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Abstract
Superior mechanical and thermal properties, high wear resistance and a competitive price of compacted graphite iron (CGI)
have made it an integral part of industry worldwide. In its applications in automotive engines, high-temperature environments
cause thermal expansion that can result in emergence of interfacial damage in CGI. Although graphite-matrix interfacial
damage is considered the main damage mechanism that can lead to total fracture of CGI, extensive research on CGI has not
yet fully investigated this phenomenon at the microscale, especially under pure thermal loading. This paper focuses on the
high-temperature performance of CGI and the onset of damage in graphite in thermal cycles. Three-dimensional numerical
models are developed, with a single graphite inclusion embedded in a unit cell of the metallic matrix. Elastoplastic behaviour
is considered for both phases in simulations. The effects of morphology and orientation of graphite inclusions on a response
of an entire unit cell to thermal loading are investigated. Also, the influence of periodic and fully-fixed boundary conditions
on the damage behaviour of CGI is discussed. The results can give a better understanding of the fracture mechanisms of CGI
exposed to elevated temperatures.
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Abbreviations

A Area of graphite (2D)
AR Aspect ratio of vermicular graphite
D Diameter of spherical graphite
FFBC Fully-fixed boundary condition
L2D Length of square matrix in 2D
L3D Length of cubic matrix in 3D
Lmajor Major axis of vermicular graphite
Lminor Minor axis of vermicular graphite
PBC Periodic boundary condition
p Pressure
q Von Mises equivalent stress
S Area of square matrix (2D)
V Volume of cubic matrix in 3D
Vf Volume fraction of graphite
Vg Volume of spherical graphite in 3D
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ε
pl
D Plastic strain at the onset of damage

ωD State variable increasing monotonically

1 Introduction

Compacted graphite iron was first used in 1948 (Dawson
2008) and is considered an importantmetal matrix composite
in the industry thanks to its beneficial physical and mechan-
ical properties, thermal conductivity, and competitive price.
CGI has wide applications in pipes and machinery, as well
as in the automotive industry for disc brakes (Behera 2012),
cylinder heads and blocks (Dawson 2008).

As a typical in-situ metal matrix composite, cast iron is
composed of graphite, pearlite and ferrite (Chen and Chen
2011). The microstructure of CGI includes graphite inclu-
sions and a metallic matrix, two phases with considerably
different thermomechanical properties. Based on their cir-
cularity, graphite particles are classified as flake, vermicular
and spherical (Fig. 1).

Graphite-matrix debonding is experimentally observed as
the main damage mechanism of compacted graphite iron (Di
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Fig. 1 Microstructure of compacted graphite iron

Cocco et al. 2010; Qiu et al. 2016a). Graphite is brittle and
soft, generally separating from the metallic matrix at low
stress levels (Di Cocco et al. 2014; Norman and Calmunger
2019) and resulting in plastic deformation of the matrix (Di
Cocco et al. 2010). This interfacial-debonding (decohesion)
phenomenon initiates microcracks in the matrix; the process
of coalescence of such microcracks may cause main cracks
or macrocracks (Di Cocco et al. 2010). Furthermore, under
cyclic mechanical loads (Di Cocco et al. 2013), interfacial
debonding can cause the initiation of fatigue cracks (Kohout
2001; Endo and Yanase 2014). Also, microcracks between
the graphite particles and the matrix can result in yielding
in cast irons (Hornbogen 1985; Wang et al. 2007; Qiu et al.
2016a).

In diesel engines that are manufactured in many cases of
cast irons, the innerwall of the combustion chamber can reach
400–600 °C (Tang et al. 2022). Due to such high-temperature
service conditions of automotive engines, CGI experiences
intense thermal loadings. The mismatch in coefficients of
thermal expansion between the graphite particles and the
matrix can lead to interfacial debonding between these two
phases, resulting in microcracks even without mechanical
loads. The propagating microcracks can form a network and
result in a main crack under high temperatures (Qiu et al.
2016a). Also, CGI softens when exposed to severe thermal
loadings in engines enhancing debonding at lower stress. At
room temperature, debonding occurs above 495 MPa (Wu
et al. 2019). On the contrary, it was observed at stress levels
below 50 MPa at 723 K (450 °C) (Qiu et al. 2016b). At the
macroscale, the tensile strength of CGI decreases when the
temperature surpasses 300 °C (Selin 2010). Therefore, the
mechanical and thermal properties of graphite and matrix
are significantly affected by thermal loads, which requires
further investigation.

Morphology, size anddistribution of the graphite phase are
important factors in determining the damage mechanisms of
cast irons (Di Cocco et al. 2014; Zhang et al. 2018; Salomon-
sson and Jarfors 2018; Zhan et al. 2022). The higher content

and size of vermicular graphite particles cause easier initi-
ation of cracks (Qiu et al. 2016a). Also, it was found that
longer graphite inclusions reduced the fatigue life (Kihlberg
et al. 2021). Both stiffness and toughness of composites
changes with increasing volume fraction and aspect ratio
of filler (Safaei et al. 2015). But in contrast to polymer-
based composites, in cast irons the reinforcement is a weaker
and softer constituent. Under increasing environmental tem-
perature, the Young’s modulus of nodular cast iron remains
constant whereas its ultimate tensile strength and yield stress
decrease (Šamec et al. 2011).

Thanks to their various applications in industry, cast
irons were researched for many decades with the develop-
ment of science and technology. Advanced equipment for
observation such as microscopy provided opportunities for
researchers to examine and explore the surfaces of cast irons
at microscopic scale in 1863 (Stefanescu 2019). The first
macroscopic constitutive model for grey cast iron was devel-
oped in 1976, providing an accurate load to predict its failure
(Frishmuth and McLaughlin 1976). In modern research, the
thermomechanical behaviour of cast iron is numerically anal-
ysed mainly with phenomenological and micromechanical
modelling schemes. Based on phenomenological descrip-
tions, the yield surface and hardening parameters weremodi-
fied to accommodatemicrostructural features (Frishmuth and
McLaughlin 1976). The micromechanical methodology, on
the other hand, focuses on predicting the effect ofmicrostruc-
ture of a material directly from experimental observations
(Andriollo et al. 2019; Yang et al. 2021). In addition, the
constituents were usually assumed to be anisotropic (Andri-
ollo et al. 2016) or elastoplastic (Andriollo et al. 2015).

So far, interfacial debonding was studied mainly under
mechanical loads and there is not enough information in the
literature about the thermal damage mechanism of CGI at
themicroscale under pure thermal loading (Palkanoglou et al.
2022).Due to differences in the coefficients of thermal expan-
sion between its main constituents, CGI is vulnerable to high
temperatures. However, because of its complex microstruc-
ture, it is difficult to study thermal debonding thoroughly only
with experimental or microstructural studies. Therefore, this
work assesses the effects of graphite morphology on high-
temperature behaviours of CGI under thermal loading with
three-dimensional numericalmodels. The inputs of into these
models were obtained from the statistical characterisation of
SEM images and mechanical testing.

2 Methodology

2.1 Microstructural characterisation of CGI

Statistical analysis of microstructure was performed for
CGI specimens (EN-GJV-450). A set of 20 images was
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Fig. 2 Procedure of statistical analysis of CGI micrographs

acquired using scanning electron microscopy (SEM) and
analysed with ImageJ software. The image processes in
ImageJ include scale setting, threshold adjustment, and out-
line shape adjustment of graphite (Fig. 2). The obtained
results present the microstructure characterisation of CGI
in terms of the perimeter, area, volume fraction, circularity,
lengths of major and minor axes of graphite inclusions.

Based on the obtained 2D micrographs, the following
assumptions about the geometry of both graphite and matrix
in 3D numerical simulations were adopted:

• nodular (spherical) graphite in 2D was simulated as a
sphere in 3D;

• vermicular graphite particles in 2D corresponded to regu-
lar ellipsoids in 3D;

• the major axis of the vermicular graphite was considered
equal to the diameter of a nodular graphite;

• the rectangular matrix domain in 2D was assumed as a
cube with equal length, width, and height in 3D.

A set of unit cells in 3D was created in Abaqus (Ver-
sion 2021) using the methodology of representative volume
element (RVE), where a graphite inclusion was embedded
into a cubic metallic matrix domain (Fig. 3). An RVE with
equivalent morphology could represent a constituent at the
macroscale using a micro-unit cell (Zhan et al. 2022).

2.2 Numerical models

2.2.1 Geometry

Based on the assumptions for the microstructure character-
isation results, the dimension of the spherical graphite was
calculated with the following relations:

The 2D parameters of nodular graphite particle was
obtained as follows:

A = π

(
D

2

)2

, (1)

S = L2
2D, (2)

Vf = A

S
. (3)

The 3D dimensions of the numerical model follow the
expressions:

Vg = 4

3
π

(
D

2

)3

, (4)

V = L3
3D, (5)

Vf = Vg
V

. (6)

Based onEqs. (1)–(3) and (4)–(6), the dimension ofmetal-
lic matrix domain in the 3D numerical model was acquired
with the following equations:

L2D =
√

π
( D
2

)2
Vf

, (7)

L3D = 3

√
4
3π

( D
2

)3
Vf

. (8)

The aspect ratio of vermicular graphite particle AR was
acquired as follows:

AR = Lmajor

Lminor
, (9)

Lmajor = D. (10)

The numerical models developed comprised a metallic
matrix cube containing a nodular or a vermicular graphite
inclusion. The dimensions of developed FEA models were
established according to the range of spherical graphite
diameters, asmeasured from theCGImicrographs. For nodu-
lar graphite, the diameter varied between 0.29–42.53 µm;
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Fig. 3 Geometry of FEA models:
a model D1; b model D3 (see
Table 3)
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Major axis: 15 µm
Minor axis: 5 µm
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Table 1 Model dimensions
Model
(cases)

Type of graphite
inclusion

Lmajor (µm) Lminor (µm) External dimensions of
matrix (µm)

A (A1, A2) Spherical 15 15 30

B (B1–B3) Vermicular 15 11

C (C1–C3) 7

D (D1–D3) 5

E (E1–E3) 3

hence, 15 µm was selected. For vermicular graphite parti-
cles, a major axis of 15 µm length was used; the maximum
aspect ratio in the statistical analysis was 5, thus, the cor-
responding minor-axis length was 3 µm. Based on the 2D
analysis, the dimension of cubic matrix in 3D was in the
range of 25.74–32.23 µm; therefore, 30 µm was chosen
in this research for comparability. The volume fraction of
nodular graphite was 6.5%, in the range of statistical results
(5.2–11.37%) (Palkanoglou et al. 2020). The dimensions of
spherical and vermicular particles in the matrix are given
in Table 1 for all the studied models. To assess the effects
of the orientation of graphite inclusions on the mechanical
behaviour of CGI, different orientations of graphite (at 0° and
45° with respect to the X axis) in the central XY plane of the
cubic matrix were selected (Fig. 3). The length of diameter
for the nodular graphite inclusion and the major axis for the
vermicular graphite inclusion was 15 µm, and the distance
between boundary of particle and the RVE face was 7.5 µm.
Following the path AB of measurement for presentation of
results, the region from 0 to 7.5 µm is inside the graphite
domain, while the matrix region stretches from 7.5 to 15 µm
in all diagrams (Fig. 3).

2.2.2 Constitutive behaviour

As a soft and brittle material, graphite was considered to
display a limited plastic behaviour (Seldin 1966; Greenstreet
et al. 1973; Andriollo et al. 2015). The graphite and matrix

domain of the model had the properties of CGI used in the
previous 2D study in Table 2 (Palkanoglou et al. 2020).

The mechanical behaviours of both graphite and the
metallic matrix in this research were described with the
J2-flow theory (Palkanoglou et al. 2020). For the graphite
phase, beyond the elastic region, a damage model was
employed. The initiation of damage was considered when
a plastic-strain-based criterion was fulfilled. When the plas-
tic displacement approaches the displacement at failure, the
damage initiationwas considered tomake sure the debonding
of graphite happens at the determined temperature matching
the SEM experiments. After the onset of damage, the stiff-
ness of the material degraded gradually to 0. The integral
ductile damage criterion is given by the following equation
(Hooputra et al. 2004)

ωD =
∫

dεplD
ε
pl
D

= 1, (11)

where ωD is the state variable increasing monotonically. At
each increment, the state variable increment:

�ωD = �ε
pl
D

ε
pl
D

≥ 0, (12)

where ε
pl
D is the plastic strain at the onset of damage.

Damage was considered to evolve linearly with deforma-
tion after its initiation. Element deletion occurred when the
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Table 2 Constitutive parameters
for matrix and graphite Matrix

Temperature Yield point
(MPa)

Yield strain
(%)

Young’s
modulus
(GPa)

Poisson’s
ratio

Coefficient of
thermal
expansion

50 323.95 0.209 150 0.25 1.2 × 10−5

150 316.84 0.195

300 301.18 0.225

400 265.92 0.178

500 257.71 0.179

Graphite

50 27.56 0.184 15.85 0.2 2.9 × 10−6
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Fig. 4 Convergence study for developed model

value of damage exceeded a set threshold at all integration
points of a given element. This damage criterion was only
used in graphite inclusion and applied to every element in
the graphite. The four neighbouring elements surrounding
the node with maximum damage were selected. In simula-
tions, the damage parameter was calculated as the average
for the four neighbouring elements with maximum damage.

2.2.3 Boundary and loading conditions

Eight-node 3D stress elements (C3D8)were selected tomesh
the models. After conducting a mesh convergence study,
1 µm was selected as the size of elements (Fig. 4). 26,400
elements were used leading to 28,957 nodes in model A.

Periodic boundary conditions (PBCs) and fully-fixed
boundary conditions (FFBC) were considered in this study
to represent the extreme cases of the in-service constraints.
PBCs control the pairs of nodes on the corresponding
surfaces with the same level of displacement in opposite

directions. These conditions are widely applied in finite-
elements analysis to simulate the microscopic and meso-
scopic behaviours of the constituents with RVE (Garoz et al.
2019) and allow simulations of deformation of the RVE
model using a small domain that represents the corresponding
infinitely large system permitting the distortion of boundary
surfaces (Omairey et al. 2019). Under PBCs, a pair of any
two points x and x + d on the two corresponding boundary
surfaces with distance d should meet the condition

u(x + d) = u(x) + εd, (13)

t(x + d) = −t(x), (14)

where u is the displacement and t is the traction at x , respec-
tively; ε is the average infinitesimal strain over the volume
(Drago and Pindera 2007). In some simulations, fully-fixed
boundary conditions (FFBCs) were applied at all the nodes
along the boundary surfaces of the cubic metallic matrix,
constraining all six degrees of freedom of these nodes. For
each morphology of graphite unit cell, PBCs or FFBCs were
applied for comparability. Fully fixed and periodic bound-
ary conditions can give the upper and lower bounds of the
realistic case in practise. The realistic case should be some-
where in between. Thermal loading was used for all unit cells
with a linear increase from 25 to 500 °C. Specially, Model
A2 was also followed by cooling down to 25 °C and then
under further multiple thermal loading cycles (single cycle
of 25–500–25 °C).

In summary, the details of FEAmodels are shown in Table
3:

Thus, models A1 to A2 described nodular graphite parti-
cles, with all other models dealing with vermicular ones.

Complex 3D shapes of vermicular and flake graphite par-
ticles in CGI—as opposed to inclusions in nodular cast
irons—prevent the establishment of general features of its
thermomechanical behaviour at microscale. In contrast to
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Table 3 Summary of analysed
RVE models Model Notation Orientation of

graphite
Lmajor (µm) Lminor (µm) AR Boundary

condition

Model A A1 / 15 15 1 FFBC

A2 / 15 1 PBC

Model B B1 0° 11 1.36 FFBC

B2 0° 11 1.36 PBC

B3 45° 11 1.36 FFBC

Model C C1 0° 7 2.14 FFBC

C2 0° 7 2.14 PBC

C3 45° 7 2.14 FFBC

Model D D1 0° 5 3 FFBC

D2 0° 5 3 PBC

D3 45° 5 3 FFBC

Model E E1 0° 3 5 FFBC

E2 0° 3 5 PBC

E3 45° 3 5 FFBC

direct introduction of such shapes (obtained, e.g., with com-
puted tomography) into numerical simulations, this study
focuses on the simplified–but controlled–morphology of the
inclusions. Together with the concept of RVE, this allows
the assessment of the geometrical features on evolution of
thermal stresses and strains at microscale and distribution of
the resultant damage.

2.2.4 Validation of numerical models

A tensile test was implemented on a CGI (EN-GJV-450)
specimen at room temperature and the measured mechan-
ical response was compared with results obtained with the
developed FEAmodels for validation in Fig. 5. The mechan-
ical data for the matrix domain in simulations were based on
the literature (Niu et al. 2021). The tensile loading and PBCs
were applied to the 3D numerical model at room temperature
to emulate the experiments. The validation of the pro-
posed models was implemented by the comparison between
numerical simulations and tensile-test experiments since
the interaction in microstructure was difficult to measure
directly. Monitoring of three-dimensional particle debond-
ing with SEM is not possible. Some in-situ SEM studies of
microspecimens loaded with miniature load cells allowed 2d
observations of separation between the nodular graphite par-
ticles and the matrix in ferritic–pearlitic ductile cast only on
the specimen’s surface (Iacoviello et al. 2008).
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Fig. 5 Experimental and numerical stress–strain curves of CGI (model
A2) at room temperature

3 Results and discussions

3.1 Effect of particle shape orientation

Results for the effect of graphite orientation were obtained
with the respective models; the temperature of damage initi-
ation in graphite in models with FFBCs is shown in Fig. 6.
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The graphite with a larger aspect ratio exhibited damage at
lower temperatures since it is much sharper than the spher-
ical particle (an aspect ratio of 1). These nodular particles
are more difficult to damage. Damage appeared earlier in
the thermal cycle as the inclusion aspect ratio increased, in
a monotonic but non-linear way. The trend was similar for
both graphite orientations, 0° and 45°. It can be concluded
that damage in graphite initiates at lower temperatures in less
spherical particles while graphite orientation does not affect
this process significantly when FFBCs are used, to represent
behaviour of constrained parts of the components exposed to
the thermal load.

3.2 Effect of graphite morphology

The evolution of the maximum damage in graphite particles
with different aspect ratios is shown in Fig. 7 for FFBCs. As
the aspect ratio of the inclusion increased, and the damage
due to the application of thermal load appeared earlier. The
cases with spherical graphite demonstrated higher strength,
with the damage occurring at higher temperatures. The evo-
lution of damagewas affected by the inclusion shapewith the
sharper-shaped particles (i.e., higher aspect ratios) exhibit-
ing a more rapid damage evolution. The trends of damage
evolution differed significantly even for small variations in
the inclusion’s aspect ratio.

Under FFBCs, the unit cell was fully constrained; thus,
at heating, the graphite and matrix were compressed by
each other due to the mismatch in the coefficients of ther-
mal expansion. The graphite with a smaller aspect ratio has
higher circularity and larger volume so that it can with-
stand a higher compressive load. With an increase in the
aspect ratio, the stress–strain behaviour of graphite particles
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Fig. 7 Evolution of maximum value of graphite damage in CGI for
inclusions with different aspect ratios for FFBCs

became nonlinear due to the initiation of graphite-matrix
decohesion. In contrast, the decreased aspect ratio reduces
of the level of compressive stresses at FFBCs and made
their mechanical response almost linear. Kinematically con-
strained graphite particles continue resisting compression
even after local failures, under nearly hydrostatic loading;
the current model does not account for the local cracking in
compressed graphite.

Spatial distribution of damage in graphite inclusions with
different morphologies is shown in Fig. 8 after heating to
500 °C. It was found that damage was mainly localised near
the interface boundary between the particle and the matrix.
For a higher aspect ratio, the volume of graphite inclusion in
the direction of the Z axis in model E1 was smaller than that
in model A1 (for the spherical particle) leading to a higher
volume of the metallic matrix (Fig. 8). As a result, the higher
compressive load from the matrix under FFBCs caused a
more significant damage in the graphite inclusion in model
E1 in Z direction.

3.3 Effect of boundary conditions

The effect of boundary conditions was studied by comparing
the distributions of normal stress along the major axis of the
graphite inclusion, from the graphite centre to the edge of
the analysis domain (see path AB in Fig. 3a). In FFBCs, the
mismatch caused compressive normal stresses in both con-
stituents. The increased aspect ratio resulted in significantly
higher stress levels. Transition to the PBCs that allow the
thermal expansion of the unit cell fully changed the charac-
ter of the normal stresses, generating tensile stresses both in
the graphite particles and thematrix. Also, the charter of their
distribution depending on the aspect ratio changed: stresses

123



Multiscale and Multidisciplinary Modeling, Experiments and Design

Fig. 8 Damage distributions in
graphite inclusions with different
morphologies after heating to
500 °C: a model A1; b model E1
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in the nodular particle were lower.With the increasing aspect
ratio, the stresses grew, while the situation in the matrix was
reversed: for the low aspect ratio, the normal stresses were
smaller. For the nodular particle, for the PBCs, they were the
highest in the matrix.

The calculated levels of the normal stresses in the graphite
particles were rather high, potentially in excess of its strength
and close to the maximum values observed in the literature
(AZOM 2022). Hence, the future models should incorporate
the account for the potential fracture of graphite.

The distribution of von Mises stress along the path AB in
themodelswith FFBCs is presented in Fig. 9a.Under thermal
loading, the thermal expansion of both phases is restricted
by the fixed boundaries resulting in compressive stress. This
interaction is also affected by the mismatch of thermome-
chanical parameters of the two constituents and the particle
morphology. When the inclusion shape was closer to spher-
ical, the stress state was effectively hydrostatic, i.e., with
vanishing effective stresses. As a result, the von Mises stress
in spherical graphite was rather low in all cases. In contrast,
its magnitude in the matrix increased at the periphery of the
unit cell with the aspect ratio.

The distribution of von Mises stresses in CGI changes for
PBCs are in Fig. 9b; being able to expand, the unit cell did not
develop excessive thermal stresses. As a result, the developed
stresses in the matrix at the maximum temperature were far
below the yield point even in the case of vermicular graphite
inclusion. The trend of all curves for different aspect ratios
was similar, characterised by considerable gradients in parts
of the matrix close to the interface.

In FFBCs, the thermal stresses were still present after the
cooling-down stage. The highest level of von Mises stress
was 460 MPa at 500 °C and 553 MPa at 25 °C surrounding
graphite particle (Fig. 10); this results in the plastic strain of
the matrix.

In case of PBCs, the mismatch of thermal expansion
between the two constituents led to stress up to 160MPa after

the increase in the temperature (Fig. 11a). Residual stresses
were observed in the model after each cycle; however, the
level under PBC was negligibly small (up to 6.6 MPa)
because of the relatively unconstrained thermal expansion
after cooling down to 25 °C (see the difference in the scales
at Fig. 11). The stresses in the models with PBC were lower
than the yield point due to non-restricted boundary condi-
tions. Thus, graphite damage was not observed in these PBC
cases.

3.4 Outlook

The current model did not consider interfacial damage pro-
cesses directly, although some analysis for formulations has
been done by authors previously. This is related to the high
intensity of the three-dimensional simulation using cohesive
zone elements. The next step will be the introduction of these
types of elements into simulations and to consider the inter-
face between graphite and matrix.

The present paper approached 3D simulations and used
the same damage criterion of graphite without interface. The
simplified model without interface would be the basic stage
of the series of model. The interface will be considered in the
future models. However, direct measurement of interfacial
damage properties is not possible and needs development of
some additional experimental methods.

From the simplified models, damage was assumed to
appear on the outer layer of graphite because of its brittle
properties and inability to accommodate plastic deforma-
tion. Metallic matrix was generally considered isotropic and
ductile. The ductile damage criterion has been used in fer-
rite matrix phase of cast iron because of the high ductility
and moderate yield strength of matrix (Andriollo and Hattel
2016). However, the limitations of ductile damage criterion
include its ability to properly describe the plastic volumetric
strain (Murakami 2012).
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Fig. 9 Distribution of von Mises stress in CGI for different graphite aspect ratios at 500 °C: a FFBCs; b PBCs

Fig. 10 Distribution of von Mises
stress in model at different
temperature under FFBCs:
a 500 °C; b 25 °C
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Fig. 11 Distribution of von Mises stress in model at different temperature under PBCs: a 500 °C; b 25 °C
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Pure thermal load results in high levels of hydrostatic
stresses, the J2 based plastic model is not fully adequate.
Thus, the authors consider looking into other plastic poten-
tials (such as Drucker-Prager) for their future simulations.

4 Conclusions

In this work, the effects of morphology and orientation of
graphite inclusions as well as the boundary conditions of the
studied domain on damage and thermomechanical behaviour
of CGI were investigated by developing and employing a set
of three-dimensional numerical models. The main conclu-
sions are as follows:

• The temperature of damage initiation in graphitewere sim-
ilar for both orientations (0° and 45°). Hence, orientation
of graphite particles did not affect the damage onset sig-
nificantly.

• In contrast, the morphology of graphite influenced the
onset of damage and plasticisation. When the aspect ratio
of graphite inclusion increased, the initiation of damage in
graphite started earlier and develops with increasing tem-
perature.

• Two types of used boundary conditions—PBCs and
FFBCs—provide the lower and upper boundaries for
graphite damage mechanisms, respectively. The results of
models with FFBCs are more conservative than PBCs in
FEA models (models A to E).

This work demonstrated a consistent trend for the graphite
damage mechanism for various three-dimensional shapes
with the change in the aspect ratios. The next step would
be to consider the effect of deviation of real-life shapes of
graphite particles from ellipsoids used in this study on ther-
momechanical behaviour of modern cast irons.
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