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By analyzing the mechanism of pure air emergency brake for high-speed train, the discrete emergency brake model is established.
Aiming at the problem that time-varying hidden parameters cannot be observed directly, the sliding window-based expectation
maximization is proposed, and the unobserved time-varying brake parameters are identified. Firstly, the position and size of the
sliding window are selected; then, the sliding window-based expectation maximization is used for brake parameter identification;
finally, combined with the gradient optimization, the optimal identifications of emergency brake parameters are obtained. +e
simulation results show that the brake parameters can be identified quickly and accurately by the proposed method. Under
uniform noise, the identification errors of friction coefficient and braking ratio are ±0.0068 and ±0.0349, respectively, and the
maximum relative errors between the identifications and true values are 2.4807% and 1.3154%, respectively, which can meet the
actual requirements of the brake system. +e effectiveness and practicability of the proposed model and method are verified.

1. Introduction

As an important part of the rail transportation system [1–3],
high-speed train plays an important role in national eco-
nomic development, cultural exchange, and urban con-
struction [4–6]. As a crucial part to ensure the safe operation
of the train, the braking performance of the train braking
system has received great attention. Emergency braking, the
last safety barrier of train braking system, should be paid
more attention. Accurate dynamic modeling is the basis of
precise braking. +rough the real-time accurate estimation
of the performance parameters of braking model, the real-
time performance state of the train can be obtained, which
greatly ensures the driving safety and improves the driving
efficiency [7–9]. +erefore, it is of great significance to study
on high-speed train emergency brake modeling and online
identification of time-varying parameters.

At present, important progress has been made in the
research of braking modeling for high-speed trains. Con-
sidering resistance friction, aerodynamic resistance, and
inherent nonlinear braking characteristics of trains, a single

coordinate multiparticle braking model was established by
Song et al., which reflects the resistance and transient effects
on the trains [10]. Integrating the train system dynamics and
braking dynamics, the train multiparticle braking dynamics
model was established by Song et al., which has strong
practicability in reflecting train linear/nonlinear parameter
uncertainties and possible braking faults [11]. In order to
effectively utilize the regenerative energy of braking train
and reduce the actual energy consumption during running, a
cooperative train braking control model was put forward by
Su et al., which can minimize the actual energy consumption
effectively [12]. In order to solve the problem of tracking and
controlling the position and speed of high-speed train
connected by couplers, an elastic collision dynamics model
reflecting the nonlinear traction/braking and driving faults
of asymmetric vehicles was proposed by Song and Song [13].
On the basis of researching the braking principle of EMU
train, the Hammerstein model of EMU braking system was
put forward by Guo and Xie, according to the transmission
of braking instructions and the generation of braking power
[14].
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In the parameter estimation of train modeling, deep
research has been conducted. For the dynamic model of
high-speed train, a generalized weighted parameter esti-
mation was proposed by Wang et al., and the controller was
designed according to the estimation error [15]. Zhang et al.
established an alternative model based on neural network for
the complex structure and numerous parameters of trains
[16]. By analyzing the composition and characteristics of the
braking system of urban rail train and its interface with the
driver, the braking model suitable for controller design and
the identification of model parameters was proposed by Yu
and Chen [17]. Zhong et al. constructed the discrete state
space system of single particle model of high-speed train.
Aiming at the non-Gaussian characteristics of train noise,
the nonlinearity of the train model, and the incomplete
measurability of train state, a maximum likelihood esti-
mation suitable for the nonlinear model of high-speed train
was proposed, and the constant performance parameters of
the train were estimated [18]. By analyzing the longitudinal
dynamic characteristics of high-speed train, combining
particle filter and Bayesian posterior probability, based on
expectation maximization criterion, an online estimation
method for time-varying parameters of the longitudinal
dynamic model of high-speed train was proposed [19].

+e above research has made great progress in the es-
tablishment of train model and parameter identification.
However, the previous research mainly focused on the
constant model parameters of the train system, only esti-
mating the system state or constant parameters and taking
offline estimation as the main method. However, due to the
difference of train characteristics, the complexity of running
environment, and mechanical wear, there must be uncertain
and time-varying parameters in the dynamic model of train.
Moreover, only Gaussian noise is used to simulate the in-
terference of random factors such as pedestrians, road
conditions, and weather, which inevitably leads to the
problem of information loss, leading to the inaccuracy of the
train model [20–22]. In view of the above problems, the
emergency braking model of high-speed train is established
by analyzing the mechanism of train emergency braking.
Aiming at the time-varying hidden variable parameters
which are difficult to observe in the model, an online
identification of hidden variable parameters based on sliding
window and maximum expectation is proposed, which re-
alizes the real-time acquisition of dynamic characteristics
and running state of high-speed train.

2. Modeling of Emergency Braking for High-
Speed Trains

Emergency braking is one of the most critical devices in the
high-speed train braking system. When there are major
failures or accidents affecting train safety during train
operation, it is the last safeguard to ensure the safety of high-
speed train and passengers. +erefore, it is of great signif-
icance to carry out deep research on emergency braking
modeling for high-speed trains. In this paper, pure air
braking is regarded as the only effective braking mode for
train emergency braking. By studying the braking

mechanism of the brake device, the force analysis of the train
during braking is carried out. Referring to the Regulations on
Railway Train Traction Calculation, the discrete emergency
braking model of high-speed train is established as follows:

st+1

vt+1

  �
st + T

vt−1 − vt( )
2 × 3.6

vt − 3.6T
B Pt, ηt, ct, μ( ) + R1(v) + R2(v, x)
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+ wt,

yt � 1 0[ ]
st+1

vt+1

  + et,


(1)

where s and v indicate the braking distance and running
speed of the train, respectively, x is the train location,T is the
train sampling time, M is the sum of train quality and
rotation quality,wt is the random interference on train speed
and displacement, which is caused by track conditions,
weather conditions, and other factors, et is used to char-
acterize measurement errors, and B(Pt, ηt, ct, μ) represents
the braking force of a train. +e braking force is not only
affected by the braking performance parameters of the train
but also affected by the adhesion force between wheels and
rails.

B Pt, ηt, ct, μ( ) � π

4

r

Rc
d2 · Pt · ηt · ct · μ ·N · 10− 6,

B Pt, ηt, ct, μ( )≤ μA ·M · g,

 (2)

where d is brake cylinder diameter, Pt is air pressure of brake
cylinder, ηt is transmission efficiency of foundation brake
device, ct is the braking ratio, r is the friction radius of the
brake disc, Rt is the diameter of the wheel, N is the total
number of vehicle brake pads, μ and μA are friction coef-
ficient of brake disc and adhesion coefficient between wheel
and rail, respectively (the values of them vary with the
braking speed v), mA is the axle load of train, and g is the
gravity acceleration (9.8m/s2).

R1(v) represents the basic running resistance of the
train; it is positively correlated with the train speed v. It is
usually expressed as

R1(v) �M · c0 + c1 · vt + c2 · v
2( ) · g · 10− 3, (3)

where c0 is the rolling resistance coefficient, c1 is the other
mechanical resistance coefficient, which is proportional to
the train speed v, and c2 is air resistance coefficient, which is
proportional to the square of train speed v2.

R2(v, x) represents the aggregation of additional resis-
tance of ramps, curves, and tunnels. According to the
Regulations on Railway Train Traction Calculation, it can be
obtained as

R2(v, x) � Rr(x) + Rc(x) + Rt(x). (4)

Rr(x) represents the additional resistance of the ramp at
x:
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Rr(x) �Mg sin sin− 1
h

l
( )( ), (5)

where h and l represent the height and length of the slope,
respectively.Rc(x) represents the additional resistance of the
curve at x:

Rc(x) �

0.6Mg

R
, Lo <LC,

0.0105Mgα

Lo
, Lo ≥Lc,


(6)

where R represents the curve radius of track, Lo and Lc are
the lengths of train and curve, respectively, and α is the
deflection angle.

Rt(x) represents the additional resistance of the tunnel
at x:

Rt(x) � 0.00013MgL, (7)

where L represents the length of the tunnel.
+e train braking parameters are estimated accurately

and in real time; it is of great significance to accurately grasp
braking distance, ensure operation safety, and improve
operation efficiency. However, in the actual operation
process of trains, the range of braking parameters is de-
termined by the train operation experience, and then the so-
called maximum braking distance can be obtained. +e
time-varying, drift, and unobserved characteristics of
braking parameters cannot be considered by the above
method, which poses a great threat to the safe operation of
trains. At present, the estimation of constant parameter in
linear model with Gaussian noise has been a mature solu-
tion. However, as a typically time-varying parameter
identification problem of nonlinear and non-Gaussian
complex system, it is still lacking an effective theory and
method. +erefore, this paper improves the traditional ex-
pectation maximization, and a sliding window-based ex-
pectation maximization was proposed for online
identification of time-varying braking parameters of high-
speed train emergency braking model.

3. Online Identification of Emergency Braking
Model for High-Speed Trains

EM (expectation maximization) [23, 24] follows the maxi-
mum likelihood criterion; unobservable fixed parameters
can be estimated by EM from incomplete datasets; the offline
estimation of parameters is obtained [25]. For the identi-
fication of the train braking model, EM has some short-
comings, such as slow identification speed, low
computational efficiency, and offline non-time-varying
identification. +erefore, the sliding window-based expec-
tation maximization is proposed, and the unobserved pa-
rameters are identified by this method.

3.1. EM Identification of Braking Model for High-Speed Train
Based on Sliding Window. Sliding window is a common data
processing model [26, 27]. A large number of continuous,
infinite, and fast observation data of high-speed train can be
processed by sliding window.+e starting and ending positions
of windows are set, and the current window data are selected
for analysis. +e starting and ending positions of the window
will change with the arrival of the new data of train mea-
surement. Old data will be removed from the window and new
data will be added to the window.+erefore, the incoming data
can be processed by the sliding window. And only the latest
train data in the window can be processed, which accords with
the actual measurement scene of the train braking process.

Equation (1) shows that the train model has Markov
probabilistic properties, namely,

xt+1 ∼ pθ xt+1|xt( ),
yt ∼ pθ yt|xt( ), (8)

where pθ(xt+1|xt) denotes the probability density of xt+1
when the train state xt is given, pθ(yt|xt) denotes the
probability density of yt when the train state xt is given, and
θ is a vector of unknown train braking parameters which
may be nonlinear and time-varying, such as

θ �
μ

c
[ ]. (9)

+is paper divides the sliding window size based on the
data record count. +e measurement at t1 is set as the front
of the window, and the measurement at t2 is set as the back
of the window.+e window size is S, and the sliding length is
L. Taking the mth window as the object, the identification
result of braking parameter set θ in (m − 1)th interval is
initialized as θ̂m−1:

θm � θ̂m−1. (10)

+e sequence of window output vectors and their
likelihood functions are defined as

Yt1: t2 � yt1, . . . , yt2[ ], (11)

pθ Yt1: t2( ) � pθ yt1, . . . , yt2( ) � pθ yt1( ) ∏t2
t� t1+1( )

pθ yt|Yt1: (t−1)( ),
(12)

where pθ(yt|Yt1: (t−1)) is the probability density of yt when the
train displacement vector sequence Yt1: (t−1) � yt1, . . . , yt−1{ }
is given. Considering the characteristic of maximum likelihood
identification, the displacement vector sequence is logarith-
mized on both sides of equation (12), and the logarithmic form
of the sequence of output vectors is obtained.

Lθ Yt1: t2( ) � ln pθ Yt1: t2( ) � ln pθ yt1( )
+ ∑t2
t� t1+1( )

ln pθ yt|Yt1: (t−1)( ). (13)
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Aiming at equation (13), combined with the Bayesian
theorem and Markov characteristics of model (1),
pθ(yt |Yt1: (t−1)) is obtained as follows:

pθ yt |Yt1: (t−1)( ) � ∫pθ yt |xt( )pθ xt |Yt1: (t−1)( )dxt,
(14)

where pθ(yt |xt) denotes the probability density of yt when
the train state xt is given. Because the train model contains
an unmeasurable braking parameter set θ, it is difficult to
calculate pθ(yt |xt). In this paper, expectationmaximization
is used to indirectly optimize the logarithmic likelihood
function of equation (14). +e train state sequence Xt1: t2

�

[xt1, . . . , xt2] is regarded as incomplete measurable data, and
the joint probability density function of all data is obtained
from Xt1: t2

and train output observation data Yt1: t2.

Lθ Xt1: t2
, Yt1: t2( ) � lnpθ Xt1: t2

, Yt1: t2( )
� lnpθ Xt1: t2

|Yt1: t2( ) + lnpθ Yt1: t2( ). (15)

Considering the idea of minimum variance estimation,
assuming that the current estimated value of train param-
eters is θk, the expected value Q(θ, θk) of Lθ(Xt1: t2

, Yt1: t2) is
calculated by combining θk with output observation se-
quence Yt1: t2.

Q θ, θk( ) � ∫ Lθ Xt1: t2
, Yt1: t2( )pθk Xt1: t2

|Yt1: t2( )dXt1: t2

� Lθ Yt1: t2( ) + ∫ lnpθ Xt1: t2
|Yt1: t2( )pθk Xt1: t2

|Yt1: t2( )dXt1: t2
,

(16)
where pθk(Xt1: t2

|Yt1: t2) is the probability density of state
Xt1: t2

when the train parameter is θk and output sequence
Yt1: t2 is given.

3.1.1. Construction of Conditional Expectation of High-Speed
Train. Based on the above deduction, combined with
Bayesian theorem and Markov characteristics of braking
model (1), Lθ(Xt1: t2

, Yt1: t2) is expressed as follows:

Lθ Xt1: t2
, Yt1: t2( ) � lnpθ Yt1: t2 |Xt1: t2

( ) + lnpθ Xt1: t2
( )

� lnpθ xt1( ) + ∑t2−1
t�t1

lnpθ xt+1|xt( ) + ∑t2
t�t1

lnpθ yt |xt( ).
(17)

By substituting equation (17) into equation (16), the
conditional expectation Q(θ, θk) can be obtained:

Q θ, θk( ) � I1 + I2 + I3, (18)

I1 � ∫ lnpθ xt1( )pθk xt1 Yt1: t2∣∣∣∣∣( )dxt1, (19)

I2 � ∑
t2−1

t�t1

Blnpθ xt+1 xt
∣∣∣∣( )pθk xt+1, xt Yt1: t2∣∣∣∣∣( )dxtdxt+1,

(20)

I3 � ∑
t2

t�t1

∫ lnpθ yt xt
∣∣∣∣( )pθk xt Yt1: t2∣∣∣∣∣( )dxt, (21)

where I1, I2, and I3 are related to the conditional smoothing
probability density pθk(xt1|Yt1: t2), pθk(xt+1, xt |Yt1: t2), and
pθk(xt |Yt1: t2), respectively. However, the train state con-
tains unmeasurable variables, which make it difficult to
analytically calculate by integration. Using the idea of
particle filter and particle smoothing for reference, the in-
tegral calculation is solved by the particle method, pθ(xt|Yt)
is estimated by particle filter, and pθk(xt |Yt1: t2) and
pθk(xt+1, xt |Yt1: t2) are estimated by particle smoother; ωit
denotes the weight of particles after particle filtering, and
ωit|t2 denotes the weight of particles after smoothing.

I1 �∑M
i�1

ωit1 t2|
lnpθ x̃

i
t1

( ), (22)

I3 � ∑
t2

t�t1

∑M
i�1

ωit t2|
lnpθ yt x̃

i
t

∣∣∣∣∣( ), (23)

where I1 and I3 can be solved by equations (22) and (23). For
I2, however, equation (20) involves the joint conditional
smoothing density pθk(xt+1, xt |Yt1: t2) of two continuous
time state variables xt and xt+1. +erefore, two groups of
particles are selected to discretize the integral variables xt
and xt+1 of I2 so that I2 also can be expressed as the sum of
particles:

I2 � ∑
t2−1

t�t1

∑M
i�1

∑M
j�1

ω
ij

t t2|
lnpθ x̃

j
t+1 x̃it

∣∣∣∣∣( ), (24)

where

ω
ij

t t2|
�
ωitω

j

t+1 t2|
pθk x̃

j
t+1 x̃it
∣∣∣∣( )

∑Ml�1ωltpθk x̃jt+1 x̃lt
∣∣∣∣( ) . (25)

So far, the three components of I1, I2, and I3 of con-
ditional expectation Q(θ, θk) are solved:

Q θ, θk( ) � I1 + I2 + I3. (26)

3.1.2. Maximization of Conditional Expectations of High-
Speed Train. By analyzing the train braking model, it can be
seen that the relationship between conditional mathematical
expectation Q̂(θ, θk) and train braking parameters is non-
linear and nonconvex, and it is difficult to obtain its closed
solution.+erefore, the gradient descent optimization [28] is
used to find θ which maximizes Q̂(θ, θk), where θ represents
a set of unknown braking parameters, and the partial
derivative of Q̂(θ, θk) with respect to parameter θ is as
follows:

z

zθ
Q̂ θ, θk( ) � zÎ1

zθ
+
zÎ2
zθ

+
zÎ3
zθ
, (27)

where
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zÎ1
zθ

�∑M
i�1

ωit1 t2|

z lnpθ x̃
i
t1

( )
zθ

,

zÎ2
zθ

� ∑t2−1
t�t1

∑M
i�1

∑M
j�1

ω
ij

t t2|

z lnpθ x̃
j
t+1 x̃it
∣∣∣∣( )

zθ
,

zÎ3
zθ

� ∑t2
t�t1

∑M
i�1

ωit t2|
z lnpθ yt x̃

i
t

∣∣∣∣( )
zθ

.

(28)

After calculating the partial derivative of Q̂(θ, θk) with
respect to parameter θ, the gradient method is used to
optimize the parameters iteratively. +e iteration and
updating process are as follows:

αj+1 � αj + βjpj,

pj � Hjgj,

gj �
z

zθ
Q̂ θ, θk( ),

(29)

where Hj is a positive definite matrix to determine the
gradient search direction of pj and βj represents a scalar step

to ensure Q̂(αj + βjpj, θk)> Q̂(αj, θk). +rough the iteration

process above, when the increment of Q̂(α, θk) reaches the
set range, the process of iteration optimization is cut off.+e
parameter estimation θk+1 makes Q(θk+1, θk)>Q(θk, θk)
and ensures L(θk+1)>L(θk) so that θk+1 is a better esti-
mation than θk.

When the identification effect of braking parameters
satisfies ‖θk+1 − θk‖≤ ε, the algorithm terminates and regards
θk+1 as the final identification result θ̂m of the braking pa-
rameters set of the mth window; otherwise, the algorithm
continues to iterate:

θ̂m � θk+1. (30)

3.2. EM Identification for Sliding Window of Train Braking
Model. Based on the analysis of the previous sections, an
online sliding window-based expectation maximization
identification of the high-speed train braking model is ob-
tained. +e flowchart of the algorithm is shown in Figure 1.
+e specific steps of the algorithm are summarized as follows:

(i) Step 1. +e observation data Y of the braking model
of high-speed train are collected and recorded. +e
braking parameter θ identified is initialized.+e size
of sliding window is S, the sliding length of window
is L, and the serial number of window is m � 1. +e
train observation data Y1: S are identified by EM.

(ii) Step 2. Construct train conditional expectation (E):
implement particle filter and particle smoothing to
calculate I1, I2, I3, and the train expectation is
Q̂(θ, θk) � I1 + I2 + I3.

(iii) Step 3. Maximize train expectations Q̂(θ, θk) (M):
the parameter is estimated as

θk+1 � argmax
θ
Q(θ, θk). When the identification

accuracy satisfies ‖θk+1 − θk‖≤ ε, the iteration stops
and the braking parameter identification result θ̂m �
θk+1 of the mth window is obtained. Otherwise, it
returns to Step 2 to continue the iteration
optimization.

(iv) Step 4. +e window moves L length backwards: let
m � m + 1 and take θ̂m−1 as the initial value of
braking parameters. +e existing window data are
analyzed. Step 2 and Step 3 are iteratively executed.
+e result of braking parameter identification θ̂m is
obtained and then transferred to Step 5.

(v) Step 5. If the length of the remaining data is longer
than the window size, turn to Step 4. Otherwise, the
remaining data will be used as identification data.
Step 2 and Step 3 are executed to obtain the
identification result θ̂m of the braking parameters of
the last window.

Begin

Initialize θ, S, L

m = 1

�e window moves mL length
backwards. Initialize θ̂m of

(m + 1)th window

m = m + 1

(S + (M + 1)L) < N

m = m + 1

Output θ̂m

End

N

Y

θ̂1 is identi�ed by Y1: S

θ̂m is identi�ed by Y(mL + 1): N

θ̂m is identi�ed by Y(mL + 1): (mL + S)

Figure 1: +e flowchart of time-varying parameter identification.
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4. Simulation Results and Analysis

In order to verify the effectiveness of the identification
method, the CRH3 four-motor and four-trailer high-speed
train is selected as the research object, and the simulation
experiment is carried out.

4.1. Explanation of Experimental Parameters. In the train
braking simulation experiment, the main parameters of the
braking device are shown in Table 1.

Table 1 shows that the friction coefficient of the brake
disc and the braking ratio of the train are constant pa-
rameters, but in the actual braking process of the train, the
friction coefficient of the brake disc will change nonlinearly
with the change of speed, and the braking ratio of the train
will fluctuate slightly with the train running. +erefore, the
unobserved friction coefficient of brake disc and the braking
ratio of train will be identified in this paper.

According to TSI (Technical Specification for Interop-
erability), the brake adhesion coefficient is shown in Table 2.

Assuming that the train state equation is disturbed by
non-Gaussian noise, taking uniform noise as an example, the
observation equation is disturbed by Gaussian noise.

wt �
w1t

w2t

[ ] w1t ∼ U(−0.1, 0.1)

w2t ∼ U(−0.1, 0.1)
{ ,

et ∼ N(0, 0.1).

(31)

In the train model identification, the number of itera-
tions is 50, the number of particles is 20, and the initial values
of friction coefficient and braking ratio are set to random
numbers within 100% of the real value. Based on the above
simulation environment, 200 Monte Carlo experiments are
carried out to identify the braking parameters of high-speed
trains in real time.

4.2. Identification of Friction Coefficient of Brake Disc. In the
actual braking process of train, the friction coefficient of
brake disc will change nonlinearly with the change of speed.
Figure 2 shows the real-time identification curve of friction
coefficient of brake disc. +e red solid line is the real change
curve of the train friction coefficient varying with running
speed. +e black, blue, and purple solid lines are the friction
coefficient identification curves with initial values of 0.40,
0.35, and 0.03, respectively. +e black, blue, and purple
dashed lines are the friction coefficient identification curves
with initial values of 0.15, 0.20, and 0.25, respectively.

It can be seen that in the three deceleration stages of
350 ∼ 320km/h, 320 ∼ 210km/h, and 150 ∼ 0km/h, the
proposed method can accurately identify the friction coef-
ficient of the brake disc in real time. In the 210 ∼ 150km/h
deceleration stage, because the friction coefficient is too
small and there is inflection point with higher change rate,
the identification accuracy decreases slightly, but it can
accurately predict the changing trend of the friction coef-
ficient of the brake disc, which provides a reference for the
identification of braking parameters and the monitoring of
the braking performance of trains.

Figures 3 and 4 show the identification error and relative
error curves of braking ratio, respectively. It can be seen
from the figures that the identification error and relative
error under different initial values gradually decrease with
the increase of time, and the fluctuations of the two curves
gradually decrease and remain almost unchanged in a fixed
range after 320km/h.

In order to further prove the effectiveness of this method
proposed in this paper, this method is compared with ex-
tended Kalman filter (EKF). EKF is a typical extension of
linear Kalman filter in theory and application. Its theoretical
core is to linearize the nonlinear function, that is, take the
first-order expression of Taylor expansion to realize the
estimation of the optimal linear problem. +e innovation of
its application in state estimation is the accurate calculation

Table 1: Main braking parameters of CRH3.

Braking parameter Value

Total weight of train (t) 536
Maximum operating speed (km/h) 350
Continuous operating speed (km/h) 300
Brake cylinder diameter (mm) 203
Air pressure of brake cylinder (kPa) 410
Transmission efficiency 0.85
Braking ratio 2.55
Friction coefficient 0.28
Brake disc friction radius (mm) 297.6
Wheel rolling radius (mm) 460

Table 2: Braking adhesion coefficient.

Speed (km/h) 0–200 200–240 240–300 300–350

Adhesion coefficient 0.15 0.13 0.11 0.1

True value of friction coefficient

Initial value 0.15

Initial value 0.20

Initial value 0.25

Initial value 0.30

Initial value 0.35

Initial value 0.40 

300 250 200 150 100 50 0350

Speed (km/h)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

M
u

Figure 2: Real-time identification of friction coefficient by online
EM.
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of the gain matrix. In this process, system noise and mea-
surement noise are integrated into the update of the gain
matrix so that the algorithm has better estimation accuracy
and anti-interference ability. Figures 5–7 show the real-time
identification results, estimation errors, and relative errors of
the friction coefficient, respectively, based on EKF under
different initial conditions.

As can be seen from Figures 5–7, compared with EKF,
the identification results obtained by the proposed method
in this paper can converge to the true value of the friction
coefficient rapidly. In the process of convergence, the
fluctuation of identification error is smaller.

Table 3 shows the comparison of the estimation results of
friction coefficient between the method in this paper and
EKF under different initial values.

From Table 3, it can be seen that the average values of the
estimation error and relative error of friction coefficient
obtained by the method in this paper are ±0. 0068 and
2.4807%, respectively, and the average values of the esti-
mation error and relative error of friction coefficient ob-
tained by EKF are ±0.0172 and 4.9278%, respectively. +e
method proposed in this paper has higher estimation ac-
curacy and better real-time performance, and the estimation
results meet the actual needs of the brake system.
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Figure 3: Real-time identification error of friction coefficient by
online EM.
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Figure 4: Relative error of friction coefficient by online EM.
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Figure 5: Real-time identification of friction coefficient by EKF.
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Figure 6: Real-time identification error of friction coefficient by
EKF.
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Figure 8 shows the identification curve of train braking
speed by online EM and the calculation curve of braking
displacement. It takes 94.2 seconds from normal operation
to stop, and the braking distance is 4647.16 meters, which
meets the national standard.

4.3. Identification of Train Braking Ratio. In the actual
braking process of the train, the braking ratio of the train is
not constant, and its value will fluctuate slightly with the
train running. Figure 9 shows the real-time identification
curve of braking ratio of high-speed train. +e red solid line
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Figure 7: Relative error of friction coefficient by EKF.

Table 3: Identification results of friction coefficient.

Online EM EKF

Initial value Identification error Relative error (%) Identification error Relative error (%)

0.15 ±0.0074 2.6730 ±0.0173 4.9444
0.20 ±0.0076 2.8845 ±0.0123 3.5201
0.25 ±0.0049 2.1075 ±0.0182 5.2255
0.30 ±0.0057 2.1446 ±0.0187 5.3359
0.35 ±0.0064 2.1186 ±0.0179 5.1263
0.40 ±0.0086 2.9561 ±0.0190 5.4146
Mean ±0.0068 2.4807 ±0.0172 4.9278
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Figure 8: Braking speed and displacement curve under the friction coefficient.

8 Mathematical Problems in Engineering



is the real change curve of the train braking ratio. +e black,
blue, and purple solid lines are the braking ratio identifi-
cation curves with initial values of 5, 4, and 3, respectively.
+e black, blue, and purple dashed lines are the braking ratio
identification curves with initial values of 0, 1, and 2, re-
spectively. It can be seen from the graph that the method
proposed in this paper can accurately identify the braking
ratio of trains in real time, and the accurate identification
results of the braking ratio can be obtained after 320km/h.

Figures 10 and 11 show the identification error and
relative error curves of braking ratio, respectively. It can be

seen from the figures that the identification error and relative
error under different initial values gradually decrease with
the increase of time, and the fluctuations of the two curves
gradually decrease and remain almost unchanged in a fixed
range after 320km/h.

Figures 12–14 show the real-time identification results,
estimation errors, and relative errors of the braking ratio,
respectively, based on EKF under different initial conditions.

As can be seen from Figures 12–14, compared with EKF,
the identification results obtained by the proposed method
in this paper can converge to the true value of the braking
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Figure 9: Real-time identification of braking ratio by online EM.
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Figure 10: Identification error of braking ratio by online EM.
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ratio rapidly. In the process of convergence, the fluctuation
of identification error is smaller.

Table 4 shows the comparison of the estimation results of
braking ratio between the method in this paper and EKF
under different initial values.

From Table 4, it can be seen that the average values of the
estimation error and relative error of braking ratio obtained
by the method in this paper are ±0. 0349 and 1.3154%,
respectively, and the average values of the estimation error
and relative error of braking ratio obtained by EKF are
±0.0461 and 1.7799%, respectively. +e method proposed in

this paper has higher estimation accuracy and better real-
time performance, and the estimation results meet the actual
needs of the brake system.

Figure 15 shows the identification curve of train braking
speed by online EM and the calculation curve of braking
displacement. It takes 94.7 seconds from normal operation
to stop, and the braking distance is 4687.34 meters, which
meets the national standard.

By analyzing the identification results of friction coef-
ficient and braking ratio, it can be concluded that when the
initial values of braking parameters are set in a specified
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Figure 11: Relative error of braking ratio by online EM.
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Figure 12: Real-time identification of braking ratio by EKF.
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Figure 13: Identification error of braking ratio by EKF.
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Figure 14: Relative error of braking ratio by EKF.

Table 4: Identification results of braking ratio.

Online EM EKF

Initial value Identification error Relative error (%) Identification error Relative error (%)

0 ±0.0573 1.9890 ±0.0523 2.0212
1 ±0.0258 0.9980 ±0.0460 1.7767
2 ±0.0450 1.7380 ±0.0487 1.8814
3 ±0.0353 1.3833 ±0.0426 1.6486
4 ±0.0230 0.8903 ±0.0455 1.7582
5 ±0.0231 0.8940 ±0.0412 1.5932
Mean ±0.0349 1.3154 ±0.0461 1.7799
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range, the braking parameters can be identified quickly and
accurately in real time, which verifies the effectiveness of the
method.

5. Conclusion

+e mechanism of emergency braking of high-speed trains
was analyzed, and the emergency braking model of high-
speed train was established in this paper. Aiming at the
characteristics of train braking parameters that cannot be
observed intuitively which change with time, an improved
expectation maximization identification of the high-speed
train braking model based on sliding window was proposed,
and the time-varying braking parameters of trains were
identified online. +e simulation results showed that the
real-time values of braking parameters can be identified
quickly and accurately. It can be concluded that the ap-
plication of this method will greatly reduce the cost of daily
maintenance and improve the efficiency of maintenance. In
the follow-up study, the algorithm will be further improved
and optimized to adjust the size of sliding window adap-
tively, and the speed and accuracy of parameter identifi-
cation will be further improved.
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