3 as a better candi- 
date since the d field of the arriving packet overlaps with the 
range a2, and this rectangle is formed with a longer prefix 
and e3 has higher priority than other rectangles formed with 
prefixes of equal or lower length. e3 becomes the best solu- 
tion found until now. Finally, we locate a matching prefix 
(OlI) of length 3. We search among rectangles formed with 
this prefix and get e5 as the best solution. 

The time-complexity of O(Zs log n) obtained with this al- 
gorithm can be too large for use in a high-speed router. As- 
sume that the the number of possible prefix lengths Is = 32 
and that the number of table entries n = 218 = 256K. This 
requires 576 memory accesses in the worst case (the mea- 
sure of execution time for our algorithms). Hence, the time 
is prohibitively high. In the next section, we show how the 
log n factor can be eliminated, and so reducing the number 
of memory accesses in the above example to about 50 which 
makes it practical for high-speed implementation. 

5.1 Eliminating the O(logn) factor in execution time 

With a trie implementation, the space requirement of the 
above look-up scheme is O(n). Furthermore, the order of 
search of the sets from the lists RI, Rz, . . . , etc. is in increas- 
ing order of prefix lengths, i.e., a set from RI is searched 
before searching a list from Rz and so on. The search pro- 
ceeds in levels with sets belonging to RI being on the first 
level, those in Rz being on the second level and so on. Let 
the number of non-overlapping intervals in all of RI be iVi , in 
all of R2 be Nz etc. The bottom most level Rl, has Nl, non- 
overlapping intervals. Note that the number of overlapping 
intervals at each level can be O(n). Suppose that we had a 
serendipitous arrangement of intervals where only the size of 
RI is O(n) and for all Ri,i > 1 the sizes are O(1). Clearly, 
in this case the worst case execution time is O(ls + logn). 
Of course, we cannot count on such a good arrangement of 
intervals. However, we can make this happen by introducing 
some “virtual” intervals using a technique used in compu- 
tational geometry to speed up searches in multiple ordered 
lists [7, 8] 

When we perform a search on the list at level say i, the 
information we get is that the given d lies in an interval 
Q. When we next search the lists at level i + 1, instead of 
searching through all the intervals, we can use the informa- 

tion learned in the previous search and search amongst only 
those intervals that fall in the range given by q. While this 
may improve the average case performance, unfortunately, 
the worst case is not affected by this heuristic. This is be- 
cause at level i + 1 there may be O(n/ls) intervals which fall 

within the range determined by 0: and this can happen at 
all levels. Hence, an O(log(n/Zs)) = O(log n) search may be 
needed at every level. 

Now suppose we introduce “virtual intervals” at levels 
i < Zs in the following manner. There are Nl, intervals 
at level Is. Let us also denote by y:“, yk . ., the boundary 
points that demarcate the Nl, intervals in the d dimension 
at level 1s. There are 2 * iVl, such points at most. We repli- 
cate every other point at level Zs to level Zs - 1, i.e 2 * Nl, 
points are moved to level Zs - 1. The points that were propa- 
gated together with the points defining the original intervals, 
define the intervals at level Zs - 1. These are stored as non- 
overlapping intervals at level 1s - 1. Next we take all the 
intervals now at level Is - 1 and their associated points and 
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Figure 5: Operation of the 2-dimensional algorithm when one dimension includes only intervals created by prefixes and the 
propagation technique is used. 

replicate every other point and move them as virtual points 
to level Es - 2. We repeat this process till we reach the root 
level. Note that the propagation is only used to speed up 
the search. At each level, the rectangles associated with 
each interval are as described in the preprocessing described 
before. We can ignore the virtual intervals and points that 
result from propagation as far as the association of rectan- 
gles to intervals is concerned. 

Note that this propagation process only increases the 
space requirements by a constant factor, i.e, the total space 
requirement is still O(n). It can be shown that the maxi- 
mum amount of virtual intervals created (and hence extra 
space) is when Ni, = n, in which case the number of bound- 
ary points at level Is is 2n. The extra space due to the 
propagations is then 

2(n + 5 + a + .) <= 4n 

However, by increasing the space by a constant factor, we 
gain the advantage that we can search the multiple lists 
in a more efficient manner. We search the level 1 list as 
before taking O(logn) time in the worst case. This results 

in locating the given d in some interval 0:. This interval 
can possibly be a virtual interval propagated up from the 
level 2. Now that we have localized d to the interval O{, 
the search in level 2 need only search in the range given 
by D3 1. Because every other point has been propagated up 
from level 2, only 2 intervals can fall in range 0: to which 
d has been localized. Hence, the search at level 2 can be 
done in O(1) time. In general, in moving from level i to 
level z + 1, the propagation of intervals ensures that there is 
enough information gained in the search at level i that the 
search at level i + 1 takes only O(1) time. Hence, the worst 
case execution time of the look-up algorithm is O(Zs+log n). 

To illustrate the algorithm, let us consider the example 
of Figure 5. For illustration purposes, we restrict ourselves 
to only three squares. We start from the rectangles with 
the longest prefix and we propagate only point al. As a 
result, on the axis corresponding to prefix of size two, there 
are now three points. We propagate points 51 and b2 only. 
There are four points now in the axis for prefixes of length 
1. Assume that a packet with header Pl arrives. During the 
search operation, we start from the prefixes of length 1 and 
locate rectangle el as a candidate solution. When we move 
to prefixes of size 2, however, we use a pointer to the set of 

intervals that were possibly propagated. Note, that from the 
propagation we have lost the information of whether Pl has 
a d dimension smaller or larger than the point al. But it can 
only be one of the two solutions. There are two candidate 
intervals that are retrieved and only one corresponds to the 
incoming d value. Thus, we use the pointer associated with 
this interval to continue our search on the prefixes of length 
three. The final solution can be now retrieved. 

6 Concluding Remarks 

Packet filtering or classification, using multiple packet-header 
fields and allowing range matches, has been considered a 
difficult operation to implement at high-speeds and with 
a large number of filter rules. However, it is a very use- 
ful primitive in connectionless networks for associating a 
policy-defined context with each incoming packet, so as to 
permit packet handling using various policy-based routing, 
security, and differentiated services actions. We presented 
three new schemes for packet classification. The first two are 
for implementing generalized packet filters allowing range 
matches in many dimensions. The schemes allow processing 
of thousands of filter rules at the rates of millions of packets 
per second using simple hardware technology and moder- 
ate clock speeds. These processing rates are based on traf- 
fic and filter-rule-pattern independent worst-case bounds, 
unlike cache-oriented schemes which are heavily traffic de- 
pendent. We are interested in only worst-case performance 
of the schemes since we want to avoid queueing for header 
processing in order to use the packet classifier for provid- 
ing differentiated services and &OS. The third scheme is 
for the special case of two-dimensional lookups where the 
ranges in one direction are restricted to being prefix ranges. 
For this case, we present an algorithm which in the worst 
case requires only O(number-of-prefix-lengths + log n). This 
scheme allows 2-dimensional classification to be performed 
with hundreds of thousands of entries at speeds sufficient 
for operation in network backbones. This two-dimensional 
lookup has many applications including the important one of 
supporting multicast. In the multicast case, since the group 
identifier range is either a specific group identifier or a wild- 
card range, our algorithm needs only 2 memory accesses 
beyond what is needed for the longest prefix match needed 
for unicast forwarding. The ability to filter on thousands 
of rules in many dimensions, and hundreds of thousands of 
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rules in two dimensions, widens the range of options feasible 
for evolving the current best-effort Internet to the Internet 
of the future, capable of providing customized differentiated 
services. Specifically, our algorithms demonstrate that there 
may be no need to restrict filtering to the edges or to very 
simple operations such as using only the Type-of-Service bits 
in the IP packet header. Contrarily, the whole network, in- 
cluding the backbone, can participate in the enforcement of 

policies. 

Acknowledgements 

The authors would like to thank the anonymous reviewers 
for the their detailed and insightful comments. The authors 
would also like to thank K. J. Singh and B. Suter who im- 
plemented the five-dimensional algorithm in the Bell Labs 
Router prototype. 

References 

PI 

PI 

[31 

PI 

[51 

F-51 

[71 

PI 

PI 

PO1 

1111 

PI 

M.L. Bailey, B.Gopal, M.Pagels, L.L.Peterson, and 
P.Sarkar. PATHFINDER: A pattern-based packet clas- 
sifier. In Proceedings of the First Symposium on Oper- 
ating Systems Design adn Implementation, November 
1994. 

M. De Berg, M. van Kreveld, and J. Snoeyink. Two- 
and three-dimensional point location in rectangular 
subdivisions. Journal of Algorithms, 18:256-277, 1995. 

P. Van Emde Boas, R. Kaas, and E. Zijlstra. Design and 
implementation of an efficient priority queue. Mathe- 

matical Systems Theory, 10:99-127, 1977. 

J. Boyle. RSVP Extensions for CIDR Aggregated Data 
Flows. 
In Internet Draft, http://www.internic.net/internet- 
drafts/draft-ietf-rsvp-cidr-ext-Ol.txt, 1997. 

B. Chazelle. How to search in history. Information and 

Control, 64:77-99, 1985. 

B. Chaaelle and J. Friedman. Point location among 
hyperplanes and unidirectional ray shooting. Compu- 
tational Geometry: Theory and Applications, 4153-62, 
1994. 

B. Chazelle and L.J. Guibas. Fractional cascading. i. a 
data structuring technique. Algorithmica, 1(2):133-62, 
1986. 

B. Chazelle and L.J. Guibas. Fractional cascading. ii. 
applications. Algorithmica, 1(2):163-191, 1986. 

K.C. Claffy. Internet Trafic Characterization. PhD 
thesis, University of California, San Diego, 1994. 

D. Clark. Service Allocation Profiles. In Internet 

Draft, http: / /www.internic.net/internet-drafts/draft- 
Clark-diff-svc-allot-OO.txt, 1997. 

K.L. Clarkson. New applications of random sampling 
in computational geometry. Discrete & Computational 
Geometry, 2:195-222, 1987. 

H. Edelsbrunner, L.J. Guibas, and J. Stolfi. Optimal 
point location in a monotone subdivision. SIAM Jour- 

nal on Computing, 15:317-340, 1986. 

I131 

1141 

I151 

PI 

1171 

PI 

P91 

WI 

Pll 

PI 

1231 

1241 

D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deer- 
ing, M. Handley, V. Jacobson, C. Liu, P. Sharma, and 
L. Wei. Protocol independent multicast - sparse mode 
: Protocol specification. In RFC 2117, June 1997. 

D. Estrin, J. Postel, and Y. Rekhter. Routing arbiter 
architecture. In ConneXions, volume 8, pages 2-7, Au- 
gust 1994. 

V. Fuller et. al. Classless Inter-Domain Routing. In 
RFC1519, ftp://ds.internic.net/rfc/rfc1519.txt, June 
1993. 

J.C.Mogul, R.F.Rashid, and M.J.Accetta. The packet 
filter: An efficient mechanism for user level network 
code. Technical Report 87.2, Digital WRL, 1987. 

K.Claffy, C. Polyzos, and H.W.Braun. Application of 
sampling methodologies to network traffic characteri- 
zation. In Proceedings of ACM SIGCOMM’SS, pages 
194-203, September 1993. 

T. Li and Y. Rekhter. Provider Architecture for Dif- 
ferentiated Services and Traffic Engineering (PASTE). 
In Internet Draft, http://www.internic.net/internet- 
drafts/draft-li-paste-OO.txt, 1998. 

S. McCanne and V. Jacobson. The BSD packet filter: 
A new architecture for user-level packet capture. In 
USENIX Technical Conference Proceedings, pages 259- 
269, Winter 1994. 

N. McKeown, V Anantharam, and J. Walrand. Achiev- 
ing 100% throughput in an input-queued switch. In 
Proceedings of INFOCOM’SG, pages 296-302, March 
1996. 

Mitsubishi, 
http://www.mitsubishichips.com/eram/eram.htm. 
eRAM - Memory and Logic on a chip, 1997. 

M. H. Overmars and A.F. van der Stappen. Range 
searching and point location among fat objects. Journal 
of Algorithms, 21(3):629-656, 1996. 

P. Van Emde Boas. Preserving order in a forest in less 
than logarithmic time. In Proceedings of 16th IEEE 
Conference on Foundations of Computer Science, pages 
75-84, 1975. 

K. Thomson, G.J. Miller, and R. Wilder. Wide-area 
traffic patterns and characteristics. IEEE Network, De- 
cember 1997. 

[25] Toshiba America Electronic Components. CMOS dRA- 
MASIC Families, 1997. 

[26] D. Waitzman, C. Partridge, and S. Deering. Dis- 
tance Vector Multicast Routing Protocol. In RFClO75, 
ftp://ds.internic.net/rfc/rfc1075. txt, June 1993. 

[27] M. Yuhara, B.N. Bershad, C.Maeda, J.Eliot, and 
B. Moss. Efficient packet demultiplexing for multiple 
endpoints and large messages. In USENIX Technical 
Conference Proceedings, Winter 1994. 

[28] L. Zhang, S. Deering, D. Estrin, S. Shenker, and 
D. Zappala. RSVP: A new resource reservation pro- 
tocol. IEEE Network, 7(5):8-18, September 1993. 

214 


