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Abstract: We present a high-speed transport-of-intensity equation (TIE) 

quantitative phase microscopy technique, named TL-TIE, by combining an 

electrically tunable lens with a conventional transmission microscope. This 

permits the specimen at different focus position to be imaged in rapid 

succession, with constant magnification and no physically moving parts. 

The simplified image stack collection significantly reduces the acquisition 

time, allows for the diffraction-limited through-focus intensity stack 

collection at 15 frames per second, making dynamic TIE phase imaging 

possible. The technique is demonstrated by profiling of microlens array 

using optimal frequency selection scheme, and time-lapse imaging of live 

breast cancer cells by inversion the defocused phase optical transfer 

function to correct the phase blurring in traditional TIE. Experimental 

results illustrate its outstanding capability of the technique for quantitative 

phase imaging, through a simple, non-interferometric, high-speed, high-

resolution, and unwrapping-free approach with prosperous applications in 

micro-optics, life sciences and bio-photonics. 

©2013 Optical Society of America 

OCIS codes: (100.5070) Phase retrieval; (110.0180) Microscopy; (100.3010) Image 

reconstruction techniques; (120.5050) Phase measurement. 
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1. Introduction 

Many objects of interest in material and life science research are phase objects. These objects 

are visualized well by techniques such as Zernike phase contrast [1] and differential 

interference contrast microscopy [2], but neither of these methods provide quantitative phase 

information, which makes data interpretation difficult. Quantifying the optical phase shifts 

provides analytical information about the sample structures that can be used further for 

quantitative studies. The most well-established method for obtaining quantitative phase is 
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through interferometry, such as digital holography [3, 4]. However, in most cases this class of 

methods relies on coherent illumination, therefore, plagued with problems of speckle that 

prevent the formation of high quality images. Recently, some alternative common path 

geometries have been reported, which allow for self-interference using white light 

illumination by spatial decomposition of the object field into its scattered, and un-scattered 

components [5–7]. These white-light methods eliminate the coherence noise, thus greatly 

improved the spatial resolution of the measurement. However, one always needs to make a 

compromise between the halo effect and the size of the source, i.e. the condenser aperture, 

which directly relates to the illumination power and the image quality [7]. 

On a different note, quantitative phase imaging can be realized by transport-of-intensity 

equation (TIE) using only object field intensities at multiple axially displaced planes [8]. TIE 

phase imaging have been increasingly investigated during recent years due to its unique 

advantages over interferometric techniques [9, 10]: it is non-interferometric, works with 

partially coherent illumination, computationally simple, no need to phase unwrapping, and 

does not require a complicated optical system. Despite these evident merits and great 

improvements, TIE has still not gained so much attention and widespread applications as 

interferometric techniques in the field of quantitative phase microscopy. One important 

reason is TIE typically requires a series of images captured at different focal depths, which is 

usually realized by translating the camera or the object manually or mechanically. This not 

only complicates the image acquisition process, but also prolongs the measurement time, 

precluding real-time observation of dynamic process. Although recent reports using volume 

holography [11], chromatic aberrations [12], spatial light modulator [13], and flow cytometry 

[14] can avoid the mechanical motion in the intensity stack acquisition, a simple, practical, 

non-mechanically controlled focus-variable system that can deliver diffraction-limited 

imaging performance for dynamic TIE phase imaging is still quite demanding. 

The goal of this paper is to introduce a tunable-lens based TIE phase microscopy system 

named TL-TIE, which takes full advantages of high-speed, high-resolution, high-sensitive, 

and low-cost. Specifically, we introduce an electronically tunable lens (ETL) with an 

additional 4f relay system to the camera port of a commercial inverted microscope, which 

allows for rapid electronically controlled re-focusing with constant magnification without 

affecting the original high imaging quality of the microscope. The simplified image stack 

collection significantly reduces the acquisition time, making dynamic TIE phase imaging 

possible. Loss of spatial resolution in TIE phase imaging is another common and but vexing 

problem which, in general, depends on the nonlinearity error in longitudinal intensity 

derivative estimation and the illumination condition of the object under investigation. The 

nonlinearity error can be corrected by using more intensity measurements at multiple planes 

[15–17] at the expense of prolonging the measurement time due to manual or mechanical 

adjustment of the measurement planes. With the TL-TIE system, it takes only about 2 seconds 

to record the 31 images intensity stack, and from which precise profiling of microlens array 

can be achieved by employing the optimal frequency selection [17] scheme in TIE. The 

dynamic phase imaging ability of TL-TIE is also demonstrated via monitoring live cells in 

culture medium. The phase blurring in traditional TIE is corrected by the deconvolution based 

on the defocused phase optical transfer function [18, 19], allowing high-resolution, dynamic 

TIE phase imaging with only three intensity recordings. 

2. Experiential configuration and characterization 

TIE imaging involves refocusing the imaging system in order to record a series of images at 

different focus distances through the object. We achieve this by adding an image relay system 

to the camera port of a commercial inverted microscope. The relay system consists of a 

standard 4f system with an ETL combined with a plane concave offset lens (OL) located at 

the Fourier plane. Figure 1 shows the experimental configuration, wherein a halogen white 

light source with a green interference filter (central wavelength λ = 550 nm, 45 nm 
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bandwidth) is used for illumination. A commercial inverted bright field microscope (Olympus 

IX71), which itself is composed of a collector lens, condenser aperture diaphragm, condenser 

lens, objective, reflective mirror (M1), and tube lens, produces a magnified image of the 

specimen at the camera port (image plane). All the objectives used are infinity-corrected and 

matched the focal length of the tube lens (180 mm). From the image plane of the microscope, 

two lenses L1 and L2 (focal length 
1f f=  = 

2f  = 150 mm) form a 4f system. The ETL we 

used is a plane convex one (EL-C-10-30-VIS-LD, Optotune AG, Switzerland), with tunable 

focal length range of + 50 to + 200 mm and 10 mm clear aperture. To realize refocusing along 

positive and negative directions with respect to the intermediate image plane, the ETL was 

paired with the plane concave OL (focal length −100 mm). The final images are captured by a 

monochrome CCD camera (The Imaging Source DMK 41AU02, 1280 × 960, 4.65 μm pixel 
size, 15 fps) . 

OL/ETL 

Collector 
Lens

Aperture 
Diaphragm

Condenser
Lens

Specimen

Objective

Tube Lens

Image 
Plane

L1 L2

M1

CCDOlympus IX71
 

Fig. 1. Schematic setup for TL-TIE system. A 4f system with OL/ETL located at the Fourier 
plane is attached to Olympus IX71 bright field microscope. The Fourier lens L1 relays the back 
focal plane of the objective onto the OL/ETL. Fourier lens L2 reconstructs the final image at 
the CCD plane, which is conjugated with the image plane. The shift of the object plane with 
equal magnification can be realized adjusting the focal length of ETL. 

2.1 Telecentricity 

One important assumption inherent in TIE phase imaging is the system should be telecentric 

[18]. This assumption guarantees that the refocusing does not introduce phase curvature over 

the field of view so that the through-focus stack can deliver a series of images with equal 

magnification. In a non-telecentric system, the object to image distance changes for each 

plane imaged, with the result that the images of the different object layers are recorded with a 

different magnification [20]. The need to rescale the images of each layer only complicates 

the data processing, but also introduces the possibility of error. The telecentricity in the 

proposed system can be easily interpreted by physical optics, since it emulates the process of 

the angular spectrum propagation. From the angular spectrum perspective, the propagation of 

wavefield 
0 ( , )u x y  from the focus plane to the parallel plane at nonzero distance z∆  is 

described by [21] 

 { }{ }1

0( , ) ( , ) ( , ) ,z zu x y u x y H u v−
∆ ∆=F F  (1) 

Where F is the Fourier transform, ( , )u v  is the vector in frequency space corresponding to 

the transverse spatial coordinate ( , )x y . The function H  is the transfer function for free 

space, and in paraxial approximation it is given by 
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 ( )2 2( , ) exp + ,zH u v i z u vπλ∆
 = − ∆   (2) 

Note here we neglect the constant phase factor exp( )jkz , where k  is the wave number. The 

discrete version of Eq. (2) is well known as angular spectrum method [4], which is widely 

used in digital holographic reconstruction. The major advantage of angular spectrum method 

is its ability to maintain the size of the image field, independent of the propagation distance 

z∆ . Considering the Fourier transform property of the 4f system, the above described free-

space propagation process can be physically emulated by modulating the light incident in the 

Fourier plane with the propagation transfer function using a phase SLM [13, 22]. However, 

some inherent limitations of SLM devices, such as relatively large pixels, less than 100% fill 

factor, high cost, restrict its performance and potential applications. Here we use a tunable 

lens in place of the SLM. With the paraxial approximation, the phase transformation of the 

combination of the ETL/OL can be represented by [21, 23], 

 ( )2 2( , ) exp + ,l

c

i
t

f

πξ η ξ η
λ

 
= − 

 
 (3) 

where 

 .ETL OL
c

ETL OL

f f
f

f f d
=

+ −
 (4) 

Here d  is the axial distance between the two lenses, and ( , )ξ η  is the spatial coordinates in 

the Fourier plane of the 4f setup. Note here we consider the composite lens as ‘thin’ for 

simplicity, because d  is very small (the distance from the plane surface of the OL to the ETL 

housing is 4 mm) and 
cf  is much larger than thickness of the two lenses. Comparing Eq. (3) 

with Eq. (2), we can see the ( , )lt ξ η  share the same format as the propagation transfer 

function. With use of the connection between the frequency coordinates in the Fourier domain 

( , )u v  and the spatial coordinates in the Fourier plane of the 4f setup ( , )ξ η  [21], the 

relationship between the focal length variations versus the propagation distances can be 

established: 

 
( )22

.
ETL OL

c ETL OL

f f f df
z

f f f

+ −
∆ = =  (5) 

Where f  is the focal length of the two Fourier lenses L1 and L2 ( f  = 150 mm). Since 
ETLf  

can be electronically controlled, the defocus distance z∆  can be easily adjusted whilst 

maintaining the position of the infocus image plane and image magnification. Note the focal 

distance shift mentioned in the above derivation is with respect to the magnified object field 

at the image plane of the microscope camera port. The actual axial focus shift at the real 

object-plane at the sample stage can be obtained by 2z M∆ , where M is the magnification of 

the objective used. 

2.2 Defocusing properties and accuracy 

In our setup, the ETL was driven by a custom current source, which offered an adjustable 

full-scale output current from 0 to 300 mA, with a resolution up to 0.1 mA. Figure 2(a) shows 

the lens focal length tuning as a function of current, ( )ETLf I , measured by a beam diagnostics 

digital CMOS camera (LaserCam-HR, Coherent) with a collimated input beam. The overall 

trend of the curve is nonlinear but for the current range 120 mA to 180 mA (corresponding to 

the focal length range about 86 ~118 mm), the focal length varies almost linearly with current. 

With reference to Eq. (5), the range of z∆  can be estimated to be about 30± mm within this 

current range, which is sufficient for our applications because TIE does not require a large 
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defocus range. However, it is inappropriate to directly apply Eq. (5) to derive the current to 

focus-shift function for our system because it is only valid for ideal conditions when all lenses 

are considered as ‘thin’. For this reason, we use the optical design software ZEMAX to model 

our system (from the image plane of the microscope to the CCD plane) in more realistic 

conditions. Figure 2(b) shows the curve of simulated focal length variations versus the focus 

shifts, and the one calculated using Eq. (5) with d  = 4.5 mm (to best fit the simulation result). 

We also measured the real focus shifts of the system as a function of current by refocusing a 5 

μm pinhole using the camera mounted on a motorized translation stage, as shown in Fig. 2(b). 

It was found that the measured data fitted the simulated curves well and deviated from the Eq. 

(5) about 3 mm when the current reaches 180 mA. The standard deviation between 

measurement and simulated curve was 0.275 mm and we found there was always a bias of 

0.18 mm between the measured data and the simulated result. This discrepancy may be due to 

manufacturing errors, the errors arising from estimation of ‘best focus’, and most probably 

misalignment in the optics. Therefore, we shifted the simulated curve by 0.18 mm as our ideal 

current to focus-shift function, and in this case, the standard deviation between measurement 

and the shifted curve was reduced to 0.0971 mm (smaller than the quantitation error). The 

resolution of current control is 0.1 mA, so the minimum step controllable for the focus shift is 

about 130 μm, corresponding to 36.1 nm focus shift at the real object plane when a 60x 
objective is used, which is sufficient to ensure a high-precision measurement. 
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Fig. 2. Defocusing characterization of the tunable lens and the TL-TIE system. (a) Measured 
focal length calibration curve of the ETL as a function of current. The region in the dashed box 

(magnified in the inset) shows good linearity of response. (b) The theoretical [Eq. (5)], 

simulated, and measured focus-shift curves of the TL-TIE system. 

2.3 Real system performance 

It is well accepted that the commercial microscope from major companies could deliver 

diffraction-limited image quality. The TL-TIE is acted as an add-on module of a commercial 

microscope; it should be able to reproduce the diffraction-limited images to the CCD plane 

with fidelity. Since the additional 4f-relay system and the ETL/OL follows behind the image 

plane of the microscope and the numerical aperture (NA) at the image plane is quite limited 

(
image objNA NA M≈ ), it is not difficult to achieve diffraction-limited imaging performance for 

our TL-TIE system even with use the off-the-shelf optical components. The simulated spot 

diagram of the system is shown in Fig. 3(a), assuming the
imageNA  = 0.015 (the object is 

imaged by a 40x MO with 0.6NA). The blue, green, red, color stand for three fields with 0, 

1.5 and 3 mm (approximately at the edge of the CCD plane) distance from the optics axis, 

showing that all the rays fall into the Airy disk circle. The RMS wavefront was simulated to 

be within 150λ  for the full field. Figure 3(b) shows the modulation transfer function (MTF) 

of the system, which is nearly coincident with the diffraction limit. The point spread function 

(PSF) of the whole system was also measured by using a 0.5 μm pinhole to approximate a 
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point source with 40x plan semi-apochromat objective (Olympus, LUCPLFLN 40X, NA = 

0.6). Figures 3(c) and 3(d) show the sharpest infocus images and their respective Gaussian 

fitted cross-sections of the raw microscope (without the ETL) and the TL-TIE system. The 

full width half maximum (FWHM) of the PSF is 1.13 μm for the raw microscope and 1.16 
μm when our TL-TIE module was included. The telecentricity of the system was simulated to 

be within 0.0001 in the defocus range used and experimentally verified to be within 0.005 for 

the whole defocus range, indicating that the changes of image magnification with focus 

distance can be neglected. From the simulated and measured data, we may safely conclude 

that our modified TL-TIE system redelivers the high image quality of the original microscope 

and meanwhile with the telecentricity well preserved. It should be note that TIE as well as the 

TL-TIE system is inherently based on the paraxial assumption. However, whereas the 

microscope is a non-paraxial system, the wave-field at the image plane of an optical 

microscope can be considered paraxial due to the limited NA. Since TL-TIE system defocus 

the wavefield at the image plane and meanwhile TIE measure not exactly the object phase but 

the phase of the wavefield in the image plane, the paraxiality can be regarded as a reasonable 

assumption. 
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Fig. 3. Simulations and real performance of TL-TIE systems with a 40x objective (NA = 0.6). 

(a) Simulated spot diagrams. (b) Simulated MTF. (c) PSF measured using a 500 nm pinhole 
without the TL-TIE relay system. (d) Measured PSF of the whole TL-TIE system. The cross-

sectional slices are fitted by the Gaussian function. 

2.4 Speed 

With the help of ETL, intensity images at different distances can be rapidly acquired by the 

CCD camera through electrical control without any mechanical motion. The response time of 

the ETL used was 15 ms, which enables time division multiplexing scanning with fast 

switching rate. We use a self-developed Field-Programmable Gate Array (FPGA) board to 

control the SPI signal with the current source and generate the trigger pulses for the camera to 

properly synchronize it with the ETL. Currently, the speed of our system is limited by the 

camera with maximum acquisition speed of 15 frame/s, thus the maximum rate of the phase 

reconstruction is 5 frame/s (using 3 intensity images for each reconstruction). We also 

developed a software using Microsoft Visual Studio 2008 with C++, with which the phase 

imaging can be realized in real-time and all raw images can be saved as a video sequence for 

post-processing. For static object measurement, we can also use more intensity images for 

phase extraction to improve accuracy without worrying about the motion-induced error. The 

#193903 - $15.00 USD Received 15 Jul 2013; revised 16 Sep 2013; accepted 17 Sep 2013; published 1 Oct 2013
(C) 2013 OSA 7 October 2013 | Vol. 21,  No. 20 | DOI:10.1364/OE.21.024060 | OPTICS EXPRESS  24066



related numerical processing algorithms will be introduced in details in Section 3. It should be 

note that since the maximum refresh rate for ETL is about 67 images/s in principle, the 

imaging speed could be increased to video rate by employing a camera with higher speed and 

sensitivity. 

3. Numerical processing 

The numerical processing involved in the current method is based on TIE, which outlines the 

object-plane phase to the first derivative of intensity with respect to the optical axis in the 

near Fresnel region [8]: 

 
( ) ( ) ( ) ,

I
k I

z
φ

∂
− = ∇⋅ ∇  ∂

r
r r  (6) 

where r  is the position vector representing the transverse spatial coordinates ( ),x y .∇  is the 

gradient operator over the transverse direction r . z  denotes the optics axis, perpendicular to 

the ,x y  plane. I  is the infocus image intensity (
2

0 0I I u= = ). To solve TIE, usually an 

auxiliary function ψ  satisfying Iψ φ∇ = ∇  is introduced [8, 24], and thus TIE is converted 

to the following two Poisson equations 

 2 ,
I

k
z

ψ∂
− = ∇

∂
 (7) 

and 

 ( )1 2 .I ψ φ−∇⋅ ∇ = ∇  (8) 

The second Poisson equation [Eq. (8)] is used for phase integration from 1Iφ ψ−∇ = ∇ . For 

pure phase object, I  is assumed to be constant and then TIE can be reduced to only one 

Poisson equation: 

 2 ,
k I

I z
φ∂

− = ∇
∂

 (9) 

The Poisson equations can be easily solved with fast-Fourier transform (FFT) [10, 25] for 

speedy processing of the inverse Laplacian, thus the phase φ  can be uniquely determined 

with the intensity I  and longitude intensity derivative I z∂ ∂ . Experimentally, I  is easy to 

obtain. However, the intensity derivative along the optic axis cannot be directly measured. 

Conventionally, it is approximated by a finite difference between two out-of-focus images, 

recorded symmetrically about the in-focus plane with z±∆  defocus distance [26–28]. 

 
( ) ( ) ( )

.
2

z zI I I

z z

∆ −∆∂ −
≈

∂ ∆
r r r

 (10) 

Mathematically, this approximation is valid in the limit of small defocus distances, but 

experimentally, the derivative estimate will become quite unstable when the distance z∆  is 

too small because of the noise and quantitation error [16, 17]. On the other hand, increasing 

the two-plane separation z∆  provides better signal-to-noise ratio (SNR) in the derivative 

estimate; however, the breakdown of the linear approximation induces nonlinearity errors, 

which results in the loss of the phase lateral resolution. 

3.1 Numerical algorithm for static object measurement - Optimal Frequency Selection 

For static object measurement, we can simply increase the number intensity measurements at 

multiple planes [15, 16, 29–31] to account for both phase SNR and nonlinearity error. The 

detailed algorithm is based on the optimal frequency selection (OFS) scheme described in 

#193903 - $15.00 USD Received 15 Jul 2013; revised 16 Sep 2013; accepted 17 Sep 2013; published 1 Oct 2013
(C) 2013 OSA 7 October 2013 | Vol. 21,  No. 20 | DOI:10.1364/OE.21.024060 | OPTICS EXPRESS  24067



[17]. With more intensity measurements ( ) , ,...,0,...,j zI j n n∆ = −r , the longitudinal intensity 

derivative can be represented by their linear combination: 

 
( ) ( )

.
n

j j z

j n

a II

z z

∆

=−

∂
≈

∂ ∆∑
rr

 (11) 

Thus, it offers more flexibility for improving the accuracy and noise resistance in derivative 

estimation. The only difference in these multiple planes derivative estimation methods [15, 16, 

29–31] lies in the coefficients 
ia  in Eq. (11), and it has been found that all these method can 

be unified into Savitzky-Golay differentiation filter (SGDF) with different degrees if the finite 

difference [Eq. (11)] is viewed from the viewpoint of the digital filter [17]. The OFS is a 

three-step process with the basic idea that selecting the optimal components of the phase 

recovered from SGDFs with various degrees in spatial frequency domain: First, estimate the 

intensity derivatives with SGDFs with different degrees through Eq. (11). Second, reconstruct 

the phase distributions with TIE by solving the two Poisson equations [Eqs. (7) and (8)] with 

the estimated intensity derivatives. Finally, extract the optimal frequency components from 

these phase distributions using a complementary filter bank in spatial frequency domain and 

then recombine them into a composite phase. In [17], the OFS is derived based on first-order 

Born (weak scattering) approximation, which in turn requires that the amplitude and phase 

modulation of the object are small. However, as we shown in Appendix I, the first-order Born 

approximation is actually unnecessary and the OFS can be validated making only the 

assumption of slowly-varying object. Thus, it can be well applied to different types of objects 

even their phase modulations are not weak. It also should be note that mathematical 

derivation of OFS method assumes that the optical field is spatially coherent and thus it is 

required to constrict the condenser aperture to increase the spatial coherence of the 

illumination. 

3.2 Numerical algorithm for dynamic measurement- inversion of defocused phase OTF 

For dynamic measurement, using the minimum intensity measurements is preferable and thus 

the intensity derivative is estimated by Eq. (10) with two intensity measurements. In this case, 

a slightly larger defocus distance is used to increase SNR in derivative estimate. The spatial 

coherence of the illumination, which is quantified by the coherence parameter - the ratio of 

condenser to objective numerical apertures ( = cond objS NA NA ) is increased to 0.3~0.4 to 

ensure certain degree of spatial coherence and enough illumination power. The loss of spatial 

resolution of the phase reconstructed by TIE is closely related to the defocus distance and 

coherent parameter, and more detailed investigations on their relations can be found in [18, 

32]. Instead of directly solving the TIE [Eq. (6)], we make use of the concept of defocused 

phase optical transfer function (OTF) that accounts for phase blurring due to the nonlinearity 

error and effect of the partially coherent illumination. The root of the loss of spatial resolution 

in TIE phase retrieval can be more clearly identified if we take Eq. (10) into Eq. (7) and then 

transform the result into Fourier domain: 

 
( ) ( ) ( )2

ˆ ˆ
ˆ .

4
π λ ψ∆ −∆−

= ∆z zI I
z u

u u
u  (12) 

Here u is the Fourier domain coordinates corresponding to r . For pure-phase objects (e.g. 

biological tissues and cells) constantI ≈ , we can also obtain the similar result by taking Eq. 

(10) into Eq. (9). Therefore the phase contrast transfer function (CTF) implied in traditional 

TIE has the form 

 2( ) .TIET z uπ λ= ∆u  (13) 
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The solution of the Poisson equation Eq. (7) can be interpreted by an inverse filtering process 

in frequency domain with the filter response 1 ( ).TIET −
u It can be seen that the underlying 

assumption in TIE is the phase contrast increases linearly with defocus distance and 

quadratically with spatial frequencies. This assumption is obviously unreasonable since the 

phase contrast cannot arbitrarily increase with defocus distance or spatial frequencies. The 

overestimate of the phase contrast in high-spatial frequency domain is the primary cause of 

phase blurring if one uses TIE improperly beyond the small-defocus regime. The three-

dimensional optical transfer function theory described by Streibl [33] is an accurate and 

comprehensive model to analyze image formation for weakly scattering object under partially 

coherent illumination in a bright-field microscope. Based on this theory, the weak defocus 

phase OTF can be derived [18, 19], which has been already used for analyzing [18, 32] and 

improving [34] the performance of TIE under partially coherent illumination. By using 

Fourier slice theorem, and after some algebra similar to that of [18], we can obtain the 

defocus phase OTF (DPOTF) 

 ( ) ( ) ( ) ( )31
, sin 2 .

2
p pT T z dη π η η= ∆∫u u  (14) 

where η  is the spatial frequency in the longitudinal direction. 
( ) ( )3

,pT ηu  is the normalized 

three-dimensional phase transfer functions for a bright-field microscope with circular 

objective and condenser aperture [33, 35]. Note Eq. (14) is valid beyond the limit of small 

distances since we do not impose the weak defocus assumption as in [34]. Therefore, we can 

use the DPOTF [Eq. (14)] to replace the phase CTF of TIE [Eq. (13)] to correct the phase 

blurring related to the defocus distance and partially coherence of the illumination. So instead 

of solving the Poisson equation Eq. (7) [or Eq. (9) for pure phase object] by inverse Laplacian 

with the filter response 1 ( )TIET −
u , we perform a deconvolution based on 1( )pT −

u with an ad hoc 

Tikhonov regularization to solve for ψ (or direct obtain for φ  pure phase object). This 

method here is called inversion of defocused phase optical transfer function (IDPOTF). Note 

the DPOTF in Eq. (14) cannot be expressed analytically, so numerical calculation methods 

are required for computing the integral on the right hand side. 

4. Experimental results 

4. 1 Characterization of microlens array using OFS 

As the first experiment, a plano-convex microlens array with 30 μm  pitch from SUSS 

MicroOptics was used as the test sample. The sample is imaged with a 40x microscope 

objective (Olympus, LUCPLFLN 40X, NA = 0.6) and the condenser aperture diaphragm was 

stopped down to only 15% of the objective NA ( 0.09condNA = ) so that the illumination is 

close to spatially coherent. Since the object is static, the OFS method described in Sec. 3.1 

was used for phase reconstruction. The defocus distance was controlled from −15μm to 15μm 
in steps of 1 μm at a switching rate of 15 Hz, and the image stack was captured within two 
seconds with the TL-TIE system. 

The acquired video of the intensity image stack is shown in Media 1, and some selected 

intensity images at different defocus distances are shown in Figs. 4(a)–4(e). The phase 

reconstructed from OFS is shown in Fig. 4(f). Note the FFT-based Poisson Solver [25] 

implies periodic boundary conditions (BC) [36]. To prevent the phase artifacts due to 

improper BC, we used a mask to exclude the microlens located around the edge of the images, 

assuming the phase is flat at the image boundary, so that the periodic boundary conditions can 

be fulfilled by the modified experimental data. Then only the central portion [indicated by the 

white dot box in Fig. 4(c)] was extracted for further analysis. The corresponding three-

dimensional (3D) profile is shown by converting the phase to the physical height of the lens 

[the refractive index of lens material (fused silica) is 1.46]. For comparison, the same sample 

was also measured using a digital holographic microscopy (DHM) system (laser wavelength 
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650 nm, magnification 43x), described in detail in [37]. Figure 4(g) shows the digital 

hologram captured and the high-frequency carrier fringes due to the off-axis geometry are 

clearly visible in the enlarged area. Its numerically reconstructed phase is shown in Fig. 4(h). 

To quantify the measurements accuracy, we show one cross-section from each result, labeled 

by the red and blue dashed lines in Figs. 4(f) and 4(h), respectively. It can be seen the height 

distribution obtained using OFS with TL-TIE system is in good agreement with the DHM 

measurement. The calculated radius of curvature (ROC) is 399 μm  for OFS and 382 μm for 

DHM, both correspond reasonably well to the ROC value provided by the supplier (390 μm ). 
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Fig. 4. (Media 1) Microlens array characterization using OFS. (a-e) Recorded intensity images 
with defocus distance 15, 5, 0, −5, −15 μm, respectively. (f) Quantitative phase recovered by 
OFS. (g) Digital hologram captured by a DHM system. The carrier fringes can be easily seen 
in the magnified area. (h) Unwrapped phase of DHM. (i) 3D rendering of the OFS result. (j) 
Line profiles corresponding to the red solid line in (f) and the black dotted line in (h), 
respectively. 

The intensity stack shown in Media 1 was captured with 50 ms exposure time, which 

ensures a relatively high image quality. However, for some particular applications where the 

exposure time is limited or/and the intensity signal is relative weak, noise may be comparable 

with the signal. To simulate this environment, the captured intensity data was further 

artificially corrupted by simulated Gaussian white noise, giving the peak signal-to-noise ratio 

(PSNR) about −2. To clearly demonstrate the noise level. three corrupted intensity images are 

shown in Figs. 5(a-c), respectively. Since TIE can only determine the phase uniquely up to an 

additive constant, the mean values of each result were adjusted to same level for better 

comparisons. In this case, the traditional TIE with 2-plane separation of 1 μm± gave a noisy 

result with low-frequency artifacts, which deformed the basic structure of the lens phase [Fig. 

5(d)]. The phase SNR was improved by using the 9th-order TIE [9th-degree SGDF, as shown 

in Fig. 5(e)]. However, the result demonstrated the high-order TIE is still very sensitive to 

noise. Under severely noisy conditions, 1st-order TIE (1st-degree SGDF) was used for its best 

noise resistance (with lowest noise reduction factor) and the SNR and the contrast of the 

recovered phase greatly improved, as shown in Fig. 5(f). The phase recovered using OFS [Fig. 

5(g)] is rather similar with that of 1st-degree SGDF at the first glance. However, closer 

inspection along one cross-section [Fig. 5(h)] revealed that the 1st-degree SGDF distorted the 

over-smooth the phase due to the nonlinearity error while OFS method reliably followed the 

sudden phase turning, as shown in Fig. 5(i). The experimental results further demonstrate the 

robustness of the OFS method under noisy conditions. 
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Fig. 5. Phase retrieval comparison under severely noisy conditions. (a-c) Intensity images with 
defocus distance 5, 0, −5μm after adding artificial noise. (d) Phase recovered by traditional TIE 
with 2-plane separation of ± 1μm. (e) Phase recovered by 9th-order TIE (9th-degree SGDF). (f) 
Phase recovered by 1st-order TIE (1st-degree SGDF). (g) Phase recovered by OFS. The lower-
right portion of each image shows the corresponding digitally rewrapped phase within range 
[ , )π π− . (h) The cross-sectional profiles corresponding to the blue and red lines in (f) and 
(g), respectively. (i) The magnified area corresponding to the boxed region in (e). 

4.2 Dynamic phase imaging of live cells by IDPOTF 

Next we demonstrate using the TL-TIE system to monitor unstained live breast cancer cells 

(MCF-7) cultured in Dulbecco's Modification of Eagle's Medium supplemented with 10% 

fetal bovine serum. For dynamic measurement, the IDPOTF method described in Sec. 3.2 was 

used for phase reconstruction. In this experiment, the specimens was imaged used a 60x plan 

semi-apochromat objective (Olympus, LUCPLFLN 60X, NA = 0.7), and the coherence 

parameter S was adjusted to 0.35. The phase imaging operated at 2 frames/s as the camera 

was running at acquisition rate of 6 frames/s to ensure sufficient exposure time and good 

image quality. 

Figures 6(a)–6(c) show three recorded images corresponding to focus distance −2.5, 0, 

and + 2.5 μm, respectively, from which the quantitative phase image can be recovered by 
either the traditional TIE [Fig. 6(d)] or IDPOTF [Fig. 6(e)]. Enlarged images of the parts 

identified by the red squares are shown in the insets of Figs. 6(d) and 6(e). It can be seen the 

IDPOTF recovered the details of the fine structure of the specimen, which are hard to be 

observed in the traditional TIE result. To investigate the resolution increase obtained by 

IDPOTF, the phase CTF of TIE calculated from Eq. (13) and the DPOTF calculated from Eq. 

(14) using the system parameters of the current experimental are plotted respectively in Fig. 

6(f). It is apparent that the two curves start to deviate at spatial frequencies > 0.3 μm−1
 

because the TIE is based on the assumption of perfect imaging and wrongly assumes that the 

phase contrast is increased quadratically with spatial frequency, which is not fulfilled in a real 

microscope. It can also be predicted that the TIE cannot retrieve the phase structure with 

spatial frequencies above 0.5 μm−1
 due to the significant discrepancy between the TIE phase 

CTF and the DPOTF. However, the maximal theoretical phase resolution achieved by 

IDPOTF is about 0.8 μm−1
 which corresponds to first zero-crossing of the DPOTF curve [the 

actual value should be larger because only the frequency falls in the vicinity of 0.8 μm−1
 is 

unrecoverable, and some higher frequency components still shows (inverse) phase contrast], 
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corresponding to 60% increase in resolution compared with traditional TIE method. To 

further confirm the increase in resolution in real images, we examined two point-like tiny 

features approximately 1.6 μm apart (corresponding to the spatial frequency 0.625 μm−1
) from 

the magnified regions of Figs. 6(d) and 6(e). It can be seen from the two cross-sections shown 

in Fig. 6(g), the structures are clearly distinguished by the IDPOTF method, while cannot 

resolved in the traditional TIE result, which is in agreement with our theoretical analysis. 

Before proceeding any further, the following points should be clarified: First, the IDPOTF 

method could improve the phase resolution compared with traditional TIE, but it is still 

subject to the diffraction limit of the imaging system because insofar we are extracting phase 

information from the measured intensity images. Second, the improvement of the resolution is 

not fixed, but dependent on the system parameters, i.e., the coherence parameter and the 

defocus distance, which determine the coincidence degree between the TIE phase CTF and 

the DPOTF. Third, reducing the defocus distance (e.g. to 0.5 μm) improve the theoretical 
phase resolution and meanwhile reduce the SNR of the reconstructed phase of IDPOTF (as 

can be seen from Fig. 6(f) the DPOTF curve assume larger values at higher frequencies and 

smaller values at lower spatial frequencies compared with the case when z∆  = 2.5 μm). 
Finally, the use of the IDPOTF method instead of TIE merely improves the phase spatial 

resolution without affecting the accuracy of quantitative phase measurement (mostly 

characterized by low spatial frequency phase components) because the DPOTF always 

converges to the CTF of TIE [Eq. (17)] with the decrease in spatial frequencies. 
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Fig. 6. Experiment validation of IDPOTF method. (a-c) Intensity images with defocus distance 

−2.5, 0, 2.5 μm (d) Phase map recovered by traditional TIE. (e) Phase map recovered by 
IDPOTF. The insets show the magnified areas corresponding to boxed regions. (f) TIE phase 

CTF and DPOTF for defocus distance 2.5, and 0.5 μm . (g) The intensity distributions along 

the blue solid line and the red dotted line shown in (d) and (e). 
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To demonstrate the dynamic phase imaging ability of TL-TIE, a single cell was studied 

with time-lapse imaging and three snapshots from the video sequence corresponding to object 

planes at −2.5, 0.0 and + 2.5 μm are shown in Figs. 7(a)–7(c), respectively. The quantitative 

phase recovered using the IDPOTF method is shown in Fig. 7(d). We also presented the 

sequential reconstruction movie (Media 2), replayed at a much higher frame rate. Once 

quantitative phase information is obtained, other types of microscopy such as DIC, phase 

contrast, and dark field can be numerically simulated. Figure 7(e) shows the corresponding 

simulated DIC microscopy image by digitally calculating the phase gradient in the direction 

of the image shear (45°), which produces a shadow-cast image that effectively enhance the 

gradient of optical paths for both low and high spatial frequency details present in the 

specimen (Media 2). By using the quantitative phase information obtained, the physical 

thickness of cell can be obtained. Figure 3(f) shows the pseudo-color 3D rendering of the 

specimen, which shows high quality and high contrast surface details on the cell and provides 

an accurate profile of optical thickness. Note the refractive index of the medium is measured 

to be 1.341 with a refractometer, and the refractive index of MCF-7 is assumed to be 1.360 

[38] for the entire cell contents for simplicity. The time series (Media 3) provides complete 

four-dimensional information of the cell's 3D spatial images as well as the time evolution of 

those images. It is clear to see the movement of very tiny subcellular details, i.e. the nucleus 

in the cell center, ruffles on the membrane, and the lamellipodia in the cell periphery. Besides, 

since our method use partially coherent white light and the continuous phase map can be 

directly recovered without phase unwrapping, the results are not plagued with problems of 

speckle noise and phase unwrapping errors. Note some low-frequency fluctuations on the 

background are perceivable, which is due to the greater sensitivity to noise at low spatial 

frequencies [as we can see in Fig. 6(e), the value of transfer function approaches to zeros as 

the frequency goes to zero, which is the common problem in the TIE-based methods]. Of 

course, some other factors such as evaporation or instability of the cell-culture medium may 

also contribute to the problem. 
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Fig. 7. Time-lapse quantitative phase imaging of an individual MCF-7 using TL-TIE. (a-c) 
Intensity images with defocus distance −2.5, 0, 2.5 μm (d) Phase map recovered through 
IDPOTF (Media 2). (e) Digitally simulated DIC image from (d) (Media 2). (f) 3D pseudo-
color rendering of the cell thickness (Media 3). 
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5. Conclusions 

In summary, a new quantitative phase microscopy system, TL-TIE, has been demonstrated by 

introducing the ETL as a fast axial scanning device to realize the non-mechanical focusing 

control for high-speed TIE phase imaging. The flexibility offered by the TL-TIE system 

allows for the rapid recording of intensity images at different defocus distances with constant 

magnification, simple and straightforward implementation on conventional microscope at low 

cost without altering its original high imaging quality. Furthermore, TL-TIE combines these 

merits with other unique advantages inherits from the traditional TIE phase imaging, offering 

a simple, non-interferometric, high-speed, high-resolution, and unwrapping-free approach for 

quantitative phase microscopy. 

The TL-TIE system has been successfully applied to measure the thickness of microlens 

array and showed that OFS accurately reproduced the expected thickness distribution, which 

is in good agreement with the DHM result and the value quoted by the manufacturer. We 

have proven and experimental demonstrated that the OFS method could be well applied for 

relative strong phase object and extend the validity of TIE beyond the limit of small distances 

by using more axial intensity images. It has been also shown that the OFS method could 

provide accurate phase image even under severely noisy conditions. 

As another contribution of this work, we have introduced IDPOTF to remove the phase 

blurring related to the defocusing and illumination coherence, thus improve the spatial 

resolution of TIE phase imaging with only three intensity images. The result of live cell 

imaging demonstrate that the proposed TL-TIE is a competitive and promising tool for 

investigations of dynamic cellular processes, like cell migration, effects of drug effectiveness, 

and toxicity assessment of bio-functionalized nano-materials on living cellular systems. 

Appendix A: 

Consider a complex object field 
0 0( , ) ( , ) exp[ ( , )]u x y A x y i x yϕ= , where 

0 ( , )A x y is 

amplitude modulation of the object which equals to 
0 ( , )I x y , ( , )x yϕ  is phase. To make the 

formulae more compact, we denote the lateral dimensions ( , )x y  as r ; and its corresponding 

Fourier conjugates are given by u. Assuming a slowly-varying object, 

i.e., ( ) ( ) 1zϕ ϕ λ− −r r u  , and ( ) ( ) ( )A z A z Aλ λ− ≈ − ∇r u r u r , where z  is the defocus 

distance from the focus plane, the Fourier transform of the intensity image captured at 

distance z  can be represented by [39]: 
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Note here 
22u = u . The Fourier transform of intensity derivative estimated by a fixed-degree 

SGDF with 2n + 1 intensity measurements equally separated by z∆  is 
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Since the coefficients of SGDF { }|ja n j n− ≤ ≤  are odd-symmetric with the central weight 

always null [17, 40], the first term on RHS of Eq. (16) reduces to zero. Obviously, to ensure 

that the SGDF can produce unbiased phase estimates by using TIE, { }( )I z∂ ∂rF should 

approximate ( ) ( ) ( ){ }2 Iλ π ϕ− ∇ ∇  r rF , which further means the following two 

requirements should be satisfied: 

 2 2 2sin( ) cos( ) 0;
n

jj n
a j zu j zu j zuπλ πλ πλ

=−
 ∆ − ∆ ∆ → ∑  (17) 

and 

 2cos( ) 1.
n

jj n
a j j zuπλ

=−
∆ →∑  (18) 

The basic idea behind OFS is to extract the best frequency components of the phase images 

obtained from SGDFs with various degrees and then recombine them into a composite phase. 

The cutoff frequency for the complimentary filter bank is determined according to the 

congruity between the frequency response of the SGDF and the ideal derivative filter. Only 

when the phase component fall into the frequency range which satisfy 
2 2sin( )

n

jj n
a j zu zuπλ πλ

=−
∆ ≈ ∆∑ , they can be considered as ‘correct reconstruction’ or 

‘reliable retrieval’ [17]. It is not difficult to show that when 
2 2sin( )

n

jj n
a j zu j zuπλ πλ

=−
∆ → ∆∑ , then 2cos( ) 1

n

jj n
a j j zuπλ

=−
∆ →∑  with a precision of 

3 6( )O z u∆ , therefore Eq. (18) can be satisfied. Then the first condition can be directly 

satisfied by taking Eq. (18) into Eq. (17). So finally we have 

 ( ) ( ){ }( )
.

2

I
I

z

λ ϕ
π

∂  ≈ − ∇ ∇    ∂ 
r

r rF F  (19) 

This reduces to the standard TIE formulation [Eq. (6)] in Fourier domain. It therefore 

demonstrates that the OFS method can successfully extend the TIE method beyond the small-

defocus-limit and making only the assumption of slowly-varying object. 
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