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This paper demonstrates a high-speed spiral imaging technique for an atomic force microscope

(AFM). As an alternative to traditional raster scanning, an approach of gradient pulsing using a spiral

line is implemented and spirals are generated by applying single-frequency cosine and sine waves

of slowly varying amplitudes to the X and Y-axes of the AFM’s piezoelectric tube scanner (PTS).

Due to these single-frequency sinusoidal input signals, the scanning process can be faster than that of

conventional raster scanning. A linear quadratic Gaussian controller is designed to track the reference

sinusoid and a vibration compensator is combined to damp the resonant mode of the PTS. An internal

model of the reference sinusoidal signal is included in the plant model and an integrator for the system

error is introduced in the proposed control scheme. As a result, the phase error between the input and

output sinusoids from the X and Y-PTSs is reduced. The spirals produced have particularly narrow-

band frequency measures which change slowly over time, thereby making it possible for the scanner

to achieve improved tracking and continuous high-speed scanning rather than being restricted to the

back and forth motion of raster scanning. As part of the post-processing of the experimental data, a

fifth-order Butterworth filter is used to filter noises in the signals emanating from the position sensors

and a Gaussian image filter is used to filter the images. A comparison of images scanned using the

proposed controller (spiral) and the AFM PI controller (raster) shows improvement in the scanning

rate using the proposed method. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4868249]

I. INTRODUCTION

Multi-disciplinary uses of the atomic force microscope

(AFM) have made it an attractive tool in the fields of

atomic resolution surface measurements, nano-robotics,

nano-manipulation, nano-fabrication, nano-lithography, and

nano-range material handling such as pushing, pulling,

cutting, rolling, and sliding.1–5 A piezoelectric tube actuator

(PTA) plays a vital role in precision motion generation

for applications of the AFM and other scanning probe

microscopes (SPMs). The use of this actuator was introduced

during World War I in sonar and after World War II, in

sonar, acoustic, and accelerometer studies6 which provide

a good starting point for using piezoelectric materials as

actuators, sensors, motors, damage detectors, active and

passive vibration control devices, and structural dampers

as well as for nanopositioning, nanomanipulation, etc. The

invention of the scanning tunnelling microscope (STM),

scanning probe microscopes such as the AFM, scanning

electron microscope (SEM), and transmission electron

microscope (TEM) have revolutionized research in various

areas, e.g., materials science, nano-biotechnology, nano-

medicine, nano-pharmaceutics, precision mechanics, optics,

microelectronics, etc.7, 8 The STM has a limitation that it can

scan only conductive samples or those coated with conductive

layers and this has been overcome through the invention of

the AFM.8 In recent years, the AFM has been widely used to

a)Electronic mail: h.habib@student.adfa.edu.au
b)Electronic mail: h.pota@adfa.edu.au
c)Electronic mail: i.petersen@adfa.edu.au

generate three dimensional (3D) images of material surfaces,

and biological specimens with ultra-high accuracy.9

AFM-based image scanning is achieved by applying a

small, gradually increasing gradient staircase or ramp signal

in the y direction while concurrently applying a triangular sig-

nal along the x direction. One of the main drawbacks of this

scanning method is that its spatial resolution is poor as the

triangular signal contains all of the odd harmonics of the fun-

damental frequency. In raster scanning, the scanning speed

is usually limited to 1%–10% of the first resonant frequency

of the piezoelectric tube (PZT) scanner.9 When a triangular

signal is applied to the PZT, one of the high-frequency har-

monics excites the resonance and a distorted triangular out-

put is produced at the free end of the PZT along the X-axis

which generates a distorted image. In the SPM and other scan-

ner devices, such as selective laser sintering machines (SLSs),

tracking the triangular signal is a major challenge.10

Feedback control techniques to improve the accuracy and

speed of the AFM have been reported in the literature.11–17

A signal transformation method is implemented to track the

reference triangular signal in an AFM in Ref. 18. A H∞

controller19 achieves a scanning rate of 125 Hz, as reported.19

Creep, hysteresis, and vibration effects are minimized by im-

plementing a proportional plus derivative high-gain feedback

controller and feed-forward controller.15 PZT materials have

resonant natures due to their mechanical properties which are

also responsible for distorting the output triangular signal and

scanned images. Damping the resonant peak of the PZT is a

second major issue in the accurate positioning of the AFM’s

scanner. A survey of damping controllers is given in Ref. 20.
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The integral resonant controller is another approach for atten-

uating the vibration due to the resonant mode of the PZT.21

Despite significant performance improvements of the PZT

scanner, it remains difficult to track fast triangular signals due

to the non-linearities and low bandwidth of the scanner tube.

The raster scanning produces images with deformed sur-

face topography, which leads to misinterpretations of the orig-

inal data while drifting occurs which may cause the image to

be oblique; for example, a square lattice becomes rhombohe-

dral and since this is a well-known structure, one can draw the

wrong conclusions. To avoid this, spiral scanning approaches

have been introduced in Refs. 22–27 for fast imaging using

the AFM. Perhaps the idea of spiral scanning was first intro-

duced in medical imaging in 1976.28 In Ref. 29, a spiral scan-

ning method is reported as a replacement for raster scanning

and in this scanning two challenges are mentioned. The first

challenge is the uniform distribution of sampling points in 2D

plane and the second is relatively constant linear speed. A de-

tail image construction procedure is also described in Ref. 29

but the images are worse than the images scanned using the

proposed scheme. A specially designed AFM head is used for

spiral scanning30 where the AFM head is mounted on a spin-

dle for generating rotational motion and a turning machine

is used to turn a sample, but it is hard to maintain the rela-

tive position of the head and sample. A fast spiral scanning

technique is also reported in Ref. 31, for medical magnetic

resonance imaging (MRI). A cycloid scanning approach is

described in Ref. 32. Actually, cycloid scan takes longer time

than the spiral scan, to cover a definite area on a sample at the

same scanning frequency. The reason is that, during cycloid

scan there is an extra ramp signal to flow the scan throughout

the X-axis and at the same time it involves overlapping of the

data points.32 On the other hand, spiral scan involves simulta-

neous application of sine and cosine signals in both the X and

Y-PTSs, which results in continuously increasing circles with

no overlapping among the data points traced on the sample

surface.

An approach of gradient pulsing using a spiral line is im-

plemented in this paper. The entire area is uniformly covered

by a form of spiral scanning whereby a circular symmetri-

cal area for fast AFM imaging, which is different from that

determined from raster scanning, is obtained. Externally gen-

erated cosine and sine waves of slowly varying amplitudes

are applied to the PZT scanners X and Y-axes to force it

to move along spiral lines with varying instantaneous radii.

The resultant spiral signal has a low-frequency content which

moves slowly over time and regulates the tracking perfor-

mance through continuous high-frequency imaging. These

generated spirals, called Archimedean spirals33 are shown in

Fig. 1. The distance between two consecutive lines is known

as the pitch (p) which has the property of being constant over

the sample surface and makes it possible to uniformly scan a

surface without missing any information.34 As both axes are

forced by single-frequency sinusoidal signals, the resulting

system is in the steady state and avoids the transient behav-

ior that can be observed in raster scanning in which the probe

moves from one line to the next. With only some software

modifications, the proposed scanning method can be used for

faster scanning in a commercial AFM.
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FIG. 1. Spiral lines.

The remainder of this paper is organized as follows:

Sec. II presents the spiral generation procedure; Sec. III ex-

plains the modeling of the PTS scanner; Sec. IV discusses

the controller design procedure for tracking the reference si-

nusoids and damping the resonant mode of the PTS; Sec. V

presents the performance of the controller, improvement of

the scanning speed, and quality of images; and Sec. VI pro-

vides conclusions.

II. BASIC MATHEMATICS FOR SPIRAL GENERATION

The most popular 3D Fourier imaging algorithm with

three time varying gradient fields is

G(t) =

∫∫∫

σ (x, y, z) exp

[

iγ

∫ t

0

xGx(t) + yGy(t)dt

]

exp

(

t

T2

)

dxdydz, (1)

where, G(t) is the free induction decay (FID) signal, which is

a time domain signal, that remains unaffected by any gradient

and decays exponentially, σ (x, y, z) is the spin density distri-

bution, and Gx(t), Gy(t), and Gz(t) are the time-varying gradi-

ent fields of the x, y, and z coordinates, respectively. The expo-

nential term exp(t/T2) is the T2 decay term that often appears

as a limiting factor in high-resolution imaging. The time con-

stant that determines the rate of decay is known as T2-decay.

In real time application this decay rate is unpredictable.34, 35

Original T2 decay is a function of completely random inter-

actions between spins.

The general 3D imaging equation can be converted to 2D

forms for analysis and the T2 decay term can be ignored for

simplicity.34 The FID signal obtained for a 2D plane at z = z0

is

G(t) =

∫∫

σ (x, y, z0) exp

[

i

∫ t

0

xVx(t) + yVy(t)

]

dxdy;

≃ G((Vx, Vy), (2)

where, Vx = γ
∫ t

0
Gx(t)dt
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and

Vy = γ

∫ t

0

Gy(t)dt. (3)

From (2) and (3) it can be shown that, σ (x, y) and G((Vx, Vy)

are a Fourier transform pair.

The slowly varying amplitudes of the sinusoidal pulse

pair will result in a set of circularly symmetrical concentric

circles with different instantaneous radii as

Vx(t) = γ ηi(t) cos ωt,

Vy(t) = γ ηi(t) sin ωt,
(4)

where, ηi(t) is the discrete amplitude at time t and ω is fre-

quency of the sine wave.

Continuous rather than discrete circles, i.e., complete spi-

ral motions can be obtained from simple modification of (4),

which would be easier to implement in a physical system as

Vx(t) = R cos ωt,

Vy(t) = R sin ωt,
(5)

where, R = γ ηt is the instantaneous radius of the spiral at time

t. The area of a sample to be scanned in a spiral trajectory of

pitch p at a linear velocity v and if the instantaneous radius R

with angular velocity ω (rad/s) at any time t,

ω =
v

R
(6)

and

dR

dt
=

pω

2π
. (7)

Integrating (2) we have

R =
pωt

2π
, (8)

where R = 0 at t = 0 and pitch p calculated as

p =
2R

number of spiral curves − 1
, (9)

where number of spiral curves is the number of crossing

points on y = 0 or x = 0 line. The spirals generated with

defined parameter is applied to move the PTS of the AFM in

spiral scanning. Simultaneous application of these two signals

in (5) results in continuously increasing circles, which create

complete spiral positioning on a sample surface, as shown in

Fig. 2.

III. MODELING OF THE PTS

In the design of the proposed control scheme, the PTS is

modeled as a single-input single-output (SISO) system. An

experimental frequency response is obtained using a dual-

channel HP35665A dynamic signal analyser (SA). In this

work, our experimental setup consists of the NT-MDT Nte-

gra scanning probe microscope (SPM) that is configured as an

AFM. The experimental setup contains some other parts such

as signal access module (SAM), control electronics, vibration

isolator, and a computer to operate the NOVA software. Other

accessories are a DSP dSPACE board and high-voltage ampli-

fier (HVA) with a constant gain of 15 which supplies power to

FIG. 2. A schematic view of the PTS.

the X, Y, and Z-PTSs using the SAM as an intermediate de-

vice. The scanner is a NT-MDT z50313cl PI type which scans

by sample in the constant force mode. The (X, Y, Z) scanning

range is 100 µm × 100 µm × 12 µm and resonant frequency

for both X and Y is 900 Hz, and 5 kHz for Z-PTS, that per-

forms X, Y, and Z positioning in the AFM. Displacements of

the X, Y, and Z-PTSs are obtained from capacitive position

sensors incorporated with the AFM. The experimental con-

nection is shown in Fig. 3. The frequency responses gener-

ated in the SA are processed in MATLAB and using the pre-

diction error method (PEM), a system model is obtained.36, 37

The best-fit model frequency responses for the X and Y-PTSs

are shown in Fig. 4.

The following state-space model is found to be the best

fit for the X-PTS, as illustrated in Fig. 4(a), the resonant mode

of which is at about 834.5 Hz:

ẋx = axxx + bxux, (10)

yx = cxxx + dxux, (11)

FIG. 3. Experimental setup used in the AFM positioning.
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FIG. 4. Frequency response plots of measured and identified system models

for (a) input to the X-PTS and output from the X position sensor, (b) input to

the Y-PTS and output from the Y position sensor.

ax =

⎡

⎢

⎣

−291.1 −6143.5 3600

3564.8 −755.4 4195

−275.8 −2578.7 −639.3

⎤

⎥

⎦
; bx =

⎡

⎢

⎣

−4.5424

10

10

⎤

⎥

⎦
;

cx =
[

37.4411 47.1767 − 59.3637
]

; dx =
[

0
]

,

where, xx is the state of the X-PTS, yx is the output of the

X-PTS, ax is the system matrix, bx is input to the plant, cx

and dx are the output matrices from the plant. Similarly, the

following state-space model is found to be the best fit for the

Y-PTS, as illustrated in Fig. 4(b) where the resonant mode of

the PTS is at about 815.2 Hz:

ẋy = ayxy + byuy, (12)

yy = cyxy + dyuy, (13)

ay =

⎡

⎢

⎣

14.1 −6376.5 3405.9

3625.7 −654.9 3080

28.3 −1058.9 −1058.7

⎤

⎥

⎦
; by =

⎡

⎢

⎣

−3.0969

12.5441

9.8753

⎤

⎥

⎦
;

cy =
[

35.1709 46.7633 − 62.4762
]

; dy =
[

0
]

,

where, xy is the state of the Y-PTS, yy is the output of the Y-

PTS, ay is the system matrix, by is the input matrix to the

plant, cy and dy are the output matrices from the plant. In

Fig. 4, we can see that both of these PTS plants have a 180◦

phase shift at low frequencies and zeros in the right half plane.

In the modeling of the PTSs, only the first resonant modes are

considered.

IV. CONTROLLER DESIGN

A. Design of LQG controller for reference tracking

A linear quadratic Gaussian (LQG) controller is designed

for minimizing the steady-state error and tracking the refer-

ence sinusoidal signal. An internal reference model-based op-

timal LQG controller is designed for both the X and Y-axes of

the PTS’s, with the following two identified SISO state-space

plant models considered for the X and Y-PTSs:

ẋ = ax + bu, (14)

y = cx + du, (15)

where a, b, c, and d are the state-space matrices of the model

plant (X-PTS/Y-PTS), as stated in (10) and (12), u is the in-

put, y is the measured output, and x is the state vector with a

dimension of 3. We write the state vector (x) as

x =

⎡

⎢

⎣

x1

x2

x3

⎤

⎥

⎦
.

One of the objectives of the control design is to control

the system error by incorporating it in the controller as a re-

placement for one of the states x1, of the plant.38 The system

error is defined as the difference between the reference input

and plant output as

e′
= yr − y, (16)

where yr is the sinusoidal reference input to the plant and as-

sumed to satisfy the differential equation:

˙̂yr = Ar ŷr , (17)

Ar =

[

0 −ω2

1 0

]

,

ŷr =

[

yr1

yr2

]

,

where Ar is the state matrix for the reference signal and ω is

the frequency of the input signal. In this design the sinusoidal

reference input is modeled and the error dynamic equation is

ė′
= ẏr − ẏ. (18)

To account for the steady-state error, integral action is

considered for the error state (e′), i.e.,

e′

I =

∫

e′dt. (19)

Now, the error dynamics, i.e., the converted state-space

model is

ẋe = Axe + Bue + Eyr , (20)

ye = Cxe, (21)
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where A, B, and C are the state-space matrices of the modified

plant, E is the exogenous input matrix, ue is the input to the

modified plant, ye is the measured output from that plant, and

xe is the state vector with dimensions of 4 × 1, where the state

vector of the modified error dynamics model (xe) is

xe =

⎡

⎢

⎢

⎢

⎣

e′
I

e′

x2

x3

⎤

⎥

⎥

⎥

⎦

.

Therefore, the entire state of (17) and (20) satisfies the

following differential equation:38

ẋm = Amxm + Bmum, (22)

ym = Cmxm, (23)

Am =

[

A E

0 Ar

]

,

Bm =

[

B

0

]

,

Cm =
[

C 0
]

,

where Am, Bm, and Cm are the state-space matrices of the

meta-system, um is the input of the meta-system, ym is the

measured output from that plant, and xm is the meta-state vec-

tor. This xe is the sub-state of the xm.

Since the exogenous states are generally not controllable,

the appropriate performance integral is

J =

∫

∞

0

[xe
′Qxe + ue

′Rue]dt, (24)

where Q is the state weighting matrix and R is the control

weighting, which is scalar. The weighting matrix for the meta

system (22) is

Qm =

[

Q 0

0 0

]

.

The performance matrix for the meta-system in (22) is38

M̂ =

[

M̂1 M̂2

M̂2
′
M̂3

]

,

where M̂ is the performance matrix for the meta-system, M̂1,

M̂2, M̂2
′
, and M̂3 are the performance matrices corresponding

to the subsystems of the meta-system (22). Now the gain for

the meta-system is

Ĝm =
[

R−1B ′M̂1 R−1B ′M̂2

]

,

where Gm is composed of the gains Ge = R−1B ′M̂1 and Gr

= R−1B ′M̂2. Ge is a state feedback gain for the modified plant

and Gr is the feed-forward gain for the reference input signal

which acts against exogenous effects, i.e., the effects of the

reference signal and external disturbance.

The minimizing matrix (M̂) resulting from the minimiz-

ing gain (Ĝm) must satisfy the following differential equation:

−
˙̂

M = M̂Am + Am
′M̂ − M̂BmR−1Bm

′M̂ + Qm. (25)

The solution to this equation will give the gain matrix (Ĝm)

and by putting the value of M̂ in (25) and performing matrix

multiplication, the differential equations for the sub-matrices

are obtained as

−
˙̂

M1 = M̂1A + A′M̂1 − M̂1BR−1B ′M̂1 + Q;

−
˙̂

M2 = M̂1E + M̂2Ar + Ac
′M̂2;

Ac = A − BR−1B ′M̂1,

(26)

where Ac is the closed-loop dynamics matrix of the regulator

subsystem. It is seen from the formula for Ĝm that the sub-

matrix (M̂3) of the performance matrix (M̂) is not required to

find the gain for the meta-system.38

The steady-state solution for M̂2 can be found and must

satisfy:

0 = M̂1E + M̂2Ar + Ac
′M̂2, (27)

where M̂1 is the solution to the algebraic Riccati equation

of the regulatory sub-system and M̂2 can be found from the

above equation. Thus, we have the necessary gains to realize

the control law in Ref. 38,

um = −R−1B ′M̂1xe − R−1B ′M̂2yr . (28)

A block diagram of the control implementation is shown in

Fig. 5.

The calculated gains for the optimal LQG controller aug-

mented with the vibration compensator for the X-PTS are KIx

= 55.8, Kex = 0.0714, Kx2 = 0.1604, Kx3 = −0.6658, Kx4

= 0.2304, Kx5 = −0.9158, and the feed-forward gain

Grx = 1.88 and for the Y-PTS, KIy = 130, Key = 0.4753, Ky2

= 12.3199, Ky3 = 0.7257, Ky4 = 5.2199, Ky5 = 0.0753, and

feed-forward gain Gry = 1.67. Where KI the gain for integral

state, Ke the gain for the error state e′, Kx2 the gain for x2 state,

Kx3 the gain for the x3 state, Kx4 the gain for the x4 state, Kx5

the gain for the x5 state, and Gr for feed-forward gain. The

suffix x for the X-PTS and y for the Y-PTS.

FIG. 5. Block diagram for implementation of the proposed controller.
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FIG. 6. A comparison of the frequency responses using an optimal LQG controller with a vibration compensator and open-loop (a) X-PTS and (b) Y-PTS.

B. Design of the Kalman observer

A Kalman observer can be used as a state-observer and

noise filter39 and displacements of the PTSs are obtained from

the sub-nanometric resolution position sensors.40 However,

the sensors add unwanted noise and disturbances to the output

displacement signal, to remove which we design a Kalman

state observer as a noise filter. A sensor measures the out-

put from a PTS plant not its states as, in a regulatory system,

all its states should be known, and the Kalman state observer

estimates them from the measured output.38 The Kalman

observer dynamics are as follows:

˙̂x = (a − Lc)x̂ + bu + Ly, (29)

ŷ = ĉx̂, (30)

where x̂ is the estimated state, ŷ is the estimated output, ĉ

is an identity matrix of dimensions n × n, and L is the ob-

server gain which depends on the Gaussian white noise, pro-

cess noise covariance, and measurement noise covariance.

A block diagram of the control implementation is shown in

Fig. 5.

C. Design of a vibration compensator

In this section, we discuss the design of a vibration com-

pensator for damping the resonant mode of the PTS. Al-

though the LQG controller has some damping capacity, a vi-

bration compensator is introduced to achieve better damping

and higher bandwidth. From the experimental frequency re-

sponses of the PTSs, we know that the first resonance oc-

curs at 834.5 Hz for the X-PTS and 815.2 Hz for the Y-PTS.

This compensator is designed to damp the first resonant mode

of each of the PTSs with a bandwidth close to its first reso-

nant frequency. The general form of the resonant compensator

Ki(s) is given in Refs. 41 and 42:

Ki(s) =

n
∑

i=1

−kci

(s2 + 2ζiωis)

s2 + 2ζiωis + ωi
2
, (31)

where ωi is the ith controller’s center frequency which is the

frequency at the ith resonant peak of the plant, kci(s) is the

controller gain, and ζ is the damping factor of the correspond-

ing mode. In fact, the controller Ki(s) is a second-order band-

pass filter and has a high gain at the resonant frequency of the

plant which is a means of suppressing the vibration so that

the gain suddenly drops away from the resonant frequency.

Of the controller parameters, i.e., ω and ζ , ω has a greater

effect on damping of the resonant mode than the damping

factor ζ . If we vary ζ by ±10%, there will be a noticeable

effect on damping. But if we vary ω by ±5%, the attenua-

tion performance will be significantly decreased and, once the

value of ω is fixed, the parameter kci plays an important role in

damping.

V. THE PERFORMANCE OF THE CONTROLLER

A. Frequency domain performance

A frequency-domain performance evaluation of the

proposed controller is conducted to compare the measured

open-loop and closed-loop frequency responses for the X and

Y-PTSs, as shown in Fig. 6. It demonstrates that there is sig-

nificant damping of the resonant mode of each PTS (10 dB

for the X-PTS and 16 dB for the Y-PTS) and a higher closed-

loop bandwidth close to its first resonant frequency has been

achieved.

B. Tracking performance

The tracking performance of the proposed scheme is

presented in Fig. 7 at frequencies 10, 30, 60, and 120 Hz.

These results demonstrate that the proposed control approach

achieves improved tracking of the reference signal and im-

proved spiral positioning of the scanner tube. Spiral tracking

at 10, 30, and 60 Hz frequencies are quite good as shown in

Figs. 7(c), 7(f), and 7(i). At 120 Hz a significant distortion (el-

liptical shape) is observed as shown in Fig. 7(l). A fifth-order

Butterworth filter is used to filter the measured (dotted line)

noisy signal and, as can be seen in Fig. 7, the filtered (solid
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FIG. 7. Tracking performance of the proposed controller at different frequencies. (a) 10 Hz sine, (b) 10 Hz cosine, (c) 10 Hz spiral, (d) 30 Hz sine, (e) 30 Hz

cosine, (f) 30 Hz spiral, (g) 60 Hz sine, (h) 60 Hz cosine, (i) 60 Hz spiral, (j) 120 Hz sine, (k) 120 Hz cosine, and (l) 120 Hz spiral.
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FIG. 8. Spiral scanned images along with their intensity profiles. (a) 10 Hz, (b) 30 Hz, (c) 60 Hz, (d) 10 Hz, (e) 30 Hz, (f) 60 Hz, (g) 120 Hz, (h) 150 Hz, (i)

180 Hz, (j) 120 Hz, (k) 150 Hz, and (l) 180 Hz.
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FIG. 9. Raster scanned images along with their intensity profiles. (a) 10.42

Hz PI image, (b) 62.5 Hz PI image, (c) 10 Hz, (d) 62.5 Hz, (e) 62.5 Hz PI

image, (f) 125 Hz PI image, (g) 62.5 Hz, and (h)125 Hz.

line) signal achieves a good fit to the measured signal which

improves imaging.

C. Image scanning performance

The proposed controller is implemented on the AFM for

the spiral scanning of a TGQ1 standard calibration grating

with a 20 nm surface height and 3 µm pitch (period). The

instantaneous radius of the spiral is maintained at 6 µm and

512 lines, i.e., the diameter of the image contains 512 pix-

els. A constant-force AFM imaging mode is set up for spiral

scanning and the Z deflection recorded to construct the spiral

image, with the results observed by implementing the pro-

posed controller in the X and Y-axes with the help of the

dSPACE real-time system.

The generated spiral images scanned at 10, 30, 60, 120,

150, and 180 Hz frequencies along with their intensity profiles

are shown in Figs. 8(a)–8(l). One point to note is that, the 2D

planes of the images are not corrected for flatness, there are

some uneven illuminations in them caused by imperfections,

i.e., small inclination, dust, and additional physical proper-

ties. The inclination may be due to the tilted placement of the

sample on the stage relative to the tip axis or improper surface

finish of the sample.43 The SPM images may be affected by

hardware noise, miss-interaction of tip-sample during scan-

ning, acoustic noises, and vibration effects of the scanner.43

The scanned images using the proposed method have been

filtered using a Gaussian filter to remove these effects from

the image surface.

A set of raster scanned images using the AFM PI

controller at 10.42, 31.25, 62.5, and 125 Hz (the reason for

choosing these scanning frequencies is that they are the only

ones above 10 Hz permitted by the AFM NT-MDT software),

along with their intensity profiles, are presented in Figs. 9(a)–

9(h) for comparison with the spiral scanned images. The spi-

ral images are observed to be undistorted and follow the reg-

ular profile of the calibration grating. In contrast, the raster

scanned images using the standard AFM PI controller be-

come distorted and are affected by the induced vibration and

high-speed dynamics of the PTS as the scanning frequency

increases, as can be observed in Figs. 9(e) and 9(f). The spiral

scanned images in Figs. 8(h) and 8(i) at 150 and 180 Hz fre-

quencies have a circular wrapping effect but still better than

the images using the in-built AFM PI controller in Figs. 9(e)

and 9(f).

The surface intensity profile of the spiral scanned im-

ages is taken at y = 3 µm as shown in Figs. 8(d)–8(f) and

8(i)–8(l) at 10, 30, 60, 120, 150, and 180 Hz frequencies.

Figures 9(c)–9(d) and 9(g)–9(h) show the intensity profile for

the raster scanned images at y = 4 µm using the in-built AFM

PI controller. This comparison demonstrates that the intensity

profiles of the spiral scanned images are better captured than

those of the raster scanned images using the in-built AFM PI

controller.

VI. CONCLUSION

A high-speed spiral imaging method using an AFM is re-

ported in this paper. In this work, an optimal LQG controller

with vibration compensator is implemented on the AFM for

faster and better-quality spiral image scanning. Experimen-

tal results show that, a significant improvement in the AFM

imaging can be achieved by minimizing the adverse effects

of scanner dynamics and it is demonstrated that a clearer and

dimensionally more accurate image of a lattice structure of

a sample can be obtained at higher scanning rates using the

proposed scheme as compared to the traditional line-by-line

(raster) scanning method. However, at higher scanning rates

vibration becomes a barrier to the improvement.
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