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Abstract
A scanning stereo particle image velocimetry (SSPIV) system was
developed to measure the three-dimensional (3D) distribution of
three-component (3C) velocity in a turbulent round jet. A laser light sheet
produced with a high-repetition-rate pulsed Nd:YLF laser was scanned by
an optical scanner in a direction normal to the sheet. Two high-speed
mega-pixel resolution C-MOS cameras captured the particle images
illuminated by the light sheet, and the stereoscopic PIV method was adopted
to acquire the 3D-3C velocity distribution of turbulent water flow. A water
jet formed by a round nozzle with an exit diameter of D = 5 mm was
diagnosed by the current technique. The jet Reynolds number was set at
Re ≈ 1000, and the streamwise location of the measurement was fixed at
approximately x = 45D. A measurement volume (∼100 × 100 × 100 mm3)
containing 50 velocity planes was scanned in 0.22 s, which was sufficiently
short to capture the instantaneous vortical structures. The residue of the
continuity equation (divergence) was approximately 7% of rms vorticity on
the centreline of the jet. The iso-vorticity surfaces clearly depict vortical
structures in the jet shear layer.

Keywords: stereo PIV, three-dimensional measurement, scanning light sheet,
vortical structure, turbulence

1. Introduction

One of the most desirable velocimetries is one that can resolve
time-dependent three-dimensional (3D) three-component (3C)
velocity vectors in a complex turbulent flow field. Such a
method would enable us to obtain all the elements of the
velocity gradient tensor, thus allowing the turbulent structures
to be visualized by an appropriate vector or scalar such
as vorticity or the second invariant of the velocity gradient
tensor. Several methods of three-dimensional velocimetry
have been presented thus far. Three-dimensional particle
tracking velocimetry (3D-PTV), which tracks individual tracer
particles using multiple cameras, has been used for several
decades (Chiu and Rib 1956, Nedderman 1961). Recca and
Dewey (1988) measured the 3D velocity of tracer particles
seeded in a water flow inside a square duct by using a 16 mm
high-speed cine-camera. Within a decade, the film-based
camera was replaced by modern CCD cameras as imaging

devices for 3D-PTV. Nishino et al (1989) developed a 3D-PTV

system consisting of three TV cameras. Their measurements

of decaying turbulence in a stirred water tank demonstrated

that their technique could be applied to turbulent flows. Since

individual particles were identified and tracked with 3D-PTV,

the interrogation spot size was relatively smaller than that

with regular particle image velocimetry (PIV) and thus the

technique was robust against the higher shear rate of the flow

field. However, each particle has to be sparsely distributed in

a measurement volume to identify it in a three-dimensional

volume, and the typical number of instantaneous velocity

vectors in a volume is of the order of a hundred, which is not

sufficient to compute the spatial derivative of velocity. Note

that the density of 2D-PTV has been significantly improved

(Stitou and Riethmuller 2001) to the extent where the three-

dimensional location of each particle does not necessarily have

to be distinguished.
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Particle image velocimetry is now commonly used for

measuring two- or three-velocity components in 2D slices of

the velocity field. Since the particles are densely seeded,

the number of velocity vectors measured is larger than

that with PTV and more feasible for obtaining the spatial

derivative of velocity than with PTV. However, it has been

difficult to identify the 3D position of each particle, and thus

3D volumetric measurement has not been available except

through holographic PIV (Zhang et al 1997), which requires

a considerably complex optical system. One possible way of

extending 2D-PIV to 3D volumetric measurement is with PIV

using a fast scanning light sheet. Ushijima and Tanaka (1996)

developed a scanning 3D-PIV system that visualizes an entire

three-dimensional flow field with scanning laser light sheets

generated from a pair of optical scanners. The technique was

applied to rotating fluids accompanied by Ekman boundary

layers. Brucker (1995) measured multiple 2D slices of two

velocity components with scanning PIV employing one video

camera, and evaluated the out-of-plane component of velocity

by integrating the continuity equation. This method, however,

can only be applied in flows for which the third velocity

component is known at the boundary of the integration domain.

He presented another technique: scanning stereo PIV, which

requires two video cameras viewing the same measurement

region from different directions to evaluate the out-of-plane

component of velocity (Brucker 1996). He used two regular

CCD cameras with a frame rate of 25 Hz and a scanning laser

light sheet, and measured the wake flow behind the spherical

cap at Re = 100. Since the frame rate was low, the slices

in the measurement volume were limited to 9, which was not

sufficient for the higher Re flow occupied by the finer scale of

eddies.

In the present study, we describe a scanning stereo PIV

system capable of higher spatial resolution that resolves eddies

in a turbulent flow field at Re ≈ 1000. Two high-speed mega-

pixel resolution C-MOS cameras and a high-repetition pulse

laser were used to construct the system. Light sheet scanning

was achieved with a fast optical scanner. We could measure a

fully developed turbulent jet with the system, and were able to

visualize 3D vortical structures.

2. Method

It is now common in standard non-scanning stereo PIV for

the laser light sheet to be adjusted to fit on the surface of the

calibration plate placed on the plane to be measured. Once the

calibration procedure is performed on this calibration plate,

the projection of the physical location of any point (although

limited in view) in the light sheet plane to the image coordinate

is known based on the mapping function obtained from the

calibration procedure. Similar calibration can be done with

scanning PIV such that the calibration plate can be placed on

any plane which the light sheet illuminates during scanning.

However, this method requires considerable time to set the

calibration plate on the many planes to be measured. Also,

a complicated traversing mechanism is needed to place the

calibration plate within the light sheet planes, if they are not

parallel to one another as in the present setup. Because of

these difficulties, we propose a new method that is suitable

for scanning PIV, which we will describe in the sections that

follow.

Overhead tank

Hydro pump

Octagonal tank

Valve
Overflow

Overflow

Nozzle

Figure 1. Flow apparatus.

y/D

u
/U

m

Figure 2. Velocity profile at 0.25D behind the jet exit. Velocity is
normalized by the velocity at the centre of the jet.

2.1. Flow apparatus and experimental conditions

Figure 1 outlines the flow apparatus for a turbulent round

jet. Water in the overhead tank was introduced into a

honeycomb flow straightener and an axisymmetric contraction

nozzle having a 5 mm exit diameter, D. The nozzle was

figured smoothly in a third-order polynomial curve, and the

downstream end of the nozzle was mounted beneath the

bottom plate of a 500 mm high Plexiglas octagonal tank, with

400 mm between the opposing sidewalls. This configuration

created an initially laminar jet with a top hat velocity profile

issuing upward into the octagonal tank. The water in the tank

overflowed through four equally spaced drainpipes mounted

450 mm from the bottom surface of the tank. The water

was then returned to the overhead tank with a hydro pump.

The bulk velocity at the exit of the nozzle was U0 =

206 mm s−1, and the corresponding jet Reynolds number was

Re = U0D/ν = 995, where ν is kinematic viscosity. A top

hat velocity profile at the nozzle exit was measured by an

alternative 2D-2C PIV as we can see in figure 2.

Since the tank had finite dimensions, the flow surrounding

the jet had to be reversed. The maximum velocity of the reverse
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Laser beam

Convex lens

Cylindrical lens

Scanning mirror

Light sheet

Plexiglas octagonal tank

Calibration plate

Camera R

Camera L

Nd:YLF laser

Concave lens

Figure 3. Optical arrangement.

flow in this apparatus was 0.036Um, where Um is the centreline

mean velocity of the jet at each streamwise station.

2.2. Hardware setup

The optical configuration is shown in figure 3. The laser

light beam emitted from a diode-pumped pulsed Nd:YLF laser

(20 mJ per pulse at 2000 Hz, Evolution 30, Positive Light) was

converged through a pair of spherical lenses (f = −150 and

200 mm) and expanded vertically through a cylindrical lens

(f = −70 mm) to form a 2 mm thick laser light sheet at the

test section. The light sheet was scanned with a flat mirror

mounted on an optical scanner (VM2000, GSI Lumonics),

which is controlled with a programmable scanner controller

(SC2000, GSI Lumonics).

Tracer particles (40 µm Polyamid 12, Daiamid 2157,

Daicel Degussa) were seeded in the flow, and scattered light

was imaged with two high-speed high-resolution C-MOS

cameras (2000 fps with 1024 × 1024 pixels resolution in

maximum, Fastcam APX, Photron). Camera L was placed

at the left of the light sheet plane towards the laser source, and

the angle of the camera axis with respect to the light sheet plane

was set at approximately 45◦. This was also done for camera R

at the right. Both cameras could then detect stronger forward

scattering light from the particles compared to weaker side

or backscattering, with a smaller lens aperture, i.e., a higher

f-number of 22, which provided a greater depth of field.

Each camera was tilted with respect to the lens axis to

satisfy the Scheimpflug condition and was focused at the centre

of the measurement volume. The centre of the measurement

volume (100 × 100 × 100 mm3) was located 45D above the

nozzle on the jet centreline, which was 800 mm from the axis

of the scanning mirror. Images captured with the cameras

were recorded in their memory, and then transferred to a PC

hard disk.

Figure 4 is an actual image of particles at the centre of

the volume. The projected size of a particle was on average

approximately 3 pixels at this point, and 4 pixels at each edge

Figure 4. Actual image of particles captured by camera L in
figure 3.

of the measurement volume. Therefore, it was likely that

the depth of the field would cover the whole measurement

volume with this configuration. Our analysis in terms of

geometrical optics suggested that the diameter of the most
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Figure 5. Schematic of light sheet plane viewed from top.

blurred particle located approximately 70 mm from the plane

of focus along the camera axis, reached more than 8 pixels,

when the f-number was reduced below 11. Such significant

blurring of particles may make PIV image processing more

difficult due to overlapping neighbouring particles and reduced

image contrast, although we did not systematically evaluate the

relationship between the error in velocity measurement and the

size of the blurred particle.

The calibration plate was made of flat aluminium and had

through hole arrays of 1.5 mm in diameter at 5 mm intervals

to provide the same calibration target pattern on both sides

for each camera. The plate was 150 mm wide, 500 mm long

and 5 mm thick, and was installed vertically on a servomotor-

driven traversing mechanism (Robo-cylinder, IAI) with a

traversing accuracy of 20 µm. The plate was perpendicular

to the traversing direction. The Cartesian coordinates with x

in the jet’s streamwise (vertical) direction, z in the direction

normal to the plate, y in the other direction and the origin at the

centre of the nozzle exit were defined. Also u, v and w denote

the x, y and z components of the velocity vector, respectively.

Note that the rotation axis of the optical scanner was aligned

precisely parallel to the x-axis.

2.3. Measurement of light sheet position

After setting up the imaging hardware, the physical location

of the light sheet planes for a given angle of the mirror scanner

had to be determined. Figure 5 outlines the geometry of the

light sheet and calibration plate. The rotation axis of the laser

light sheet, which was parallel to the x-axis, was centred at

(yc, zc) = (1035.8 mm, 176.65 mm) on the y–z plane. The

angle of the light sheet θ with respect to the y-axis and the

angle of the scanner mirror ϕ were also defined. Here, the

rotation axis of the scanning mirror does not coincide with the

rotation axis of the laser light sheet since rays are refracted at

the air/Plexiglas/water interface. The equation for the light

sheet plane at any given mirror angle was determined in the

following way. The scanning mirror was set at angle ϕA,

where the light sheet remained at one edge of the measurement

volume. The calibration plate was then precisely traversed

to position z = zI, where the light sheet hit the grid point

PI, whose location on the plate was previously established as

(xI, yI). Here, the width of the area illuminated by the light

sheet was approximately wl = 20 mm, although the light

sheet thickness was tl = 2 mm, because the light sheet and

the calibration plate were nearly parallel. The centre of the

illuminated area could be adjusted to point PI within an error

of σy = 1 mm by operating the traverser. After adjusting the

traverser to hit the light sheet on PI, the three-dimensional

location of PI, (xI, yI, zI), was obtained. Here, zI is the value

read from (or written to) the traverser. The error in zI can be

estimated as tlσy/wl = 0.1 mm.

Next, the calibration plate was slightly traversed to another

position of z = zII to hit the light sheet at another point PII, and

the point (xII, yII, zII) was measured in the same manner. This

was repeated until five different points were measured up to

(xV, yV, zV). Using this set of points, the following equation

for this light sheet plane was obtained by the least-squares

method:

cA
1 y + cA

2 z = 1. (1)

The same procedure was repeated for another mirror angle

ϕB , where the light sheet remained at the other edge of the

measurement volume, allowing an equation for the other plane

to be obtained:

cB
1 y + cB

2 z = 1. (2)

The angles of these two planes with respect to the y-axis are

given as

θA = tan−1
(

−cA
1

/

cA
2

)

(3)

and

θB = tan−1
(

−cB
1

/

cB
2

)

(4)

for ϕA and ϕB , respectively. Thus, the angle of the light sheet

θ at a given mirror angle of the scanner ϕ was formulated in

terms of linear interpolation as

θ =
ϕ − ϕA

ϕB − ϕA

(θB − θA) + θA. (5)

Here, the error in θ associated with the above linear

approximation is less than 5.2 × 10−6 rad, which is caused

by the refraction of the light sheet at the air/Plexiglas/water

interface. Finally, the equation for the light sheet plane at any

given angle θ was defined as

c1(θ)y + c2(θ)z = 1, (6)

where the coefficients were calculated as
(

c1(θ)

c2(θ)

)

=

(

cos(θ − θA) −sin(θ − θA)

sin(θ − θA) cos(θ − θA)

)

(

cA
1

cA
2

)

. (7)
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Master clock
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PIV image pair

ϕ

ϕ

δt = 2 ms

Figure 6. Time chart for signals and operation. m is 3 in this time chart for simplicity, although actually m was set at 6.

2.4. Scanning mirror control and synchronization

The particle images required to obtain the volumetric velocity

distribution for one instance with our scanning stereo PIV

consisted of a series of PIV images taken at successive

light sheet planes stacked in the azimuthal direction of the

light sheet scan. Each PIV image was a pair of particle images

separated by time �t , and successive light sheet planes were

separated in the azimuthal direction by angle δθ . Each step in

the mirror angle corresponding to δθ was defined as

δϕ =
ϕB − ϕA

θB − θA

δθ. (8)

Here, �t = 22 ms was needed to ensure sufficient particle

displacement (∼10 pixels) in the images. Moreover, this

interval was too short to scan the light sheet completely in

the measurement volume due to limitations with the camera’s

maximum frame rate. Moreover, this interval was too long

to leave the light sheet at a single location, resulting in an

insufficient scanning speed. We thus propose the following

scanning scheme.

The mirror is placed at an initial position ϕ = ϕ0,

and the laser is emitted. Then, the particle images are

captured at time t = 0. The mirror is then rotated to

ϕ = ϕ0 + mδϕ at t = δt , where m is an integer value, and

δt is the frame interval of the camera, which is identical to the

inverse of the camera’s frame rate, fc. Next, the light sheet

is moved to ϕ0 + δϕ, and it continues in a series such as

ϕ0+(m+1)δϕ, ϕ0+2δϕ, ϕ0+(m+2)δϕ, . . . , ϕ0+(n−1)δϕ, ϕ0+

(n − 1 + m)δϕ, ϕ0 + nδϕ, ϕ0 + (n + m)δϕ, where n denotes the

number of measurement planes in a measurement volume.

With this motion, the location of the light sheet at any time

t is identical to its location at time t + (2m − 1)δt . The

example of the evolution of ϕ in figure 6 is referred to in the

next paragraph. Thus, the images captured at these two sheet

locations, separated by �t = (2m − 1)δt , were used as a PIV

image pair at each measurement plane. This allowed more

freedom to set �t to an appropriate value independent of the

Table 1. Operating conditions for imaging hardware.

Hardware Operating conditions

Pulse/delay generator 500 Hz master pulse with 1 ms delayed
pulse

C-MOS camera 500 fps, 1024 × 1024 pixels
Nd:YLF pulse laser 500 Hza, 20 mJ/pulse
Optical scanner 500 Hza, 0.14◦

p−p

a Synchronize with delayed pulse.

frame rate. We selected n = 50,m = 6, δϕ = 0.07◦ and

δθ = 0.11◦ for the present study.

To synchronize the optical equipment, trigger pulses were

generated by a digital pulse/delay generator (DG535, Stanford

Research) to send signals to the cameras, the laser and the

optical scanner. Figure 6 is a timing chart of the signals.

Table 1 lists the actual settings for the imaging hardware.

A master clock with a frequency of fc = 500 Hz generated

by the digital delay/pulse generator was sent to both cameras

to trigger the exposures. Thus, the cameras were operated at

a frame rate of 500 fps. A delayed clock, which lagged 1 ms

behind the master clock, was sent to trigger the laser. The

signal ‘Trigger for recording’ was manually sent at arbitrary

times to the cameras. The cameras actually started recording

after this signal was received. This signal and the delayed

clock were also sent to the scanner controller, which began

to rotate the mirror to the next angle immediately after every

leading edge of the delayed clock, unless the signal ‘Trigger

for recording’ was on. Thus, the laser and the cameras

were initially running at frequency fc, and immediately after

manually turning on the ‘Trigger for recording’ signal, image

recording and mirror scanning both started. The frame rate of

500 fps was 1/4 of the maximum frame rate of our cameras,

since the optical scanner could not realize the expected motion

above this frame rate with the present configuration.

Note that the time required to scan the light sheet over the

measurement volume became Ts = 2(n + m − 1)/fc = 0.22 s,
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Figure 7. Projection of particle(s) onto the cameras. The light sheet plane (thin grey line) and calibration planes are also indicated.

Table 2. System parameters.

Description Value

Number of planes in a volume, n 50
Light sheet thickness, tl 2 mm
Interval between adjacent planes, �z 2 mm
Scanning time for a volume, Ts 0.22 s
Time interval between successive volumes, �T 0.33 s
Interrogation spot size 28 × 28 pixels (2.5 × 3.5 mm2)
Size of measurement volume 100 × 100 × 100 mm3

and also the time required to bring the light sheet back to

the initial position was Tr = 0.11 s. Thus, the time interval

between successive volumetric data was �T = Ts + Tr =

0.33 s. The spatial interval between adjacent light sheet planes

(or measurement planes) was �z = 2.0 mm at the centre

of the measurement volume. Thus, the scanning speed was

Vs = n�z/Ts = 454.5 mm s−1. The major parameters of the

measurement system are listed in table 2.

2.5. Interrogation

Let us now consider measuring the velocity at a given point

(x, y) on a light sheet plane at angle θ . Referring to (6), the

dependent variable z is simply determined by

z =
1 − cθ

1y

cθ
2

. (9)

As we can see in figure 7, particle(s) at x = (x, y, z) are

projected on the 2D image coordinate of the left camera,

(XL, YL) = XL, and of the right camera, (XR, YR) =

XR . Both image coordinates were computed with 3D–

2D calibration functions, XL = FL(x, y, z) and XR =

FR(x, y, z), which will be described in the following section.

Then, the image displacements �XL and �XR of

particle(s) at XL and XR were calculated, respectively, with

the regular PIV method in terms of direct cross-correlation

between the small sub-domains (interrogation spot) of two

successive images separated by time �t . Next, the image

coordinate of these points for the left camera was transformed

back into the 3D physical coordinate (x, y, z) in the form

xL
1 = fL

1 (XL)

xL
2 = fL

2 (XL)

xL
1 + �xL

1 = fL
1 (XL + �XL)

xL
2 + �xL

2 = fL
2 (XL + �XL).

(10)
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For the right camera,

xR
1 = fR

1 (XR)

xR
2 = fR

2 (XR)

xR
1 + �xR

1 = fR
1 (XR + �XR)

xR
2 + �xR

2 = fR
2 (XR + �XR),

(11)

where f is the mapping function from the 2D image coordinate

of each camera to an x–y plane at constant z (where

the surfaces of the calibration plate were located as shown

in figure 7) in the 3D physical coordinate system. If the

subscripts are 1, this means z = zL
1

(

zR
1

)

. If the subscripts

are 2, this means z = zL
2

(

zR
2

)

. The superscript specifies the

camera. These mapping functions will also be described in the

following section. Let us now calculate the point xt0 where

the line xL
1 → xL

2 and the line xR
1 → xR

2 intersect. Also

calculate the point xt1 where the line xL
1 + �xL

1 → xL
2 + �xL

2

and the line xR
1 + �xR

1 → xR
2 + �xR

2 intersect. Since two

lines may not intersect due to errors in calibration functions

or in measured particle displacement, we define ‘intersection’

as the centre of the smallest sphere to which both lines are

tangential. Obviously, the two intersecting points, xt0 and xt1,

are the three-dimensional positions of particle(s) at t = 0 and

t = �t , respectively. Thus the velocity vector was obtained

by

v = (xt1 − xt0)/�t. (12)

The size of the interrogation spot on the image plane of

each camera was 28 × 28 pixels, which is approximately

2.5 × 3.5 mm2 in the x–y physical plane.

2.6. Calibration

The calibration functions in the previous sections were

obtained with the following procedure. First, a surface of

the calibration plate facing camera L was placed at z = zL
1 ,

whereas the opposite surface of the plate was located at z =

zR
1

(

= zL
1 − 5 mm

)

as previously shown in figure 7. Note that

zL
1

(

zR
1

)

is not identical to the position of the plate set in section

2.3. The calibration grid images captured by the cameras

were processed individually using the following algorithms.

Each grid point was searched with pattern matching, which

found the peak location of the correlation of the original

image and template pattern that was similar to the grid. After

finding the location of each grid in the image coordinate, the

physical location of each grid was determined automatically

based on the location of the reference grid and the known

spacing between the grids. This procedure produced a table

of image coordinates and physical coordinates for the grid

points, and created 2D–2D calibration functions fL
1 , fR

1 in

the sense of the least-squares method. Next, the calibration

plate was traversed at z = zL
2

(

z = zR
2

)

, and a similar procedure

produced another set of functions fL
2 , fR

2 . The form of the

calibration function was based on a pinhole camera model

with second-order distortion (Willert 1997), such as
(

x

y

)

= f�
ζ (X, Y )

=







a
�,ζ

0 +a
�,ζ

1 X+a
�,ζ

2 Y+a
�,ζ

3 X2+a
�,ζ

4 Y 2+a
�,ζ

5 XY

1+a
�,ζ

12 X+a
�,ζ

13 Y+a
�,ζ

14 X2+a
�,ζ

15 Y 2+a
�,ζ

16 XY

a
�,ζ

6 +a
�,ζ

7 X+a
�,ζ

8 Y+a
�,ζ

9 X2+a
�,ζ

10 Y 2+a
�,ζ

11 XY

1+a
�,ζ

12 X+a
�,ζ

13 Y+a
�,ζ

14 X2+a
�,ζ

15 Y 2+a
�,ζ

16 XY






, (13)

where the index � denotes either L or R for identifying the

camera, and the index ζ denotes 1 if the plate location is

z = zL
1

(

zR
1

)

and denotes 2 if the plate location is z = zL
2

(

zR
2

)

. The coefficient a
�,ζ

i was evaluated with the non-linear

least-squares method.

Once these 2D–2D calibration functions were obtained,

the remaining 3D–2D functions FL and FR were determined

in the following way. The point X� in the image coordinate

of camera � is a projection of all points on a line connecting

f�
1 (X�) and f�

2 (X�). The intersection of this projection line

and the measurement plane at angle θ is given by a function,

x(θ, X�) = s
[

f�
2 (X�) − f�

1 (X�)
]

+ f�
1 (X�) (14)

and

s =
1 − c1(θ)y1 − c2(θ)z�

1

c1(θ)(y2 − y1) + c2(θ)
(

z�
2 − z�

1

) , (15)

where
(

x1, y1, z
�
1

)

= f�
1 (X�) and

(

x2, y2, z
�
2

)

= f�
2 (X�).

The intersections for all θ values on which the measurement

plane is located are found. Furthermore, these points are

found for many possible X�, and finally a set of data with

many possible pairs of X� and x(θ, X�) can be prepared.

These data were fitted into the following function based on a

pinhole camera model with second-order distortion using the

non-linear least-squares method:

(

X

Y

)

= F�





x

y

z





=







a�
0 + a�

1 x + a�
2 y + a�

3 z + a�
4 x2 + a�

5 y2 + a�
6 z2 + a�

7 xy + a�
8 yz + a�

9 zx

1 + a�
20x + a�

21y + a�
22z + a�

23x
2 + a�

24y
2 + a�

25z
2 + a�

26xy + a�
27yz + a�

28zx

a�
10 + a�

11x + a�
12y + a�

13z + a�
14x

2 + a�
15y

2 + a�
16z

2 + a�
17xy + a�

18yz + a�
19zx

1 + a�
20x + a�

21y + a�
22z + a�

23x
2 + a�

24y
2 + a�

25z
2 + a�

26xy + a�
27yz + a�

28zx






.

(16)

2.7. Flow chart

The whole process above is summarized in figure 8. To begin

the procedure, 2D–2D calibration functions were obtained

with subprocess (A), section 2.6. Equations of all light sheet

planes were estimated in subprocess (B), section 2.3 from

their measured positions. Next, 3D–2D calibration functions

were obtained by using the equations of light sheet planes and

2D–2D calibration functions in subprocess (C), section 2.6.

Finally, velocity vectors were calculated with all the calibration

functions and equations of light sheet planes in subprocess (D),

section 2.5.

3. Error estimation

Estimation was done to clarify the error in instantaneous

velocity and also that in the position of each measurement

point. Error factor and values are summarized in table 3.

Here the column ‘Error’ denotes the error in each error factor

represented by standard deviation of random realizations, and

‘Sensitivity’ denotes the coefficient to adjust the unit of ‘Error’

into millimetres, i.e. ‘Error in mm’ = ‘Error’ × ‘Sensitivity’.

Although the light sheet position was formulated with (1)

as a general form, c2 is significantly larger than c1 because

the light sheet plane is mostly perpendicular to the z-axis.

Thus, the position of the light sheet is now regarded as the z
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Π Π

Π Π

2D–2D calibration functions

Figure 8. Flowchart for the data processing procedure.

Table 3. Major sources of error in measurement.

Position

Source Error Sensitivity Error in mm

Light sheet
Edge

P 0.1 mm 1 0.1
Traverser 0.02 mm 1 0.02

Relation between ϕ and θ 5.2 × 10−6 rad 1035.8 mm 0.0054
Calibration function

2D–2D
Fitting+machining 0.05 mm 1 0.05
Traverser 0.02 mm 1 0.02

3D–2D
Fitting+machining 0.05 mm 1 0.05
Traverser 0.02 mm 1 0.02

Total 0.13

Velocity

Source Error Sensitivity Error in mm s−1

Particle displacement (camera L) 0.1 pixels 4.2 mm pixel−1 s−1 0.42
Particle displacement (camera R) 0.1 pixels 4.2 mm pixel−1 s−1 0.42
Calibration (camera L) 1.8% 24 mm s−1 0.43
Calibration (camera R) 1.8% 24 mm s−1 0.43

Total 0.85
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location of a point where it crosses a line (x, y) = (45D, 0),

i.e. the centreline of the measurement volume parallel to the

z-axis. The error in the light sheet position consists of two

factors, error in the position of the light sheet at the edges

of the measurement volume section (2.3) and the error due

to presupposing that the angle of the mirror and the angle of

the light sheet are linearly related (5). The first factor can be

further divided into another two. The first is the error in the

location of PI · · · PV equivalent to the error in zI · · · zV, which

is estimated as 0.1 mm as described in section 2.3. The second

is the error in the servomotor-driven traversing mechanism,

which is expected to be 0.02 mm. The error associated with

the linear approximation of the light sheet angle to the mirror

angle was 5.2 × 10−6 rad, as stated in section 2.3. This leads

to an error in the light sheet position of 0.0054 mm.

The calibration function is also a source of position error.

The error in the 2D–2D calibration function represented by

(13) was estimated by

σ2D =

(

1

n

n
∑

i=1

(fy(Xi, Yi) − yi)
2

)1/2

, (17)

where fy denotes a y component of function f, and i is the

index of the grid point in the calibration plate. This might

include the fitting error in the function to the grid point in

the calibration image, and also the machining error in the

grid position, which is expected to be 0.01–0.05 mm. The

value of σ2D was 0.05 mm. Note that this calibration error

was comparable to the error in the third-order polynomial type

calibration function. The traversing error in the calibration

plate was 0.02 mm.

The error in the 3D–2D calibration function (16) was

estimated by

σ3D =

(

1

n

n
∑

i=1

(FX(xi, yi, zi) − Xi)
2

)1/2

, (18)

where FX denotes an X component of function F, and i is

the index of the grid point in the calibration plate placed in the

middle of z1 and z2. The value of σ3D was 0.05 mm. Thus, the

squared sum of these errors is 0.13 mm as standard deviation

type total position error.

Next, let us consider the error in velocity measurement.

Here, we have only described the error in the velocity

component v with u = w = 0 for the sake of simplicity.

Note that the error in v is expected to be similar to the error

in w, and larger than the error in u. Since the error in velocity

may depend on its magnitude, that listed in table 3 is v =

Um (= 24 mm s−1). The velocity error has two major factors.

The first is the error in measured particle displacement on the

image. This is often called the ‘sub-pixel error’, and was

typically estimated as 0.1 pixels in our own simulations. A

similar degree of error independently arose in both camera

images.

The second factor is the error in the spatial gradient of

the 2D–2D calibration function (13). The measured velocity

vmeas at the image coordinate (Xi, Yi), on which the location

of the ith grid of the calibration plate (xi, yi) is projected, is

approximated as

vmeas ≈
�X

�t

∂fy(X, Y )

∂X

∣

∣

∣

∣

X=Xi ,Y=Yi

, (19)

r/b

u
/U

m

(a)

(b)

r/b

/

Figure 9. Mean and rms velocity profiles.

where �X is the X component of particle displacement in the

image. In the meantime, the ‘true’ velocity was approximated

by

vtrue =
�X

�t

∂y

∂X

∣

∣

∣

∣

y=yi

≈
�X

�t

yi − yj

Xi − Xj

, (20)

where j denotes the index of a grid that is the neighbouring

grid of the ith grid facing the y direction. Thus, the error in

vmeas was estimated by subtracting vtrue

σv =

(

1

n

n
∑

i=1

(vmeas − vtrue)
2

)1/2

=
�X

�t





1

n

n
∑

i=1

(

∂fy(X, Y )

∂X

∣

∣

∣

∣

X=Xi ,Y=Yi

−
yi − yj

Xi − Xj

)2




1/2

.

(21)

This was computed from actual calibration images and

the standard deviation is listed in table 3. Note that

the approximated value of vtrue includes the gradient of the

randomly occurring machining error in the actual grid spacing

of the calibration plate (0.02 mm–0.05 mm) and also the

error in the pattern matching process to measure the grid

location on the calibration image. Thus the value of σv

may have been overestimated. The grand total of error in

velocity measurement was 0.85 mm s−1 (0.035Um) in standard

deviation.
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Figure 10. Three-dimensional view of instantaneous velocity
vectors. Tic intervals are 10 mm in all directions. Symbol A
represents the x-location of cross-sections in figure 12.

4. Results

Let us begin our discussion on the measured data with the

mean and rms velocity profiles in figure 9. Here, r is the

radial distance from the jet centreline estimated by fitting a

2D Gaussian function to the mean velocity data. The mean

and rms velocities were obtained by ensemble averaging over

the eight independent series of velocity data: each series

consists of 12 instantaneous volumetric velocity data measured

with 0.33 s intervals. The profile was then computed by

averaging in the azimuthal direction, and also by averaging

in the streamwise direction over a range x = 35D to 55D,

where the velocity profiles are self-similar, after normalizing

with the half velocity width, b, and the centreline mean

velocity, Um, at each streamwise station. Both mean and

rms velocity profiles were in reasonable agreement with the

data previously measured by Wygnanski and Fiedler (1969).

Note that the centreline mean velocity at x = 45D was Um =

24 mm s−1 and the velocity half width was b = 22 mm.

The three-dimensional velocity vectors have been

reconstructed in figure 10. Here, only a few sections of the

measurement domain have been displayed for clarity. The

centreline of the jet is located near the centre of the domain.

The velocity vectors are raw results and no smoothing or

enhancement has been done.

The vorticity vectors were computed with the second-

order finite difference of the velocity vectors and were

smoothed by averaging 3 × 3 × 3 nodes surrounding each

node to reduce random noise. Although the original

measurement grids (nodes) were located on a non-parallel

cylindrical coordinate, they were relocated to form parallel

rectangular grids with a linear interpolation scheme prior to

calculating vorticity just for convenience. Figure 11 represents

surfaces of constant vorticity magnitude, |ω| = 2.5 s−1.

Vortical structures exhibiting elongated loops can be clearly

observed.

These vortical structures convect downstream without

significantly changing their geometrical features. This implies

Figure 11. Surfaces of constant vorticity magnitude, |ω| = 2.5 s−1.
Orientation of axis and tick intervals are identical to those in
figure 10. (a) t = t0, (b) t = t0 + 0.330 s, (c) t = t0 + 0.660 s.

that the scanning duration Ts (= 0.22 s) and interval of

successive volumes �T (= 0.33 s) are sufficiently small to

capture the temporal evolution of such structures.

Quantities derived from velocity in the y–z cross-section

at x = 45D represented by symbol A in figure 10 are

depicted in figure 12. Figure 12(a) shows the in-plane velocity

component (vector) and the out-of-plane velocity component

(contour). The direction in which the light sheet is scanned

is indicated by the arrow on the right of the figure. Vectors

and contours in each corner of the measurement domain are
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Figure 12. Instantaneous quantities on the y–z plane at the
x-location represented by symbol A in figure 10. (a) In-plane
velocity component (vectors) and out-of-plane velocity component
(contours); (b) x-component of vorticity; (c) residue of continuity
equation.

eliminated where particles are not projected onto either of

the CCD cameras. The jet core centred near y = z = 0 is

dominated by the large out-of-plane velocity component with

complex fine eddies.
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Figure 13. Ensemble rms vorticity magnitude and ensemble rms
residue of the continuity equation. Both quantities were also
square-summed over the x direction within the measurement
volume.

Figures 12(b) and (c) depict the corresponding vorticity

distributions and the residue of the continuity equation, which

should be zero in theory. Vorticity and residue peaks are

concentrated around the centre of the plane. It is obvious that

the instantaneous residue is much smaller than the vorticity.

Figure 13 plots the ensemble rms vorticity magnitude and

ensemble rms residue of the continuity equation. Both

quantities were also square-summed over the x direction within

the measurement volume. The residue has a maximum at

r = 0, where the vorticity is also the largest. The ratio between

rms vorticity and rms residue of the continuity equation at

r = 0 was approximately 0.07. The residue was reasonably

small to capture the vortical structures.

5. Discussion

In this section, we discuss the time and spatial scales of the

flow field, and temporal and spatial resolution with the present

technique.

Since the light sheet scan in the measurement volume

takes a finite time, Ts , the measured vortical structure may

be distorted compared with a truly instantaneous structure.

The greatest distortion is estimated with the ratio of the

convection velocity of the structure and the scanning speed,

Vs (= 454.5 mm s−1). Since the convection velocity of the

vortical structures is approximately the same as the local

mean velocity (Wygnanski and Fiedler 1969), the maximum

convection velocity can be assumed to be Um. Thus, the largest

distortion is estimated as Um/Vs = 0.053, which is sufficiently

small to discuss the topology of the vortical structures.

The time scale of the smallest eddies in the turbulent

flow field is represented with a Kolmogorov time scale,

τ = (ν/ǫ)1/2, where ǫ is the dissipation rate. The Kolmogorov

time scale of the present jet is estimated as τ = 0.45 s in

the measurement volume, where ǫ was evaluated based on

the value reported by Wygnanski and Fiedler (1969). It is

apparent that the time interval between successive data, �T

(= 0.314 s), is less than the Kolmogorov time scale. Thus,

the temporal resolution is not too low to resolve the smallest
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eddies, and also high enough to resolve the large coherent

vortices, such as the looped structures in figure 11.

In addition to the time scale, the spatial scale should also

be considered. The Kolmogorov length scale is estimated

as η = (ν3/ǫ)1/4 = 0.52 mm. Although direct numerical

simulation typically requires a grid spacing approximately two

to three times wider than the Kolmogorov length scale, the

interrogation spot size (≈2 mm) is still too large to resolve

the smallest eddies. Furthermore, as previously mentioned,

the vorticity was computed by averaging over the surrounding

3×3×3 nodes, i.e. the spatial resolution of vorticity is roughly

6 mm. Thus, the magnitude of the measured vorticity may

have significant error due to the lack of spatial resolution.

However, the residue of the continuity equation is sufficiently

small as can be seen from figure 13. This implies that the

measured vorticity field can be viewed as a spatially low-pass-

filtered field that can still satisfy continuity, and the topology

and dynamics of large-scale structures can be discussed on the

basis of such a low-pass-filtered field without sub-grid small

scales.

6. Conclusion

We developed a scanning stereo PIV system to measure the

three-dimensional distribution of three-component velocity in

a turbulent round jet. A laser light sheet produced with a

high-repetition-rate pulsed Nd:YLF laser was scanned with

an optical scanner. The evolution of the mirror angle had the

form of a linear slope with small amplitude oscillations, which

allowed more freedom in choosing the time interval �t of a

pair of particle images. Two high-speed mega-pixel resolution

C-MOS cameras captured the particle images illuminated

by the light sheet, and we adopted a new stereoscopic PIV

method to acquire the 3D-3C velocity distribution of a

turbulent water jet that was formed by a round nozzle with

an exit diameter of D = 5 mm. The jet Reynolds number was

set at Re ≈ 1000, and the streamwise location of the centre

of the measurement volume was fixed at approximately x =

45D, where the centreline mean velocity was approximately

24 mm s−1.

The measurement volume (∼100 × 100 × 100 mm3)

containing 50 velocity planes was scanned in 0.22 s, which was

sufficiently short to capture instantaneous vortical structures.

The residue of the continuity equation (divergence) was

approximately 7% of rms vorticity on the centreline of the

jet. Iso-vorticity surfaces clearly showed large-scale coherent

vortices.
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