
High-Speed Policy-based Packet Forwarding Using Efficient Multi-dimensional
Range Matching

T.V. Lakshman and D. Stiliadis

Bell Laboratories

101 Crawfords Corner Rd.

HolmdeP, NJ 07733

{lakshman, stiliadi)@bell-labs.com

Abstract

The ability to provide differentiated services to users with
widely varying requirements is becoming increasingly im-
portant, and Internet Service Providers would like to pro-
vide these differentiated services using the same shared net-
work infrastructure. The key mechanism, that enables dif-
ferentiation in a connectionless network, is the packet clas-
sification function that parses the headers of the packets,
and after determining their context, classifies them based
on administrative policies or real-time reservation decisions.
Packet classification, however, is a complex operation that
can become the bottleneck in routers that try to support
gigabit link capacities. Hence, many proposals for differ-
entiated services only require classification at lower speed
edge routers and also avoid classification based on multiple
fields in the packet header even if it might be advantageous
to service providers. In this paper, we present new packet
classification schemes that, with a worst-case and traffic-
independent performance metric, can classify packets, by
checking amongst a few thousand filtering rules, at rates of
a million packets per second using range matches on more
than 4 packet header fields. For a special case of classifica-
tion in two dimensions, we present an algorithm that can
handle more than 128K rules at these speeds in a traffic in-
dependent manner. We emphasize worst-case performance
over average case performance because providing differenti-
ated services requires intelligent queueing and scheduling of
packets that precludes any significant queueing before the
differentiating step (i.e., before packet classification). The
presented filtering or classification schemes can be used to
classify packets for security policy enforcement, applying re-
source management decisions, flow identification for RSVP
reservations, multicast look-ups, and for source-destination
and policy based routing. The scalability and performance
of the algorithms have been demonstrated by implementa-
tion and testing in a prototype system.

1 Introduction

The transformation of the Internet into an important com-
mercial infrastructure has significantly changed user expec-

Permission to mahe digital or hard copies of all or pert of thos work for

personal or classroom use is granted without fee provided that

copses are not made or distributed for profit or commewal adven

tage end that copies bear this notice and the full cotat~on on the first page.

To copy otherwise. to republish. to post on swvers or to

redlstributs to ksts. reqwres prior specific permissoon and/or B fee.

SIGCOMM ‘98 Vancouver. B.C.

0 1999 ACM l-58113.003.1/98/0008...85.00

tations in terms of performance, security, and services. In-
ternet Service Providers, while using a shared backbone in-
frastructure, would like to provide different services to dif-
ferent customers based on different service pricing or based
on widely varying customer requirements. For providing this
differentiated service, service providers need mechanisms for
isolating traffic from different customers, for preventing unau-
thorized users from accessing specific parts of the network,
and for providing customizable performance and bandwidth
in accordance with customer expectations and pricing. In
addition, service providers need mechanisms that allow rout-
ing decisions to be made not just based on destination ad-
dresses and the shortest path to it, but also based on con-
tracts between service providers or between a service provider
and a customer [14]. Consequently, routers (or packet for-
warding engines in general) used in both enterprise and
backbone environments should be able to provide network
managers with the proper mechanisms that will allow the
provisioning of these features.

Forwarding engines must be able to identify the context
of packets and must be able to apply the necessary actions
so as to satisfy the user requirements. Such actions may be
the dropping of unauthorized packets, redirection of packets
to proxy servers, special queueing and scheduling actions,
or routing decisions based on a criteria other than the des-
tination address. In the paper, we use interchangeably the
terms packet filtering or packet class$cation to denote the
mechanisms that support the above functions.

Specifically, the packet filtering mechanisms should parse
a large portion of the packet header, including information
on the transport protocols, before a forwarding decision is
made*. The parsing results in the incoming packet being
classified using a set of rules that have been defined by net-
work management software or real-time reservation proto-
cols such as RSVP.

Packet filtering functionality is required for example when
a router is placed between an enterprise network and a core
backbone network. The router must have the ability to block
all unauthorized accesses that are initiated from the public
network and are destined to the enterprise network. On
the other hand, if accesses are initiated from a remote site
of the enterprise network, they can be forwarded into the
intranet and this requires filtering ability. If this level of
security is not enough, another policy requirement might
be that authorized access attempts from the public network
be forwarded to an application level proxy server that will

*Forwarding based on transport level information is also referred
to as layer-4 forwarding.

203

authenticate the access. Clearly, filtering mechanisms are
very useful at the edge of an enterprise network. In an edge
network node, the router might need to identify the traffic
that is initiated from specific customers, and either police
it or shape it to meet a predefined contract. Indeed, these
are the actions that are required by some of the differenti-
ated services model proposals that are being considered for
standardization by the IETF [lo].

It is evident that most filter rules naturally apply to a
whole range of addresses, port numbers, or protocols, and
not just to single predefined hosts or applications. Aggre-
gation, for instance of addresses, is not only required be-
cause customers are usually allocated blocks of addresses,
but also because it is necessary to keep the network manage-
able. Therefore, the specification of the packet classification
policies must allow aggregations in their definitions. This
means that packet classification algorithms must be be able
to process rules that define combinations of ranges of values.
If the algorithms can only handle exact values and do not
support aggregation, preprocessing is required to translate
the ranges to exact values. This is infeasible since ranges
can grow exponentially with length of the packet field on
which the ranges are defined.

A trend worth noting is that even though packet filtering
was thought of as a tool necessary only at the network ac-
cess points and mainly for firewall or security applications,
it is now becoming apparent that it is a valuable tool for
performing traffic engineering and meeting the new service
requirements of the commercial Internet. Filtering policies
that use the full information of the packet header can be
defined for distributing the available system or network re-
sources. The main consequence of these new uses is that
all packet classification actions must be performed at wire-
speed, i.e., the forwarding engines must have enough pro-
cessing power to be able to process every arriving packet
without queueing since without header processing it is not
possible to differentiate packets to provide differentiated ser-
vices.

The main contributions of this paper are algorithms that
use multi-dimensional range matching that enable Gigabit
routers to provide wire-speed packet filtering and classi-
fication in a traffic independent manner (i.e. we do not
rely on traffic dependent caching or average case results to
achieve fast execution times). To our knowledge, our pro-
posed schemes are the first schemes that allow thousands of
filter rules to be processed at speeds of millions of packets
per second with range matches on 5 or more packet fields
in a traffic independent manner. Specifically, we present
three algorithms: The first algorithm takes advantage of
bit-level parallelism which combined with very elementary
bit-operations results in a scheme that supports a large num-
ber of filter rules. The second algorithm extends the perfor-
mance of the first algorithm by making efficient use of mem-
ory. It provides a means for balancing the the time-space
tradeoff in implementation, and allows optimization for a
particular system taking into account the available time for
packet processing, the available memory, and the number
of filter rules to be processed. Furthermore, the algorithm
allows on-chip memory to be used in an efficient and traffic
independent manner for reducing worst-case execution time.
This is unlike typical caching schemes which are heavily traf-
fic dependent and only improve average case performance.
The performance metric for all our schemes is worst-case
execution time, simple operations to make it amenable to
hardware implementation if necessary, and space require-
ments which are feasible with current memory technology

and costs. The implementation simplicity, scalability and
performance of our filtering have been demonstrated in a
prototype router with interfaces operating at a million pack-
ets per second.

Our third algorithm considers the special case of filter
rules on two fields. This is motivated by important appli-
cations such look-ups for multicast traffic forwarding and
policy-based routing. To elaborate on this example, when
a forwarding engine supports a multicast protocol like PIM
(sparse mode or dense mode) [13] or DVMRP [26], the for-
warding decision has to be made on both the source address
value and the multicast group value. Depending on the pro-
tocol, the forwarding engine may have a forwarding entry
for a given group value irrespective of source addresses, and
also have forwarding entries for a given group value and
source subnet. Given the increasing importance of multi-
cast forwarding in the Internet, it would be ideal if a simple
algorithm could be used for making multicast forwarding
decisions. Since the search for the source addresses may use
the same forwarding information base as that used for uni-
cast routing, the same type of CIDR (Classless Inter-Domain
Routing) aggregations [15] are likely to be used. CIDR ag-
gregations introduced the notion of prefix in the definition
of routing entries. In other words an entry in the forwarding
base is defined as a value and a mask. The mask defines the
number of bits of the destination address of a packet that
can be ignored when trying to match the destination ad-
dress of the packet to the particular entry of the forwarding
base. The bits that can be masked-out are always in the
less significant portion of the address. Thus, the values in
the forwarding engines can thought as prefixes. For the case
of IPv4, prefixes can have a length between 1 and 32 bits.
We present a linear space, O(prefix length) scheme which
can be used to implement P-dimensional lookups at rates of
millions of packets per second for more than 128K entries in
the forwarding table. Considering that multicast forwarding
tables in the core backbone might include several hundreds
of thousands of entries, even a solution that uses O(n log n)
space with a moderate constant or O(Zog2n) time may not
be feasible when the number of entries n is that high.

2 Design Goals

We first try to identify the main requirements that a packet
classification algorithm must satisfy in order to be useful in
practice.

2.1 The Requirement for Real-Time Operation

Traditional router architectures are based on flow-cache ar-
chitectures to classify packets. The basic idea is that packet
arrivals define flows [9, 171, in the sense that if a packet be-
longing to a new flow arrives, then more packets belonging
to that flow can be expected to arrive in the near future.
With this expected behavior, the first packet of a flow is
processed through a slow path that analyzes the complete
header. The header of the packet is then inserted into a
cache or hash table together with the action that must be
applied to the first packet as well as to all other packets of
the flow. When subsequent packets of that flow arrive the
corresponding action can be determined from the cache or
hash table.

There are three main problems associated with this archi-
tecture or any similar cache-based architecture when applied
to current Internet requirements:

204

1. In current backbone routers, the number of flows that
are active at a given interface is extremely high. Re-
cent studies have shown that an OC-3 interface might
have an average of 256K flows active concurrently [24]

t” For this many number of flows, use of hardware
caches is extremely difficult, especially if we consider
the fact that a fully-associative hardware cache may be
required. Caches of such size will most likely be imple-
mented as hash tables since hash tables can be scaled
to these sizes. However, the O(1) look-up time of a
hash table is an average case result and the worst-case
performance of a hash table can be poor since multiple
headers might hash into the same location. The num-
ber of bits in the packet headers that must be parsed
is typically between 100 and 200 bits, and even hash
tables are limited to only a couple of million entries.
So any hash function that is used must be able to ran-
domly distribute 100 to 200 bit keys of the header to
no more than 20-24 bits of hash index. Since there is
no knowledge about the distribution of the header val-
ues of the packets that arrive to the router, the design
a good hash function is not trivial.

2. Due to the large number of flows that are simultane-
ously active in a router and due to the fact that hash
tables generally cannot guarantee good hashing under
all arrival patterns, the performance of cache based
schemes is heavily traffic dependent. If a large num-
ber of new flows arrive at the same time, the slow path
of the system that implements the complete header
matching can be temporarily overloaded. This will re-
sult in queueing of packets before they are processed.
But in this case, no intelligent mechanism can be ap-
plied for buffering and scheduling of these packets be-
cause without header processing there is no informa-
tion available about the destination of the packets or
about any other fields relevant to differentiation. So it
is possible that congestion and packet dropping hap-
pen due to processing overload and not due to output
link congestion.

To better illustrate this, consider the model in Fig-
ure 1. Packets arrive to the interfaces and are placed
in a queue for processing. After the packet classifi-
cation and next-hop lookup operations are performed,
they are forwarded to the outgoing interfaces where
they are queued for transmission. Clearly, some inter-
faces may be idle even though there are packets waiting
to be transmitted in the input queues. For example,
all packets destined for output 1 can be blocked in
the slow path processing module behind packets that
are destined to other outputs. Output 1 remains idle,
although there are packets in the buffers available for
transmission. Obviously such a system will suffer from
Head-of-Line blocking that will limit the throughput
substantially. Note, that the Head-of-Line problem
can be diminished, if there is knowledge about the
destination of more than one enqueued packet [20].
However, the fundamental problem of the system of
Figure 1 is that the destination or the context of the
packet is not actually known before the packet is pro-
cessed. Thus, it is impossible to apply any intelligent

‘Note the by active we do not imply that the flow currently has
a backlog of packets to be served. The definition of active flows
for caching look-up information is different from the definition for
scheduling because caching information changes at a slower time scale.

3.

queueing mechanisms at the input queues and head-
of-line blocking cannot be eliminated.

A commercial Internet infrastructure should be ro-
bust and should provide predictable performance at
all times. Variations in the throughput of forwarding
engines based on traffic patterns are undesirable and
make network traffic engineering more difficult. In ad-
dition, the network should not be vulnerable to at-
tacks from malicious users. A malicious user or group
of users discovering the limitations of the hash algo-
rithms or caching techniques, can generate traffic pat-
terns that force the router to slow down and drop a
large portion of the packets arriving at a particular
interface.

Summarizing, we claim that any packet queueing delays
are only acceptable after the classification step is performed,
if provisioning of differentiated services and robustness are
important. In particular, the queueing delays before the
complete processing of a packet can be no larger than the
maximum allowed delay for the flow with the minimum de-
lay requirement (which could be extremely small if constant
bit rate flows are supported). This no-qzleueing before pro-

cessing principle applies because it is the header process-
ing (including packet filtering) operation that enables the
router to determine the quality-of-service (&OS) level to be
accorded to a particular packet. Hence, large queues formed
while waiting for the filtering operation can violate quality-
of-service for some flows even before the router determines
the QoS to be accorded to the flow. The implication that
this has on the design of packet filtering algorithms is that
it is the worst-case performance of the algorithms that de-
termines the true maximum packet processing rate and not
the average case performance (the averaging being done on
filter rule combinations and traffic arrival patterns). If aver-
age case performance is used to determine supported packet
processing speeds, then buffering is needed before filtering.
To estimate delays in this undifferentiated-traffic buffer, we
need a characterization of the the variance in execution
times (which is difficult to determine) and we need to pre-
dict traffic patterns at different interfaces. The delay in this
pre-filtering buffer can cause QoS to be violated for flows
with stringent delay constraints if there is any error in es-
timating these quantities. Hence, it is preferable to avoid
queueing before header processing.

2.2 Criteria for efFicient packet classification and system
constraints

We can now outline, based on the prior discussion, the cri-
teria that an efficient classification algorithm must meet:

The algorithm must be fast enough for use in routers
with Gigabit links. Internet Service Providers are en-
visaged to build networks with link capacities of 2.4
Gigabits/s and more. Any packet classification scheme
for use in core networks must be scalable to these
speeds.

The algorithm must be able to process every packet
arriving to the physical interfaces at wire-speed. Re-
cent traffic studies have shown that 75% of the packets
are smaller than the typical TCP packet size of 552
bytes. In addition, nearly half the packets are 40 to 44
bytes in length, comprising of TCP acknowledgments
and TCP control segments [24]. Since the algorithm
cannot use buffering to absorb variation in execution

20.5

Figure 1: Queueing model of a system that uses a cache-based architecture for packet classification.

times, it must operate at wire-speed when all packets
are as small as 44 bytes. This means that the algo-
rithm must have provably small worst-case execution
times which are independent of traffic patterns.

3. Classification rules must be based on several fields of
the packet header, including among others source and
destination IP addresses, source and destination port
numbers, protocol type and Type-of-Service. The rules
must be able to specify ranges and not just exact values
or simple prefixes

4. For some applications, it might be possible to limit
the requirements to only two dimensions and to have
ranges defined only as prefixes. This is a more re-
stricted problem than the general classification prob-
lem but it has a very useful application in both multi-
cast lookups and in RSVP reservations that use either
wild-card filters or CIDR aggregations [15, 281.

5. It is possible that some packets may match more than
one rule. The algorithm must allow arbitrary priorities
to be imposed on these rules, so that only one of these
rules will finally be applicable to the packet.

6. Updates of rules are rare compared to searches in the
data structures. In particular, the frequency of up-
dates is in the time-scale of tens of seconds or longer
whereas look-ups happen for every processed packet.
At a packet processing rate of lo6 packets per second,
the ratio of look-ups to updates is 107. Hence, the al-
gorithms can be optimized for lookups even if it means
degrading update performance to some extent.

7. Memory accesses are expensive and are the dominant
factor in determining the worst-case execution time.

8. Memory is organized in words of size w and the cost
of accessing a word is the same as the cost of accessing
any subset of bits in a word.

9. Memory cost can be relatively low if technologies such
as Synchronous Dynamic RAMS (SDRAMs) are used.
These devices can provide very large capacity com-
bined with a high access speed, provided that accesses
are sequential. A packet classifier implementation that
requires multiple sequential accesses in a high-speed
SDRAM memory might be more affordable than an
algorithm of lower time-complexity that uses higher-
cost, lower capacity memories like SRAMs.

10. For operation at very high speed the algorithm must be
amenable to hardware implementation. While we do
not preclude software implementations of our proposed
algorithms, we are primarily interested in algorithms
that are implementable in hardware as well and are
not restricted to only a software implementation.

3 Previous Work

The idea for packet filtering, or classification in general, was
initiated in [16] and was later expanded in [19, 271. The
architectures and algorithms presented in these papers were
targeted mainly for an end-point and their main goal was
to isolate packets that are destined to specific protocols or
to specific connections. The algorithms used, although they
involved a linear parsing of all the filters, were fast enough
to operate at end-point link capacities. Obviously these im-
plementations do not scale to very high speeds.

An interesting variation was presented in [l] where the
first hardware implementation of packet filters was reported.
The implementation, although fast enough to support an
OC-12 link, is restricted to only a small number of rules
(< 12) and is not general enough for a commercial high-
speed router. The implementation uses a pipelined architec-
ture, resulting in O(1) performance using O(N) processing
elements for O(N) rules. Clearly, such an algorithm cannot
scale to a large number of filter rules since it requires a linear
number of processing elements. Moreover, this scheme was
designed for rules that required exact matching and not for
rules defined as ranges.

The general packet classification problem that we con-
sider can be viewed as a point location problem in multidi-
mensional space. This is a classic problem in Computational
Geometry and numerous results have been reported in the
literature [5, 6, 111. The point-location problem is defined
as follows: Given a point in a d-dimensional space, and a
set of n d-dimensional objects, find the object that the point
belongs to. Most algorithms reported in the literature deal
with the case of non-overlapping objects or specific arrange-
ments of hyperplanes or hypersurfaces of bounded degree
1221. When considering the general case of d > 3 dimen-
sions, as is the problem of packet classification, the best algo-
rithms considering time or space have either an O(logd-’ n)
complexity with O(n) space, or an O(log n) time-complexity

with O(nd) space. [22]. Though algorithms with these com-
plexity bounds are useful in many applications, they are
mostly not directly useful for packet filtering. For packet

filtering, the algorithms must complete within a specified
small amount, of time for n, the number of filters, in the
range of a few thousands to tens of thousands. So even
the algorithms with poly-logarithmic time bounds are not
practical for use in a high-speed router.

To illustrate this, let us assume that we would like the
router to be able to process 1K rules of 5 dimensions within
1~s (to sustain a 1 million packets per second throughput).
An algorithm with log4 n execution time and O(n) space
requires 10K memory accesses per packet. This is impracti-
cal with any current technology. If we use an O(logn) time
O(n4) space algorithm, then the space requirement becomes
prohibitively large since it is in the range of 1000 Gigabytes.

To the best of our knowledge, there is no algorithm re-
ported in the literature for the general d-dimensional prob-
lem, of point-location with non-overlapping object, with lower
asymptotic space-time bounds. In addition, our require-
ments are not for point location given non-overlapping ob-
jects, but for point location with overlaps being permitted
and prioritization used to pick one object out of many over-
lapping solutions.

For the special case of two dimensions and non-overlapping
rectangles a number of solutions have been reported with
logarithmic complexity and near-linear space complexity [12].
However, these algorithms do not consider the special prob-
lem related to longest-prefix matches where arbitrary over-
laps may be present and overlaps are resolved through the
longest prefix priority. An even better solution has been
reported in [2] where the time complexity is O(log log N).
However, the algorithm is based on the stratified trees pro-
posed by van Emde Boas [23, 31 for searches in a finite space
of discrete values. The data structures used require a per-
fect hashing operation in every level of the tree. The prepro-
cessing complexity, without using a randomized algorithm,
of calculating the perfect hash is O(min(hV, n3)) where h is
the number of hash functions that must be calculated and V

is the size of the space. Note, that for 2-dimensional longest-
prefix lookups this can result, even for a small number of
rules, in executions requiring 232 cycles which is impracti-
cal, even if preprocessing is only required once every several
seconds.

4 General Packet Classification Algorithms

A simple approach to the problem of multi-dimensional search,
as used for packet filtering, is to use decomposable search.
Here the idea is to state the original query as the intersection
of a few numbers of simpler queries. The challenge then, for
instance to obtain a poly-logarithmic solution, is to decom-
pose the problem such that the intersection step does not
take time more than the required bound. To achieve these
poly-logarithmic execution times, various sophisticated de-
compositions and query search data structures have been
proposed. However, as was pointed out before, even a log4 n
solution for 5 dimensional packet filtering is not practical for
our application where n can be in the thousands. Therefore,
we need to employ parallelism of some sort. Moreover, we
require simple elemental operations to make the algorithm
amenable to hardware implementation. Our cost metric of
memory accesses being of unit cost till a word length is ex-
ceeded implies that bit level parallelism in the algorithm
would give speed-ups. Instead of looking for data structures
which give the best asymptotic bounds, we are interested
in decomposing the queries such that sub-query intersection
can be done fast (as per our memory-access cost metric)
for n in the thousands and memory word-lengths that are

feasible with current technology.
The first point to note is that our packet-filtering prob-

lem involves orthogonal rectangular ranges. This means that
a natural decomposition of a k-dimensional query in a k-
dimensional orthogonal rectangular range is to decompose
it into a set of l-dimensional queries on l-dimensional inter-
vals. The problem is that when we do this for our problem,
each simple query can generate a solution of O(n) size. This
is because we can have arbitrary overlaps and so O(n) ranges
may overlap a query point in 1 dimension. Consequently, the
intersection step can take time O(n). Nevertheless, this so-
lution is far more practical for our packet filtering problem
than other poly-log solutions because we can take advantage
of bit-level parallelism.

To summarize, given our constraints (particularly the
need for hardware implementation) and cost metrics (in par-
ticular memory access cost per bit incrementing only at word
boundaries), the number of filter rules being of the order of
a few thousands, and the number of dimensions being 5, the
simple approach of decomposing the search in each dimen-
sion (which can be done in parallel) followed by a linear time
combining step is more useful than a sophisticated O(log4 n)
(n being the number of filter rules) time algorithm.

Below, we describe an algorithm which needs k*n’+O(n)
bits of memory for each dimension, rlog(2n)l + I compar-
isons per dimension (which can be done in parallel for each
dimension), and [n/w1 memory accesses for a pairwise com-
bining operation. We then present a second algorithm which
can reduce memory requirements to O(nlog n) bits while
increasing the execution time by only a constant (as long
as logn <= w which would certainly be the case). This
second algorithm has two other benefits. The constant in-
crease in execution time can be traded off for increased mem-
ory, allowing the algorithm to be optimized for the available
time and memory budget. Also, it can exploit on-chip mem-
ory in a traffic independent manner to speed up worst-case
bounds (unlike typical caching schemes which only speed up
average-case bounds and are traffic dependent). Specifically,
if there is (Ic * n2)/1 bits of on-chip memory then the number
of off-chip memory accesses is [log(n)/wl/(21)1 where w is
the word length. The number of on-chip memory accesses is
[n/won+,+,1 where U&-&p is the on-chip memory word
length.

4.1 Packet Classification based on Bit-Parallelism

Although, the algorithm we will describe has linear time
complexity, its use of bit-level parallelism significantly ac-
celerates the filtering operation for any practical implemen-
tation. The filtering rules are changed very infrequently in
comparison to the frequency of search operations. Hence,
extra preprocessing can be used to speed up searches.

We assume that a set of n packet filtering rules in Ic
dimensions are defined. Let rm = { ei ,m, ee,m, , ek,m} de-
note the set of ranges that define rule rm in the k: dimensions.

The preprocessing part of the algorithm is as follows:

For each dimension j, 1 <= j <= Ic, project all in-
tervals ej,i, 1 <= i <= n on the j-axis, by extracting

‘th the J element of every filter rule for all n filter rules.
There are a maximum of 2n + 1 non-overlapping inter-
vals that are created on each axis. Let us denote by
Pj, 1 <= j <= k the k sets of such intervals.

For each interval i E Pj, Vj E (1 k}, create sets of
rules Ri,j, 1 5 i 5 2n + I, 1 5 j < k, such that a rule
TV belongs in set &,j if and onlyif, the corresponding

207

Figure 2: General packet classification using bit-parallelism.

interval i overlaps in the jth dimension with ej,m, i.e.
iff i C e(,,,) where e(,,,) is the jth element of rule rm.

Without loss of generality, we assume that rules are sorted
based on their priorities. Assume that a packet with fields
Ei, Ez, El, arrives to the system. The classification of the
packet involves the following steps.

1. For each dimension j, find the interval, say ij on set I’3
that E3 belongs to. This is done using binary search
(requiring [log(2n + l)] + 1 comparisons) or using any
other efficient search algorithm.

2. Create intersection of all sets Rzj,J, ij E {1,2,. . .2n+
l}” This can be done by taking the conjunction of the
corresponding bit vectors in the bit arrays associated
with each dimension and then determining the highest
priority entry in the resultant bit vector (see explana-
tion below).

3. The rule corresponding to the highest priority entry
must be applied to the arriving packet.

Note, that the on-line processing step involves an inter-
section among the potential sets of applicable filter rules
which are obtained considering only one dimension at a
time. These potential solution sets may have cardinality
O(n) since we have assumed that rules may have arbitrary
overlaps. The intersection step involves examining each of
these rules at least once and hence the algorithm has time
complexity O(n).

To accelerate the execution time, we can take advantage
of bit-level parallelism. Each set R;,, is represented by a
bitmap n-bits long which acts as t,he indicator function for
the set. Let Bj [i, m] be a (2n+l) x n array of bits associated
with each dimension j. We can store each set Ri,j as a bit
vector in column i of the bit array Bj [i, m], 1 <= m <= n,

where bit Bj [i, m] is set if and only if, the rule rm. belongs
in set R;,,. The intersection operation is then reduced to
a logical-AND among the bitmaps that are retrieved after
the search in each direction. To be able to select the highest

priority rule, we rely on the rules being ordered based on
priorities. The bitmaps are organized in memory into words
of width w where each word is the unit of memory access.
We can implement the intersection by reading sequentially
the words of all dimensions and implementing the logical-
AND. The first rule that we find through this process is the
highest priority rule. Clearly this takes [k * n/w] memory
accesses. By making w large, the worst-case execution time
can be reduced further.

Let us consider the example in 2-dimensions, shown in
Figure 2, to illustrate the functioning of the algorithm. Rules
are represented by 2-dimensional rectangles that can be arbi-
trarily overlapped. The preprocessing step of the algorithm
projects the edges of the rectangles to the corresponding
axis. In the example shown, the four rectangles create seven
intervals in each axis. In the worst case, the projection re-
sults in a maximum of 2n + 1 intervals on each dimension.
We next associate a bitmap with each dimension, as is shown
in Figure 2. A bit in the bitmap is set, if and only if, the
corresponding rectangle overlaps with the interval that the
bitmap corresponds to. Note, that because of the method
by which the intervals were created, it is not possible for
a rectangle to overlap, say, only with half an interval. As-
sume that the packet represented by point Pl arrives to the
system. During the first on-line step, we locate the inter-
vals in both axis that contain this point. In the example,
these are intervals X2 and Y4 for the X and Y axis respec-
tively. In the second step, we use the bitmaps to locate the
highest priority rectangle that covers this point. Note that
rectangles are numbered based on their priorities. After the
logical-AND of the bitmaps, the first bit that is set in the re-
sulting bitmap is that corresponding to rectangle 3 which is
the highest priority rectangle, amongst all those overlapping
point Pl.

4.1.1 Hardware Implementation

The key point behind the hardware implementation is that
the algorithm performs only very simple operations. Since
the only hardware elements that are required for the binary
search operation (to locate enclosing intervals) are an inte-

208

Figure 3: Architecture block diagram of a parallel imple-
mentation.

ger comparator and counter, and the only operation for the
intersection is a parallel AND operation, the complexity of
such a processing element is very low. The straightforward
approach is to use a different processing element for each
dimension (see Figure 3). Each processing element consists
of a single comparator, a state machine and 2 local registers.
The processing elements implement the binary search on all
intervals in parallel. The result of this search is a pointer
to a bitmap for each direction. The second step of the algo-
rithm requires a parallel access to all bitmaps and a logical
AND operation amongst them. The first time that this op-
eration results in a non-zero value, the corresponding filter
has been located. The algorithm requires one more access to
the memory to retrieve the actions that may be associated
with this filter.

The algorithm has been implemented in 5 dimensions in
a high-speed router prototype using a single FPGA device
and five 128 Kbyte Synchronous SRAMs chips supporting
up to 512 rules and processing 1 million packets per second
in the worst case. This is achievable despite the device being
run at a very low speed of 33 MHz. Since we used the same
memory chips as those used in the LZ-caches of personal
computers, the cost of the memories is trivial. The device
can be used as a co-processor, next to a general purpose
processor that handles all the other parts of IP forwarding
or firewall functions.

4.2 Packet Classification based on Incremental Reads

The next algorithm we propose uses incremental reads to re-
duce the space requirements. The algorithm allows designers
to optimize time-complexity and space. Since the dominant
factor determining execution times is off-chip memory ac-
cesses, the availability of on-chip memory and the use of
the proposed algorithm can significantly increase the num-
ber of filter rules that can be applied within the given time
constraint.

The main idea used in developing the proposed algorithm
is the following. Consider a specific dimension j. There are
at most 2n + 1 non-overlapping intervals that are projected
onto this dimension. Corresponding to each of these inter-
vals there is a bitmap of n bits with the positions of the Is
in this bitmap indicating the filter rules that overlap this
interval. The boundary between intervals is a point where
some the projections of some filter rules terminate and those
of some filter rules start. If we have exactly 2n + 1 intervals,
then the set of filter rules that overlap any two adjacent
intervals 1 and m differ by only one rule (i.e., at the bound-
ary between interval I and m either a filter rule’s projection

starts, or a filter rule’s projection ends). This implies that
the corresponding bitmaps associated with these two inter-
vals differ in only bit. Hence the second bit map can be
reconstructed from the first by just storing, in place of the
second bit map, a pointer of size logn which indicates the
position of the single bit which is different between these
two bit maps. Carrying this argument further, a single bit
map and 2n pointers of size log n can be used to reconstruct
any bit map. This cuts the space requirement to O(nlogn)
from O(n2) but increases the number of memory accesses

by T(2nlogn)lw)l.
The above argument is not changed when more than one

filter starts or terminates at a particular boundary point
between two adjacent intervals. This is because if a bound-
ary point has more than one, say i, filters terminating or
starting at that point then the number of intervals in that
dimension is reduced by i - 1. Hence, we still need only 2n
pointers (each filter terminating or starting needs exactly
one pointer even if they all terminate or start at the same
boundary point).

We can now generalize this basic idea by storing (2n +
1)/1 complete bitmaps instead of just one bitmap. These
bitmaps are stored such that at most only [(2n + 1)/211
pointers (pointer are stored such that retrieval starts from
the nearest lower or higher position where a complete bitmap
is stored) need to be retrieved to construct the bitmap for
any interval. The preprocessing phase is as follows:

1.

2.

3.

4.

5.

For each dimension j E (1.. k) do

Determine the, at most 2n + 1, non-overlapping inter-
vals for dimension j by projecting all intervals ej,i, P <=
i <= n on the j-axis. This step is the same as the pro-
jection step for the algorithm proposed in the previous
sections.

Generate set of overlapping rules for first interval and
store its bit map in storage associated with this inter-
val.

For all intervals i E (2 . .2n + 1) do
Generate set of overlapping rules for interval i. If this
bit map has 1 or more bits different from most recent
bit map which was stored, then store this bit map in
storage associated with interval i. Otherwise, incre-
ment i. At most [2n + l/11 bit maps are stored since
there are n bits, each bit can change at most twice,
and the successive bit maps have at least 1 bits which
are different.

Fill in pointers indicating changed bits from previous
interval. There are at most k - I intervals between
intervals for which bitmaps have been stored. Starting
from each bit map, store pointers which indicate the
bits which have changed from the preceding interval.
“Preceding interval” is the interval with lower index
for bit maps in lower half of the l- 1 intervals between
stored bit maps and it is the interval with the higher
index for bit maps at the mid-point or upper half of
the I - 1 intervals.

The per-packet processing performed to find the appli-
:able filter rule, if any, is as follows:

1. For each dimension j E { 1. k} do

2. Find the interval, say i, on set Pj that EJ belongs to.
This is done by binary search (requiring rlog(2n + l)] +
1 comparisons) or using any other efficient search al-
gorithm.

209

3. If this interval has its complete bit map, bi, stored then
retrieve this bit map. This require [n/w] memory ac-
cesses. Otherwise, first retrieve the bit map for the
interval closest to i with a stored bit map. This bit
map has at most [(l - 1)/2] bits different from the re-
trieved bit map. Fetch the, at most [(l- 1)/2] pointers
corresponding to all intervals in between i and the in-
terval whose bit map was received. This case requires
~n/w] + [((1-1)/2)*(log n)/w] memory accesses. Con-
struct the bit map for i using the pointers in sequence.

4. Create a new bit map as the logical-AND of the re-
trieved bit maps for all Ic dimensions. Note that the
AND operation can be done progressively as the bit
maps are being constructed and does not necessarily
require the entire bit map for each dimension to be
completely retrieved.

5. The index of the leading 1 in this bit map gives the
applicable filter rule.

4.3 Choice of 1

One possible criteria for choice of I is to lower the memory
requirement from O(n’). Setting 1 = 2n + 1 is an extreme
case which reduces memory requirements to O(n log n) but
requires retrieving n - 1 pointers. Let us present the tradeoff
with an example. If we assume that bits of the bitmap are
retrieved through pointers, as is the case when 1 = 2n + 1,
then the total time for retrieving the bitmaps in each direc-
tion becomes r2n log nf w] which can be much higher than
the [n/w] time required by the first algorithm. However, at
the expense of higher execution time, the space requirement
is reduced substantially.

If on-chip memory is available however, complete bitmaps
may be retrieved together with the pointers. The basic as-
sumption behind the utilization of on-chip RAMS is that
they be designed to be extremely wide. It is thus possible
to increase the data bus width by at least a factor of 4 over
an off-chip RAM. Current technologies, such as the ones of-
fered by major ASIC vendors [25, 211, allow large portions
of Synchronous Dynamic RAMS (SDRAMs) to be allocated
in the same chip as logic. Note, that SDRAMs are ideal
for retrieving bitmaps since they offer the best performance
when accesses are sequential.

So, let us assume that on-chip memory can be QI times as
wide as off-chip memory. Let us assume that a full bitmap
is kept in the on-chip memory for every 1 words. The total
time required for retrieving this bitmap can be calculated
as t = n/cyw. This time must be equal to the time required
to retrieve at least l/2 pointers from the off-chip memory,
or t = 1 log n/2w off-chip memory accesses. From the above
two relations, we can easily calculate the optimal value of 1
for a given technology as

For example, if we assume (Y = 4 and n = 8K we get 1 = 315
and we will need approximately 64 cycles to complete the
operation. This will translate, using a 66MHz clock, to a
processing rate of 1 million packets per second. Note, that,
the total space requirement for the 8K filters is 32 Kbytes
of on-chip memory and 32 Kbytes of off-chip memory for
each dimension. This is definitely within the capabilities of
current technology.

5 Classification in Two Dimensions

The 2-dimensional classification problem is of increasing im-
portance in the evolving Internet architecture of the future.
Drastically changing user expectations will necessitate the
offering of different types of services and service guaran-
tees by the network. Although RSVP, or similar reservation
protocols, can offer end-to-end Quality-of-Service guaran-
tees for specific flows, it is not clear whether such a reser-
vation based model can be scaled for operation over high-
speed backbones where a very large number of flows can be
concurrently active. An alternative approach that has been
proposed is route aggregated flows along specific traffic engi-
neered paths. This directed routing is based not only on the
destination address of packets, but on the source address as
well [18]. RSVP or similar reservation protocols can be used
for setting the aggregation and routing rules [18, 41. How-
ever, the key mechanism needed to support such a scheme in
a high-speed core router is a 2-dimensional classification or
lookup scheme that determines the next hop, and the asso-
ciated resource allocations, for each packet as a function of
both the source and destination addresses. In addition, mul-
ticast forwarding requires lookups based on both the source
address and multicast groups [13, 261.

The P-dimensional look-up problem is defined as follows:
A query point p is a pair (s,d). For the forwarding prob-
lem, these values could correspond to source and destination
addresses. For the multicast look-up application, the query
point can correspond to the source address of a packet and
to a group id that identifies the multicast group that the
packet belongs to. A 2-dimensional look-up table consists
of pairs (si,&) where each sI is a prefix of possible source
addresses and each di is a contiguous range or point, of pos-
sible group identifiers or destination addresses. Each pair
defines a rectangle in 2-dimensions. Note that rectangles
can have arbitrary overlaps. Given a query point p, the
search or look-up problem is to find an enclosing rectangle
(if any), say rj = (sj, dj), such that p = (s, d) is contained in
r3, and such that sj is the most specific (longest) matching
prefix of s. The dj can be ranges including prefix ranges.
The matching dj, when multiple matches occur for a spe-
cific sj due to overlaps in the d direction, is taken to be the
one of highest priority. Note that the d dimension allows
any contiguous range and is not restricted to prefix ranges
only. Therefore, if the d direction corresponds to destina-
tion addresses, then ranges in the destination addresses do
not have to be in powers of 2 (which would be the case with
prefix ranges). This might be particularly useful if desti-
nation addresses are concatenated with layer-4 destination
ports or some other similar header field (to form a”2 l/2
dimensional” lookup).

We are interested in solutions for use in IP routers. This
means that the look-up tables may have as many as 216
entries and perhaps more. Also, we are interested in only
worst-case performance of the algorithms since we want to
avoid queueing for header processing in order to provide QoS
guarantees.

Let n denote the number of entries in the multicast for-
warding table. A simple solution that takes only O(logn)
time and O(n’) space is to have an n x n array with each en-
try representing the highest priority rectangle that encloses
the point corresponding to the coordinates represented by
the entry. The look-up is done with two binary searches.
However, this is clearly impractical in space when the num-
ber of filtering rules is n = 216. The O(n2) space is because
the same rectangle can be represented in O(n) locations.

210

I I I 1

uuuu uuu~ own an111 nm um nun 0111 mno iw mb 1011 1inu 1101 1111) 111,

Figure 4: Operation of the 2-dimensional algorithm when one dimension includes only intervals created by prefixes

We would like to maintain the same time complexity
while storing all the rectangles using only O(n) space. We
cannot directly use known solutions to the problem of rect-
angular point location since we can have arbitrary overlap-
ping rectangles. In the proposed algorithm, we make use of
the fact that in the s dimension our rectangles have lengths
which are in powers of 2. This is because these s ranges are
always prefix ranges.

The restriction of ranges in one dimension to be prefix
ranges provides constraints that can be exploited. To illus-
trate this consider Figure 4. All prefix range intervals can
only have sizes which are powers of two and totally arbitrary
overlaps are not possible (two prefixes of the same length do
not overlap). also, a range can only start from an even point
and terminate at an odd point. Based on these observations,
we can split the set of ranges into several distinct cells dis-
tinguished by the length of the prefix (or, equivalently the
size of the range).

Let the s field be of length 1s bits and the d field be of
length Id bits. Let RI, Rs, , Rl, denote subsets of the set
R of n rectangles such that subset Ri consists of all rect-
angles formed from prefixes that are i bits long. Let nz
denote the number of prefixes of length i that are present
in the lookup table. Assume that these prefixes in the s
dimension are numbered in ascending order of values ob-
tained by extending all prefixes to their maximum length 1s
by adding sufficient zero bits to each of the specified pre-
fixes. Denote the ni prefixes of length i by P,‘, P,“, . . . , PF’.

With each prefix P: there is an associated set of rectangles,

Ri = {(P,j,d,I),(P~,dT),......,}, that have Pi as one of

their sides. Here, the {df,dF,..“.. ,}, Are ranges in the d
dimension and can overlap. The set of rectangles R,i is the
union of sets Ri, Rp, , , Rtyi where each of the R;’ is the

set of rectangles associated with the jth prefix of length i.
Note that the sets R: are disjoint and that all rectangles in

Ri that match p have higher priority than rectangles in R{

that match p if i > t. This is because rectangles in Ri are

formed with longer prefixes than those in Ri since i > t.
In the example of Figure 4, the set of rectangles with

prefix equal to 1 is RI = {{el}, {e6}}. Note that each prefix
of length m covers l/Zm of the total s range. There is a

1

total of 7~2 = 1 prefixes of length 2. The set Rz of rectangles
formed with prefixes of length 2 consists of the rectangles
(e2, e3, e4). From Figure 4, we see that these rectangles can
overlap in the d dimension. There is one prefix of length 3
and one rectangle formed using it. So set R3 has one set of
rectangles and that set contains one rectangle e5.

Let us assume that the size of the list of ranges d{ is

denoted by l~i. From each list of ranges consisting of di s,

we derive a list of non-overlapping intervals D{s. The size

of this new set l?{ is Kf <= 2ki + 1, i.e. by represent-

ing the original ki overlapping intervals as non-overlapping
intervals we increase the space by only a constant factor
of 2. The purpose of replacing overlapping intervals by
non-overlapping intervals is to locate the d from the query
point into one of these non-overlapping rectangles during
the search procedure and then to find the associated enclos-
ing rectangle. Hence, when many intervals overlap a given
interval, the rectangle associated with the interval (during
the overlap eliminating phase) is the one with the highest
priority that overlaps the interval. In Figure 4, the set of
intervals that are created after this overlap elimination for
d$ is 0; = {ae, ai, &j}. Let us also assume that from the
set of rectangles Ri, rectangle e3 has the highest priority.
Then this will be the rectangle associated with interval ~2,
although there are other rectangles overlapping this range.

The preprocessing phase of the algorithm is as follows:

Store the set of prefixes Pj using any efficient trie rep-
resentation.

i := 1

For each prefix, P!, store the list of non-overlapping

intervals D!s in sorted sequence using either an array
or a binary tree.

Repeat for all prefix lengths i

Essentially, in the preprocessing step we perform two op-
erations: First, we separate the rectangles based on the pre-
fix length in the s dimension. Then, for each prefix, we
project all its associated rectangles to the corresponding axis

to obtain first the overlapping intervals d: in the d dimen-

sion. From these we create the non-overlapping sets 0:.

The non-overlapping intervals are created by a scan of the
overlapping intervals from lower to higher co-ordinates in
the d dimension. The procedure is:

1. doforalli

2. Sort the set of overlapping intervals d{ into ascending
sequence of their starting points.

3. If an interval starts or ends, generate Us for previous
interval. Store the interval and pointer to actions for
highest priority rectangle that overlaps this interval” If
newly created interval, and its previously stored adja-
cent interval point to the same rectangle, merge these
two intervals. Since a new interval 0;’ is created, at
most, when an overlapping interval begins or termi-
nates, the size of this new set 0: is Kf <= 2$ + 1

where ki is the size of the set of overlapping intervals

d;

At the end of the pre-processing step each rectangle is
stored in exactly one location on the s-axis, i.e, it is stored
in a structure associated with the the prefix used to form
this rectangle. Its d range is in sorted sequence within the
structure, with the other entries in this structure being the
d intervals of other rectangles formed using the same prefix.
The set of rectangles associated with a prefix is stored as
a list of non-overlapping intervals and requires space only
proportional to the size of the set. Only O(n) space is needed
to store all the rectangles since each rectangle appears only
in one set and therefore the size of the union of all sets is
O(n).

The look-up algorithm operates in the following phases.

i := 1; solution := nil

Let Pi = {P,‘,P,“,... , PFi} be the set of all prefixes of

length i. Find the prefix P! of length i which matches

s determined by the query point. If match Pj is found

then search in the structure associated with P/ to find
the non-overlapping interval 0,” that contains d given

by the query point. Solution = rectangle associated
with (Pi, Dp). This is the best solution among all
prefixes searched so far.

Repeat till all prefix lengths have been searched.

The total execution time of the algorithm as presented is
O(Zs log n). This is because the number of iterations of the
algorithm in the worst case is equal to the number of possible
prefix lengths Is. If use a trie structure (note that the
use of other data structures is not precluded) to determine
prefixes of each length then total cost in time for determining
prefixes is O(ls). The list of 0:s can be of size O(n). Hence,
O(logn) time is needed to search each list for a matching
entry (we will later show this factor can be eliminated for all
but one list by cascading the search through these multiple
lists). The search could have been started from the longest
possible prefix so as to improve average execution times but
since we are only interested in worst-case performance this
optimization is not used.

Consider the example of Figure reflpexample. Assume
that a packet with header Pl = (OllO,OlOl) arrives. We
first find a matching prefix (0) of length 1 and search for en-
closing rectangles formed with this prefix. We search the d

dimension and we find that rectangle el is a first candidate

solution. Note that rectangles el, e6 are the only rectangles
in the set of rectangles with prefixes of length equal to 1.
Next, we search using prefixes of length 2. The matching
prefix is (01). We now get rectangle e3 as a better candi-
date since the d field of the arriving packet overlaps with the
range a2, and this rectangle is formed with a longer prefix
and e3 has higher priority than other rectangles formed with
prefixes of equal or lower length. e3 becomes the best solu-
tion found until now. Finally, we locate a matching prefix
(OlI) of length 3. We search among rectangles formed with
this prefix and get e5 as the best solution.

The time-complexity of O(Zs log n) obtained with this al-
gorithm can be too large for use in a high-speed router. As-
sume that the the number of possible prefix lengths Is = 32
and that the number of table entries n = 218 = 256K. This
requires 576 memory accesses in the worst case (the mea-
sure of execution time for our algorithms). Hence, the time
is prohibitively high. In the next section, we show how the
log n factor can be eliminated, and so reducing the number
of memory accesses in the above example to about 50 which
makes it practical for high-speed implementation.

5.1 Eliminating the O(logn) factor in execution time

With a trie implementation, the space requirement of the
above look-up scheme is O(n). Furthermore, the order of
search of the sets from the lists RI, Rz, . . . , etc. is in increas-
ing order of prefix lengths, i.e., a set from RI is searched
before searching a list from Rz and so on. The search pro-
ceeds in levels with sets belonging to RI being on the first
level, those in Rz being on the second level and so on. Let
the number of non-overlapping intervals in all of RI be iVi , in
all of R2 be Nz etc. The bottom most level Rl, has Nl, non-
overlapping intervals. Note that the number of overlapping
intervals at each level can be O(n). Suppose that we had a
serendipitous arrangement of intervals where only the size of
RI is O(n) and for all Ri,i > 1 the sizes are O(1). Clearly,
in this case the worst case execution time is O(ls + logn).
Of course, we cannot count on such a good arrangement of
intervals. However, we can make this happen by introducing
some “virtual” intervals using a technique used in compu-
tational geometry to speed up searches in multiple ordered
lists [7, 8]

When we perform a search on the list at level say i, the
information we get is that the given d lies in an interval
Q. When we next search the lists at level i + 1, instead of
searching through all the intervals, we can use the informa-

tion learned in the previous search and search amongst only
those intervals that fall in the range given by q. While this
may improve the average case performance, unfortunately,
the worst case is not affected by this heuristic. This is be-
cause at level i + 1 there may be O(n/ls) intervals which fall

within the range determined by 0: and this can happen at
all levels. Hence, an O(log(n/Zs)) = O(log n) search may be
needed at every level.

Now suppose we introduce “virtual intervals” at levels
i < Zs in the following manner. There are Nl, intervals
at level Is. Let us also denote by y:“, yk . ., the boundary
points that demarcate the Nl, intervals in the d dimension
at level 1s. There are 2 * iVl, such points at most. We repli-
cate every other point at level Zs to level Zs - 1, i.e 2 * Nl,
points are moved to level Zs - 1. The points that were propa-
gated together with the points defining the original intervals,
define the intervals at level Zs - 1. These are stored as non-
overlapping intervals at level 1s - 1. Next we take all the
intervals now at level Is - 1 and their associated points and

212

d

Figure 5: Operation of the 2-dimensional algorithm when one dimension includes only intervals created by prefixes and the
propagation technique is used.

replicate every other point and move them as virtual points
to level Es - 2. We repeat this process till we reach the root
level. Note that the propagation is only used to speed up
the search. At each level, the rectangles associated with
each interval are as described in the preprocessing described
before. We can ignore the virtual intervals and points that
result from propagation as far as the association of rectan-
gles to intervals is concerned.

Note that this propagation process only increases the
space requirements by a constant factor, i.e, the total space
requirement is still O(n). It can be shown that the maxi-
mum amount of virtual intervals created (and hence extra
space) is when Ni, = n, in which case the number of bound-
ary points at level Is is 2n. The extra space due to the
propagations is then

2(n + 5 + a + .) <= 4n

However, by increasing the space by a constant factor, we
gain the advantage that we can search the multiple lists
in a more efficient manner. We search the level 1 list as
before taking O(logn) time in the worst case. This results

in locating the given d in some interval 0:. This interval
can possibly be a virtual interval propagated up from the
level 2. Now that we have localized d to the interval O{,
the search in level 2 need only search in the range given
by D3 1. Because every other point has been propagated up
from level 2, only 2 intervals can fall in range 0: to which
d has been localized. Hence, the search at level 2 can be
done in O(1) time. In general, in moving from level i to
level z + 1, the propagation of intervals ensures that there is
enough information gained in the search at level i that the
search at level i + 1 takes only O(1) time. Hence, the worst
case execution time of the look-up algorithm is O(Zs+log n).

To illustrate the algorithm, let us consider the example
of Figure 5. For illustration purposes, we restrict ourselves
to only three squares. We start from the rectangles with
the longest prefix and we propagate only point al. As a
result, on the axis corresponding to prefix of size two, there
are now three points. We propagate points 51 and b2 only.
There are four points now in the axis for prefixes of length
1. Assume that a packet with header Pl arrives. During the
search operation, we start from the prefixes of length 1 and
locate rectangle el as a candidate solution. When we move
to prefixes of size 2, however, we use a pointer to the set of

intervals that were possibly propagated. Note, that from the
propagation we have lost the information of whether Pl has
a d dimension smaller or larger than the point al. But it can
only be one of the two solutions. There are two candidate
intervals that are retrieved and only one corresponds to the
incoming d value. Thus, we use the pointer associated with
this interval to continue our search on the prefixes of length
three. The final solution can be now retrieved.

6 Concluding Remarks

Packet filtering or classification, using multiple packet-header
fields and allowing range matches, has been considered a
difficult operation to implement at high-speeds and with
a large number of filter rules. However, it is a very use-
ful primitive in connectionless networks for associating a
policy-defined context with each incoming packet, so as to
permit packet handling using various policy-based routing,
security, and differentiated services actions. We presented
three new schemes for packet classification. The first two are
for implementing generalized packet filters allowing range
matches in many dimensions. The schemes allow processing
of thousands of filter rules at the rates of millions of packets
per second using simple hardware technology and moder-
ate clock speeds. These processing rates are based on traf-
fic and filter-rule-pattern independent worst-case bounds,
unlike cache-oriented schemes which are heavily traffic de-
pendent. We are interested in only worst-case performance
of the schemes since we want to avoid queueing for header
processing in order to use the packet classifier for provid-
ing differentiated services and &OS. The third scheme is
for the special case of two-dimensional lookups where the
ranges in one direction are restricted to being prefix ranges.
For this case, we present an algorithm which in the worst
case requires only O(number-of-prefix-lengths + log n). This
scheme allows 2-dimensional classification to be performed
with hundreds of thousands of entries at speeds sufficient
for operation in network backbones. This two-dimensional
lookup has many applications including the important one of
supporting multicast. In the multicast case, since the group
identifier range is either a specific group identifier or a wild-
card range, our algorithm needs only 2 memory accesses
beyond what is needed for the longest prefix match needed
for unicast forwarding. The ability to filter on thousands
of rules in many dimensions, and hundreds of thousands of

213

rules in two dimensions, widens the range of options feasible
for evolving the current best-effort Internet to the Internet
of the future, capable of providing customized differentiated
services. Specifically, our algorithms demonstrate that there
may be no need to restrict filtering to the edges or to very
simple operations such as using only the Type-of-Service bits
in the IP packet header. Contrarily, the whole network, in-
cluding the backbone, can participate in the enforcement of

policies.

Acknowledgements

The authors would like to thank the anonymous reviewers
for the their detailed and insightful comments. The authors
would also like to thank K. J. Singh and B. Suter who im-
plemented the five-dimensional algorithm in the Bell Labs
Router prototype.

References

PI

PI

[31

PI

[51

F-51

[71

PI

PI

PO1

1111

PI

M.L. Bailey, B.Gopal, M.Pagels, L.L.Peterson, and
P.Sarkar. PATHFINDER: A pattern-based packet clas-
sifier. In Proceedings of the First Symposium on Oper-
ating Systems Design adn Implementation, November
1994.

M. De Berg, M. van Kreveld, and J. Snoeyink. Two-
and three-dimensional point location in rectangular
subdivisions. Journal of Algorithms, 18:256-277, 1995.

P. Van Emde Boas, R. Kaas, and E. Zijlstra. Design and
implementation of an efficient priority queue. Mathe-

matical Systems Theory, 10:99-127, 1977.

J. Boyle. RSVP Extensions for CIDR Aggregated Data
Flows.
In Internet Draft, http://www.internic.net/internet-
drafts/draft-ietf-rsvp-cidr-ext-Ol.txt, 1997.

B. Chazelle. How to search in history. Information and

Control, 64:77-99, 1985.

B. Chaaelle and J. Friedman. Point location among
hyperplanes and unidirectional ray shooting. Compu-
tational Geometry: Theory and Applications, 4153-62,
1994.

B. Chazelle and L.J. Guibas. Fractional cascading. i. a
data structuring technique. Algorithmica, 1(2):133-62,
1986.

B. Chazelle and L.J. Guibas. Fractional cascading. ii.
applications. Algorithmica, 1(2):163-191, 1986.

K.C. Claffy. Internet Trafic Characterization. PhD
thesis, University of California, San Diego, 1994.

D. Clark. Service Allocation Profiles. In Internet

Draft, http: / /www.internic.net/internet-drafts/draft-
Clark-diff-svc-allot-OO.txt, 1997.

K.L. Clarkson. New applications of random sampling
in computational geometry. Discrete & Computational
Geometry, 2:195-222, 1987.

H. Edelsbrunner, L.J. Guibas, and J. Stolfi. Optimal
point location in a monotone subdivision. SIAM Jour-

nal on Computing, 15:317-340, 1986.

I131

1141

I151

PI

1171

PI

P91

WI

Pll

PI

1231

1241

D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deer-
ing, M. Handley, V. Jacobson, C. Liu, P. Sharma, and
L. Wei. Protocol independent multicast - sparse mode
: Protocol specification. In RFC 2117, June 1997.

D. Estrin, J. Postel, and Y. Rekhter. Routing arbiter
architecture. In ConneXions, volume 8, pages 2-7, Au-
gust 1994.

V. Fuller et. al. Classless Inter-Domain Routing. In
RFC1519, ftp://ds.internic.net/rfc/rfc1519.txt, June
1993.

J.C.Mogul, R.F.Rashid, and M.J.Accetta. The packet
filter: An efficient mechanism for user level network
code. Technical Report 87.2, Digital WRL, 1987.

K.Claffy, C. Polyzos, and H.W.Braun. Application of
sampling methodologies to network traffic characteri-
zation. In Proceedings of ACM SIGCOMM’SS, pages
194-203, September 1993.

T. Li and Y. Rekhter. Provider Architecture for Dif-
ferentiated Services and Traffic Engineering (PASTE).
In Internet Draft, http://www.internic.net/internet-
drafts/draft-li-paste-OO.txt, 1998.

S. McCanne and V. Jacobson. The BSD packet filter:
A new architecture for user-level packet capture. In
USENIX Technical Conference Proceedings, pages 259-
269, Winter 1994.

N. McKeown, V Anantharam, and J. Walrand. Achiev-
ing 100% throughput in an input-queued switch. In
Proceedings of INFOCOM’SG, pages 296-302, March
1996.

Mitsubishi,
http://www.mitsubishichips.com/eram/eram.htm.
eRAM - Memory and Logic on a chip, 1997.

M. H. Overmars and A.F. van der Stappen. Range
searching and point location among fat objects. Journal
of Algorithms, 21(3):629-656, 1996.

P. Van Emde Boas. Preserving order in a forest in less
than logarithmic time. In Proceedings of 16th IEEE
Conference on Foundations of Computer Science, pages
75-84, 1975.

K. Thomson, G.J. Miller, and R. Wilder. Wide-area
traffic patterns and characteristics. IEEE Network, De-
cember 1997.

[25] Toshiba America Electronic Components. CMOS dRA-
MASIC Families, 1997.

[26] D. Waitzman, C. Partridge, and S. Deering. Dis-
tance Vector Multicast Routing Protocol. In RFClO75,
ftp://ds.internic.net/rfc/rfc1075. txt, June 1993.

[27] M. Yuhara, B.N. Bershad, C.Maeda, J.Eliot, and
B. Moss. Efficient packet demultiplexing for multiple
endpoints and large messages. In USENIX Technical
Conference Proceedings, Winter 1994.

[28] L. Zhang, S. Deering, D. Estrin, S. Shenker, and
D. Zappala. RSVP: A new resource reservation pro-
tocol. IEEE Network, 7(5):8-18, September 1993.

214

