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available at the end of the article High-sensitivity receivers with avalanche photodiodes (APDs) are paid more attention

due to the capability to enhance gain bandwidth. The impact ionization coefficient
ratio is one crucial parameter for avalanche photodiode optimization, which
significantly affects the excess noise and the gain bandwidth product (GBP). The
development of silicon-germanium (Si-Ge) APDs are promising thanks to the low
impact ionization coefficient ratio of silicon, the simple structure, and the CMOS
compatible process. Separate absorption charge multiplication (SACM) structures are
typically adopted in Si-Ge APDs to achieve high bandwidth and low noise. This paper
reviews design and optimization in high-speed Si-Ge APDs, including advanced APD
structures, APD modeling and APD receivers.
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Introduction

The emerging applications in artificial intelligence (Al), internet of things (IoT), cloud
computing and storage, and video streaming result in huge demands for data commu-
nications, which have been driving the development of 5G communication, hyper-scale
data centers, and exascale high performance computers (HPC). Compared to conven-
tional copper based interconnects, optical interconnects possess properties of higher
bandwidth and longer transmission distance, alleviating the crowded data traffic. Optical
interconnect systems can proceed at the speed of light with multiple optical technologies,
such as wavelength division multiplexing (WDM) [1-3] and mode division multiplex-
ing (MDM) [4-7], to meet the requirements in latency and bandwidth. The development
trend is towards higher integration for higher bandwidth density and lower cost per
gigabit. Silicon photonics is a promising technology that has been widely used for applica-
tions in optical communication [8, 9], optical switch [10, 11], optical computing [12, 13],
light detection and ranging (LIDAR) [14, 15], optical sensing [16-18], and so on and
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so forth. Due to the complementary metal-oxide-semiconductor (CMOS) compatible
process and the high integration capability, silicon photonics has shown superior per-
formance in aforementioned applications. After decades of development, basic silicon
photonic devices, including waveguides, couplers, phase shifters, modulators, and pho-
todiodes, are relatively mature [19-23]. The integration of light sources on silicon was
the main challenge due to the indirect bandgap of silicon. Fortunately, heterogeneous
bonding and heteroepitaxial technologies are promising to realize laser diodes (LDs) or
semiconductor optical amplifiers (SOAs) on silicon [24—30]. As main optical components
on silicon can be realized, silicon photonics is moving towards programmable or recon-
figurable photonic integrated circuits (PICs) [31-33]. Recent progresses in the monolithic
integration of silicon photonics and CMOS circuits show the potential of the silicon based
optoelectronic technology [34—36].

Admittedly, the performance of silicon photonic devices still need to be improved.
High-performance photonic devices are essential for large-scale PICs. Photodetectors for
converting optical signals into electrical signals are important components in many appli-
cations. However, silicon photodetectors have low absorption coefficients at wavelengths
greater than 1100 nm due to the large bandgap induced transparency. To enable silicon
photonics for wide applications in O-band and C-band optical communications, the epi-
taxial growth of Ge on Si technology overcomes the 4.2% lattice mismatch between Si
and Ge, realizing efficient light absorption for photodetection [37-39]. The bandwidth
of optical interconnect systems has been doubling every 2-3 years driven by the demand
of datacom. The link budget and power budget become harder to satisfy while increas-
ing the bandwidth density in optical interconnects. High-sensitivity receivers are required
for further increase in bandwidth [40, 41]. However, conventional p-i-n photodiodes are
challenging to meet the demands in an optical interconnect system. Avalanche photodi-
odes (APDs) with internal gain can significantly increase the receiver sensitivity to relax
the bandwidth requirements of optics and electronics as well as link and power budgets
[42-45].

The avalanche effect not only results in multiplication gain but also generates excess
noise [46, 47]. The benefit of APDs strongly depends on whether they have sufficient
gain-bandwidth, which is tied closely to excess noise. The excess noise factor is strongly
related to the impact ionization coefficient ratio, k [46]. Therefore, how to design an APD
with a low impact ionization coefficient ratio is critical. III-V material based APDs have
been investigated for decades [48—-51]. Selecting a semiconductor material with favorable
impact ionization coefficients is one method to realize high-performance APDs [48, 49].
Another method utilizes impact ionization engineering with desired heterostructures
[50, 51]. Despite it is flexible to choose epitaxial materials, high-performance III-V APDs
require complex heterostructures and lack the capability to integrate with other pho-
tonic devices. Compared to most III-V APDs, Si-Ge APDs have simpler structures and
lower excess noise thanks to the extremely low impact ionization coefficient ratio in
silicon [52, 53].

Typically, accurate process design kits (PDK) including transistor models are required
for integrated circuit (IC) design. Similarly, compact photonic device models are also
helpful for large-scale PIC design [54]. Active photonic device models with electrical
and optical dynamics can strongly benefit the design of high-speed transceiver circuits
[55—65]. Compared to p-i-n photodiode receivers, APD receivers require more complex
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bias circuits due to the bias-dependent multiplication gain of APDs and the required
high bias voltage. An accurate APD model for codesign of optical receivers is necessary
[61-65]. As discussed, using APDs can improve the optical receiver sensitivity. In fact,
both APD and receiver circuitry contribute to the overall noise of APD receivers, and the
APD noise is a function of its multiplication gain. Thus, it is necessary to analyze the APD
receiver sensitivity to find out the optimum gain region for operation [40]. This paper will
review recent advances in high-speed Si-Ge APDs. The basic principles of APDs will be
first described, which is followed by reviewing multiple advanced APD structures. Next,
APD equivalent circuit model and the sensitivity analysis for APD receivers will be pre-
sented. Finally, the challenges and perspectives of Si-Ge APDs for applications in optical
communication will be discussed.

APD fundamental
The internal gain of an APD is obtained through the avalanche process, which is triggered
when it is biased beyond the impact ionization threshold. Figure 1 shows the schematic
of the avalanche effect occurred in an APD. The APD structure is built by simply adding a
p-doping layer in a conventional p+-i-n+ photodiode [66]. The incident light is absorbed
in the i-layer where electron-hole pairs are formed. Due to the low electric field in the
absorption region, the carriers move to the corresponding electrodes. After these free
carriers enter into the multiplication region, the high electric field speeds up their veloc-
ities, accumulating sufficient energy to excite more electrons and holes from the valence
band into the conduction band. As the avalanche process illustrated in Fig. 1, a creasing
number of free carriers are generated in the multiplication region.

APDs are favored due to their internal gain. However, APDs also generate excess noise
along with multiplication gain, contributing to the photocurrent shot noise. The APD
excess noise factor is a function of gain which is given by

FM)y=k-M+1-k2-1/M), (1)
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Fig. 1 Avalanche photodiode operating principle. The left part is the electric field profile of the APD and the
right part is the schematic of the avalanche process




Wang and Mu PhotoniX (2022) 3:8

a b
( ) /.|Q‘ W Distance ( ) /.([)— W Distance
Electron ] Electron '
Injection ' Injection :
© Electron
® Hole
Time

Time
Fig. 2 Schematics of the avalanche process for the impact ionization coefficient ratio of a k=0 (8=0) and b
k=1 (B=a). k = B/a where a and B are electron and hole ionization coefficients

where k is the impact ionization coefficient ratio and M is the multiplication gain [46, 47].
The ratio k is determined by k = B/«, where o and B are electron and hole ionization
coefficients of the semiconductor material in multiplication region, respectively [45]. In
other words, 1/« or 1/ is the average distance of an electron or hole travelling before
impact ionization. As one can find out from Eq. 1, the smaller impact ionization coeffi-
cient ratio k results in lower excess noise factor F. Figure 2 shows the avalanche process
for k = 0 (B=0) and k = 1 (¢=p). The avalanche process for k = 1 is a chain-like. If an
impact ionization event does not occur, it will result in much larger gain variation than
for the case of k = 0. Therefore, the resulted excess noise for APDs with k = 1 is larger
than the ones with k = 0. The impact ionization coefficient ratio k also affects APD
gain-bandwidth product (GBP) [45]. For k = 1, both electrons and holes involve in the
avalanche process that two types of carriers travel back and forth across the multiplica-
tion region. By contrast, only one transit by electrons is required for kK = 0, which takes
much shorter time to achieve the same gain. The required time for APDs to build up a
certain gain is called avalanche buildup time or multiplication time, which is inversely
proportional to GBP.

Equation 1 is derived based on a local-field model that the impact ionization coeffi-
cients are in local equilibrium [46]. This model can well describe the avalanche effect and
excess noise when the multiplication region is thick. As shown in Fig. 3(a), the ioniza-
tion probability for carriers in the multiplication region is decreased exponentially with
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Fig. 3 Probability distribution functions of carrier ionization in a multiplication gain region for a the local field
model and b the non-local field model with the dead space for high E-field (solid line) and low E-field
(dashed line)
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the distance from the injection point. However, the local-field model does not agree with
the evidence that the excess noise becomes lower when thinning the multiplication layer
to submicron [67, 68]. A non-local effect in the impact ionization process has been pro-
posed to explain the phenomenon [69, 70]. As shown in Fig. 3(b), the carriers entered into
the multiplication region are “cool” at the beginning and the ionization occurs only after
traveling a certain distance to obtain sufficient energy. The distance d for carriers to reach
the ionizing threshold, as shown in Fig. 3(b), is called “dead space” [69, 71]. To take the
dead space into account, the probability distribution function (PDF) of the impact ioniza-
tion are corrected as the lines shown in Fig. 3(b). When the multiplication layer is thin,
the electric field needs to be higher than expected to achieve a certain multiplication gain.
The width of the PDF is narrower after considering the dead space, resulting in a more
deterministic ionization process. Therefore, the excess noise can be lowered by thinning
the multiplication layer.

Si-Ge APD

Important performance metrics of APDs include breakdown voltage, dark current, quan-
tum efficiency, multiplication gain, bandwidth, excess noise, and GBP. These APD key
parameters typically have design trade-offs. For applications in high-speed optical inter-
connects, GBP and excess noise appear to be more important in APD design. The
studies on monolithically integrated Si-Ge APDs raise great interests on APDs. Metal-
semiconductor-metal (MSM), p-i-n, and SACM structures are commonly used for APD
design [72—80]. The low bandgap of germanium results in almost the same magnitude of
ionization coefficients for electrons and holes [81-84]. The impact ionization coefficient
ratio k is close to 1 (k ~ 0.9). By contrast, the impact ionization for electrons and holes in
pure silicon are quite asymmetric, yielding a k value close to 0 (k ~ 0.02) [82-84]. To take
advantages of high absorption coefficient in germanium and low impact ionization coef-
ficient ratio in silicon, the separate absorption charge multiplication (SACM) structure is
often used in Si-Ge APD design, where a low electric field is retained in germanium to
keep it below the impact ionization threshold and a high electric field is confined in sili-
con to trigger the ionization effect [72—74]. This design has shown superior performance
in aspects of GBP and excess noise. Also, Si-Ge SACM APDs have been demonstrated
with high temperature stability that the bandwidth and the GBP have negligible degrada-
tion [85]. Recent advances in high-speed Si-Ge APDs will be discussed below. It is worth
noting that some APD structures can be classified into multiple categories.

Vertical SACM APD

Si-Ge APDs are initially designed as discrete normal-incidence (NI) devices for applica-
tions in optical-fiber communication [72, 86—89]. Kang et al. proposed a NI Si-Ge APD
with a p+-i-p-i-n+ layer structure as shown in Fig. 4(a) and (b) [72]. The layer thicknesses
and doping levels of the vertical SACM APD structure can be found in Fig. 4(a). A maxi-
mum bandwidth of 11.5 GHz was measured for a 30-um-diameter device. The bandwidth
is limited by RC time constant and carrier transit time, which is similar to a p—i—n pho-
todiode except that an APD depletion region includes depleted germanium absorption as
well as silicon charge and multiplication layers. The proposed APD design achieved an
effective k of 0.09 and a GBP of 340 GHz thanks to the SACM structure. However, the
operating bias voltage beyond 20 V was required to realize a reasonable high gain due to
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Fig. 4 a Schematic and b SEM cross-sections of the normal incident Si-Ge vertical SACM APD [72]; ¢
Measured |-V characteristics of the negative differential resistance NI Si-Ge SACM APD. Inset is the device
schematic cross-section [88]; d Schematic cross-section of the normal incident Si-Ge vertical SACM APD
integrated with a MIM capacitor [89]

the thick SACM structure. The APD breakdown voltage can be reduced by thinning the
SACM structure and optimizing the doping profile. Kim et al. proposed a negative differ-
ential resistance (NDR) NI SACM APD with a maximum GBP of 460 GHz as shown in
the inset of Fig. 4(c) [88]. A typical I-V characteristic of the device is shown in Fig. 4(c),
where the blue line is the difference between the photocurrent (red line) and the dark cur-
rent (black line). It exhibited a negative photoconductance effect when the reverse bias
was increased beyond reaching the maximum photocurrent.

For APD based receivers, the required high bias voltage of APDs cannot be supplied
by trans-impedance amplifier (TIA) ICs directly due to the voltage limit in IC chips [89].
Typically, an APD receiver has to have an individual bypass capacitor to block the high dc
bias voltage and filter out the noise from the external power supply. The required large
capacitance occupies a large footprint which may not be easily integrated on a receiver IC
chip owing to the restricted channel pitch in APD multi-channel applications. As shown
in Fig. 4(d), Park et al. proposed a NI Si-Ge SACM APD monolithically integrated with a
metal-insulator-metal (MIM) bypass capacitor [89]. The bypass capacitor was fabricated
by depositing 100 nm-thick silicon nitride between copper and aluminium to realize a
capacitance value of 100 pF. The responsivity of 0.21 A/W at unit gain, the bandwidth of
~20 GHz, and the GBP of 150 GHz were exhibited at 1310 nm.

Resonant SACM APD

In order to further improve the GBP, NI SACM APDs using resonant effect have been
demonstrated [73, 90, 91]. Zaoui et al. proposed a resonant NI SACM APD with an ultra-
high GBP of 845 GHz [73]. The schematic of the resonant APD is shown in Fig. 5(a).
By designing the avalanche region properly, the real part and the imaginary part of the
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Fig. 5 a Schematic cross-section of the resonant normal incident Si-Ge SACM APD [90]; b Measured APD RF

impedance. The top is the real part and the bottom is the imaginary part. Inset is the equivalent circuit of the
device avalanche region [91]; € Measured frequency response at different bias voltages under -20 dBm input
optical power [73]; d Measured GBP versus gain under -20 dBm, -26 dBm and -30 dBm input optical powers [73]

APD impedance have a peak and a null at a certain frequency, respectively, as shown in
Fig. 5(b). The inset in Fig. 5(b) is the equivalent circuit model of the avalanche region
extracted from the curve fit of the impedance measurement [90, 91]. The resonance
between the inductor and the capacitor results in a peak enhancement in the device fre-
quency response at the high frequency range, as shown in Fig. 5(c). Figure 5(d) shows the
measured GBP of the APD under different input powers. The measured highest GBP was
845 GHz at -30 dBm input optical power, corresponding to a gain of 65 and a bandwidth of
13 GHz. Although an extremely high GBP was achieved, the maximum bandwidth of the
APD was still less than 20 GHz as shown in Fig. 5(c) and (d). It is well known that NI pho-
todiodes have design trade-offs between responsivity and bandwidth. A thick germanium
layer is typically grown on silicon and processed with a large surface area for sufficient
light absorption, resulting in larger RC time contant and longer carrier transit time. Such
trade-off can be addressed by design of waveguide coupled photodiodes to decouple light
absorption and carrier collection.

Waveguide APD

Waveguide-coupled Si-Ge APDs have been demonstrated with excellent performance in
terms of bandwidth, dark current and noise [74, 92—99]. The major advantage of waveg-
uide APDs over NI APDs is that the light propagation and carrier collection paths are
orthogonal to each other. More importantly, waveguide APDs are more suitable for large-
scale PICs, which the incident light in silicon waveguide is evanescently coupled into
germanium for absorption. Light evanescent coupling schemes for waveguide photo-
diodes include top-to-down, down-to-top, side-coupling, and Butt-coupling, where the
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down-to-top coupling is the most common one for waveguide-coupled APDs owing to the
CMOS compatible process and the simple structure. Huang et al. from Hewlett Packard
Labs proposed a waveguide Si-Ge APD adopting down-to-top coupling scheme [94]. The
detailed SACM structure can be found in Fig. 6(a). Unlike the p+-i-p-i-n+ SACM struc-
ture proposed in Fig. 4(a), here a p+-p-i-n+ structure with thinner layer thicknesses was
designed to reduce the breakdown voltage as well as achieve high bandwidth and low
noise. Figure 6(b) illustrates the electric field distribution of the waveguide Si-Ge APD at
a bias voltage near the breakdown. It is clear to see that a high electric field is confined in
the silicon multiplication layer. A measured maximum bandwidth of 25 GHz and a GBP of
276 GHz were demonstrated by optimizing the SACM structure. Huang et al. from SiFo-
tonics demonstrated a waveguide SACM APD with an ultra-high bandwidth of 56 GHz
at a gain of 1.8 and a bandwidth of 36 GHz at a gain of 10, as shown in Fig. 6(c) and (d),
achieving promising performance of waveguide-coupled APDs as well [95]. Huang et al.
from Intel proposed a recess-type waveguide-coupled SACM APD, as shown in Fig. 6(d)
[99]. The silicon recess design minimized the step height between silicon waveguide and
germanium absorption layers, which realized higher evanescent coupling efficiency and
better mode confinement. A GBP of 260 GHz and a breakdown voltage of 16.5 V were
exhibited.

APD with a reflector

The responsivity of a waveguide APD can be impacted by the epitaxial germanium
thickness, the absorption length, and the evanescent coupling efficiency. The parasitic
capacitance dominated by the germanium absorption and silicon multiplication area lim-
its the APD bandwidth if the carrier transit time is negligible. In order to improve the
responsivity bandwidth product, Wang et al. proposed a Si-Ge APD with a distributed
Bragg reflector (DBR) as shown in Fig. 7(a) [100]. The waveguide length can be shorten
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Fig. 6 a Schematic and b electric field distribution of the waveguide-coupled low-voltage Si-Ge SACM APD
[94]; € Schematic cross-section of the 56 GHz waveguide-coupled Si-Ge SACM APD [95]; d Schematic
cross-section of the recess-type waveguide integrated Si-Ge SACM APD [99]
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Fig. 7 a Schematic of the waveguide-coupled low-voltage Si-Ge vertical SACM APD integrated with a
distributed Bragg reflector and b Reflectivity versus number of period for two DBR designs. Inset is the
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with the help of DBR that the incident light is not absorbed when propagating in the
waveguide will be reflected back for the second absorption. As shown in Fig. 7(b), a few
number of pairs for DBR design realized a reflectivity of higher than 90%, and the inset of
Fig. 7(b) indicated that the DBR design had a wide optical bandwidth. As a result, the APD
quantum efficiency was improved from 60% to 90% with the assistance of DBR and the
electrical bandwidth had no degradation compared to APDs without a DBR. It is worth
to mention that the parameters of the DBR, such as period, fill factor, and number of
pairs, have to be carefully designed to achieve high-sufficient reflectivity and meet fabri-
cation requirements simultaneously. To relax the DBR fabrication tolerance, other types
of reflectors, such as loop reflectors, are alternatives. As shown in Fig. 7(c), Yuan et al. pro-
posed a Si-Ge waveguide APD integrated with a loop reflector at the end [101]. The loop
reflector exhibited even wider optical bandwidth than DBRs, as the reflectivity spectrum
shown in Fig. 7(d). Such design also improved the responsivity by around 50% without
electrical bandwidth degradation. However, the size of the APD with a loop reflector is
relatively large because of the need for long taper and big loop radius to achieve low light

propagation loss.

Low-voltage APD

Due to the low-voltage power-rail requirements in HPC applications, Si-Ge APDs with
low breakdown voltage have attracted researchers’ interest [102—104]. Unlike the APD
designs with high breakdown voltages at around 20 V or beyond discussed in [72, 86—88],
APDs with the thin SACM structure and the optimum doping profile, as shown in
Figs. 6(a, b) and 7(a, c), can achieve a breakdown voltage as low as 10 V [94, 100, 101].
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For typical SACM APDs, the required bias voltage is the sum of the voltage drops in
the absorption and multiplication regions because the germanium absorption and silicon
multiplication regions are in series, as shown in Fig. 8(a). Design of a SACM APD with the
absorption and multiplication regions in parallel can further reduce the APD bias voltage,
as the simplified schematic illustrated in Fig. 8(b). Zeng et al. proposed a three-terminal
Si-Ge APD with an ultra-low breakdown voltage (Fig. 8(c)) [105]. Unlike two-terminal
design, three-terminal APDs can realize independent electric controls on charge and mul-
tiplication layers by two separate voltage drops. This design not only reduces the APD
breakdown voltage but also relax the fabrication tolerance on the doping profile. The elec-
tric field of the proposed design is illustrated in Fig. 8(d). The high electric field confined
in the finger gap was the intrinsic silicon region for multiplication. The three-terminal Si-
Ge APD with a breakdown voltage of 6 V and a GBP over 280 GHz was demonstrated.
Also, the design allows to use the standard CMOS process and no additional silicon

epitaxial growths are required.

Lateral SACM APD

Aforementioned Si-Ge APDs adopt vertical SACM structure, which requires to epitax-
ially grow an additional silicon charge layer. In order to reduce the device fabrication
complexity, lateral SACM APDs have been demonstrated, in which the charge and mul-
tiplication regions are on one silicon layer [106—109]. Martinez et al. proposed a lateral
SACM APD with a breakdown voltage of more than 30 V and a GBP of 432 GHz as shown
in Fig. 9(a) and (b). The device symmetry, including contacts, is important for field con-
figuration considerations, which raises requirements of fabrication tolerance to achieve
device performance consistence. The p-charge layer was designed to have different over-
laps relative to the germanium sidewall. The higher gain in the no-overlap device was
observed due to the realized higher electric field in germanium. In addition, the mul-
tiplication width was also studied with variations from 200 nm to 1000 nm. The larger
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Fig. 8 Simplified schematics of a two-termimal and b three-terminal Si-Ge APDs; € Schematic and d electric
field distribution of the three-terminal waveguide-coupled Si-Ge SACM APD [105]
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bandwidth was observed with narrower multiplication width because of the less carrier
transit time. More specifically, lateral SACM APDs can be designed with contacts on sil-
icon only that the process for contact doping on germanium is not necessary [108, 109].
Srinivasan et al. demonstrated a lateral SACM APD with a gain of 11 and a bandwidth
of 27 GHz at -12 V, as shown in Fig. 9(c) [108, 109]. The device was optimized to form
a high electric field in the silicon multiplication region as shown in Fig. 9(d). This design
has no needs to retain the device symmetry, relaxing the fabrication tolerance. However,
it requires smaller linewidths in processes, such as the narrow width of the silicon charge
region. Two designs with a nominal multiplication region width of 200 nm and a doping
level of around 10'® cm~3 but different charge region widths of 50 nm and 100 nm were
investigated. The experimental results exhibited a trade-off between bandwidth and dark

current.

Germanium APD

In general, germanium APDs can achieve lower breakdown voltage than Si-Ge APDs,
because the required electric field to trigger the impact ionization in germanium is lower
than that of silicon [110, 111]. Ge APDs with low breakdown voltages have been demon-
strated in recent years [112—115]. Virot et al. demonstrated a waveguide-coupled Ge APD
with a breakdown voltage of 7 V [112]. The schematic and the SEM image of the Ge
APD are shown in Fig. 10(a) and (b). As mentioned before, electrons and holes have
quite similar impact ionization coefficients in germanium. The excess noise factor of a
Ge APD should be high because both absorption and multiplication take place in germa-
nium. In [112], a narrow width multiplication region of 500 nm was chosen to enhance
the large dead space effect, contributing to a remarkable reduction of the excess noise
factor. A GBP of 193 GHz and an effective k value of 0.4 were achieved. More specifi-
cally, Chen et al. demonstrated a sub 5 V waveguide-coupled Ge APD with a GBP of 140
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Fig. 10 a Schematic and b SEM image of the lateral p-i-n diode based Ge APD integrated in a silicon
waveguide [112]; € Schematic cross-section and d electric field distribution profile of the waveguide-coupled
Ge APD [113]

GHz and an effective k value of 0.2, as shown in Fig. 10(c) [113]. Ge APDs with various
germanium layer thicknesses were investigated in [113]. As one can see in Fig. 10(d), the
thinner germanium layer has higher electric field near the interface of Ge/Si. In [113], a
185 nm thin germanium layer was adopted for the low operating voltage where the elec-
tric field dropped sharply away from the Ge/Si interface. This design greatly suppressed
the avalanche excess noise due to the limited thickness of the multiplication region.
The demonstrated effective k value was much lower than the k in germanium since the
avalanche effect occurred in both germanium and silicon near their interface as shown in
Fig. 10(d).

p-i-n APD

SACM APDs can realize high GBP and low excess noise but require accurate control of
the doping profile in SACM structure, including layer thicknesses (or silicon charge and
multiplication widths for lateral SACM APDs) and doping levels. By contrast, lateral p-
i-n APDs with double heterojunctions are an alternative for APD design [79, 80, 116].
Zhang et al. proposed an APD with a lateral p-i-n junction, as shown in Fig. 11(a), exhibit-
ing a maximum responsivity of 15.2 A/W at 16x avalanche gain and a bandwidth of 33
GHz [79]. As shown in Fig. 11(b), a strong electric field was generated in germanium
by optimizing the silicon p-i-n junction with a p/n doping level of 108 cm™2 and a
500 nm intrinsic silicon width. The impact ionization coefficient in germanium should
have an order of magnitude higher than in silicon at the electric field of 0.2-0.4 MV/cm
(Fig. 11(b)) [110, 111]. However, an effective k value as low as 0.2 was achieved, thanks to
the dead space effect and the high electric field near the Si-Ge boundary [69, 71]. In addi-
tion, Benedikovic et al. proposed a heterostructure APD based on a lateral p-i-n structure
as well, as illustrated in Fig. 11(c) [80]. Due to the simple APD scheme, photonic devices
other than photodetectors, such as modulators, can be simultaneously fabricated. The
APD exhibited a multiplication gain of 120, a GBP of 210 GHz, and an effective k of 0.25
without complex epitaxial structures and multiple ion implantation schemes. The study
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through p-i-n APDs with various germanium lengths [116]

of the APD multiplication gain versus the bias voltage under different input powers indi-
cates that the multiplication gain increases with the decrease of the input optical power.
The phenomenon also occurs in other types of APDs. The high input optical power results
in a stronger space charge effect which hinders the impact ionization process. To study
the effect of germanium geometry on device performance, Benedikovic et al. investigated
a lateral p-i-n APD with various germanium widths and lengths, as shown in Fig. 11(d)
[116]. High GBP up to 480 GHz and low k value down to 0.15 were achieved for APD with
0.3 um width of germanium.

APD receivers

Performance metrics of state-of-the-art Si—-Ge APDs discussed previously are summa-
rized in order in Table 1. After converting an optical signal to an electrical signal by an
APD, a following receiver circuitry is necessary to amplify, reshape, and process the elec-
trical signal. Compared to a p-i-n photodiode, an APD require a more complex receiver
due to the high bias voltage and various gains as a function of the bias voltage. An accu-
rate APD model is beneficial to design a hign-speed APD receiver [61-65]. Particularly,
the performance of a TIA, such as bandwidth and input referred noise, is significantly
affected by APDs. Wang et al. proposed an APD equivalent circuit model, including the
effects of carrier transit time, avalanche buildup time and electrical parasitics, as shown
in Fig. 12(a) [61]. This model can capture both electrical and optical dynamics over a
wide range of multiplication gain. The space charge effect occurred at high gain region
is described as a resistor R, and an inductor L, in series as shown at the absorption and

avalanche region of the electrical parasitics in Fig. 12(a). wpc = ﬁ and Q = R%, / %
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Table 1 Performance metrics of state-of-the-art Si-Ge avalanche photodiode receivers

Ref. A(um) Vg (V) k GBP(GH2z) DR(Gbps) Mod. Sensitivity(dBm)
[72] 13 25 0.09 340 10 OOK -28@10712
[86] 155 294 - 310 - - -
1871 131 18 - 240 25 00K -225@10712
[88] 13/15 265 - 460 40 OOK -139@10~ 12
[89] 131 12 - 150 50 OOK -16@10™*
(73] 131 24 - 845 - - -
[74] 13/15 35 02 300 10 00K -13.9@107°
[93] 13 20 - 115 25 OOK -30.5@10710
[94] 155 10 0.05 276 25 OOK -16@10~12
[95] 131 >18 - 360 - - -
[96] 131 >15 - - 112 PAM4 -8@10~*
[97] 155 6 - 400 28 OOK 9@107 12
[99] 131 16.5 - 260 106 PAM4 -18@10™*
[40] 155 10 0.08 276 50 PAM4 -16@10™4
[100] 155 10 - 500 64 PAM4 -13@107%
[101] 155 10 - 497 32 00K -15.7@10™4
[105] 155 6 - 284 25 OOK -11.4@10~%
[107] 155 306 - 432 10 OOK -183@107 1
[109] 131 13 - 300 56 00K -186@104
[112] 155 7 04 193 10 OOK -26@10~7
[113] 131 5 0.2 140 25 00K -21.7@107°
[114] 155 6.2 05 100 10 00K -244@107°
[79] 155 125 02 352 64 PAM4 -3@107°
(80] 155 " 0.25 210 40 OOK -11.2@107°
[116] 155 16.5 0.15 480 80 00K -133@107°

in the RLC transfer function is related to bandwidth and damping. The buildup func-
tion describes the avalanche buildup process which limits the APD GBP, where 1, is the
avalanche buildup time, M is the multiplication gain, and 7, = 1/(27w x GBP) [117-119].
Model parameters need to be set as a function of bias voltage or multiplication gain for
the availability over a wide range of gain. These parameters can be extracted by curve
fitting small-signal and impulse response characteristics, as shown in Fig. 12(b) and (c).

The main purpose of using APDs is to improve the receiver sensitivity. Hence, the APD
receiver sensitivity analysis is necessary to design an APD for required system perfor-
mance [40, 101, 109]. Generally, the bit error rate (BER) or Q-factor at a data rate is used
to measure the performance of a transceiver, which can also be described as signal-to-
noise ratio (SNR). The direct detection technology will be taken as an example to discuss
below. The quality of a signal, i.e. Q-factor, is given by

_ OMA -R-M
h o1 + o9

(2)

where OMA is the effective optical modulation amplitude (OMA), R is the APD respon-
sivity at unity gain, M is the APD multiplication gain, o7 and oy are the receiver noise on
level “1” and “0” [40]. The effective difference of two signal levels, OMA, is the eye height
of a noiseless eye diagram at the receiver, which needs to count the eye degradation due to
the intersymbol interference (ISI) [120, 121]. The bandwidth, the deterministic jitter, and
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the nonlinear effect in a transceiver system contribute to the ISI. Here, the receiver sen-
sitivity is analyzed using pulse amplitude modulation with two levels (PAM-2 or OOK)
format for simplicity, which is also valid for advanced PAM-n (n>2) modulation.

The total noise of an APD receiver on each signal level mainly consists of the laser
relative intensity noise, the shot noise of photocurrent and dark current, and the TIA
input referred noise, as described by

Ototal = \/o,%,N + Uszhot + O'%IA 3)
where
2 2 2
opin =M” -1, - RIN - BW @
Uszhot =F-M*- 2q(lphoto + Ljarik) - BW (5)

Here, M is the APD multiplication gain, I,y is the photocurrent at unity gain, I, is
the dark current at unity gain, RIN is the laser relative intensity noise, BW is the APD
receiver bandwidth, and F is the APD excess noise factor [40]. The TIA input referred
noise depends on the type of TIAs, which can refer to a TIA model [122].

Huang et al. demonstrated a waveguide-coupled Si-Ge vertical SACM APD integrated
with a CMOS receiver circuit at 25 Gb/s whose prototype is shown in Fig. 13(a) [94]. The
BER curves at different gains as well as the simulated and measured sensitivity data in
Fig. 13 indicated that the APD receiver indeed improved the receiver sensitivity, thanks

(b) ===
L — e Y
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Fig. 14 a Prototype of the APD BiCMOS receiver; b Measured BER data and extracted k value; Receiver
sensitivity analysis at € 25 Gb/s and d 50 Gb/s [109]
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to the APD internal gain. The extracted k value was between 0.05 and 0.1. The optimum
sensitivity was achieved around multiplication gain of 10. Additionally, Srinivasan et al.
demonstrated a waveguide-coupled Si-Ge lateral SACM APD integrated with a BICMOS
receiver circuit at 56 Gb/s [109]. The APD receiver prototype and the BER and sensitivity
results are shown in Fig. 14. The extracted k value was around 0.25. The high-speed APD
receiver sensitivity analysis in [40, 94, 101, 109] concludes that the optimum sensitivity is
realized at a multiplication gain range of 10-20 and the optimum gain depends on noise
levels and data rates.

Conclusion

APD receivers with higher sensitivity are essential with the development of optical
interconnect technologies towards higher bandwidth, higher integration, lower power
consumption and lower cost. Si-Ge APDs with internal gain and low noise can greatly
relax the requirements in link budget and power budget to realize higher bandwidth
density. Important performance metrics for APD design include breakdown voltage,
dark current, quantum efficiency, multiplication gain, bandwidth, excess noise, and GBP.
Designing an APD with a low effective impact ionization coefficient ratio k is critical
to realize high GBP and low noise. However, some design trade-offs may exist, which
requires device optimization for different applications. How to break these trade-offs is
one direction for future APD performance improvement. Si-Ge APD schemes can be
optimized to trigger the impact ionization effect occurred in silicon more than that in
germanium. The thickness of silicon or germanium can be thinned to increase the dead
space effect, thereby reducing the k value. The consequent decreased responsivity or mul-
tiplication gain can be compensated by other methods, such as adding a reflector. The
APD design also needs to consider the complexity and tolerance in device fabrication.
Compared to vertical SACM APDs, APDs with lateral SACM or p-i-n structure can ben-
efit from the less fabrication complexity but may require device processes with smaller
linewidths. The overall noise sources have to be considered for optimizing APD receiver
sensitivity. Design an APD with extremely high gain is not necessary for applications in
high-speed optical interconnects since the optimum sensitivity for an APD receiver is
achieved with a multiplication gain less than 20 in most cases.
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