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Abstract
This study is aimed to determine collision integrals for atoms interacting accord-
ing to the m-6-8 and Hulburt–Hirschfelder potentials and analyze the differences 
between potentials. The precision of four significant digits was reached at all tested 
temperatures, and for high-temperature applications, six digits were calculated. The 
proposed method was tested on the Lennard-Jones potential and found to excellently 
agree with the recent high-quality data. In addition, the Hulburt–Hirschfelder poten-
tial was used for determining the collision integrals of the interaction of nitrogen 
atoms in the ground electronic state and compared with other known values. The 
calculations were performed using Mathematica computation system which can deal 
with singularities (so-called orbiting).

Keywords Collision integrals · Deflection angle · Hulburt–Hirschfelder potential · 
Lennard-Jones potential · m-6-8 potential · Nitrogen atoms

1 Introduction

The collision integrals are used evaluating the transport properties of gases (includ-
ing diffusion coefficient and thermal transport coefficient) [1]. The most basic and 
commonly used collision integrals are the �(1,1) and �(2,2) , which are called the dif-
fusion collision integral and the viscosity collision integral, respectively. They are 
the first-order approximations in the Chapman-Enskog theory, while for higher-
order approximations, other collision integrals are needed.

In recent studies, collision integrals have been used for analyzing diffusion [2] 
and the transport properties of equilibrium and non-equilibrium two-temperature 
plasmas [3–7] and of hypersonic flows [8–10], and also for modeling combustion 
[11, 12].
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Accurate estimation of the collision integrals for colliding atoms is complex. 
Specialized methods have been developed [13, 14] by some authors, but their 
codes are not open. The older software of O’Hara and Smith [15] is available, 
in which authors have reached respectable five significant digits and this code is 
still in use. However, often the precision of collision integrals remains unknown 
[16].

The present study is mainly focused on higher temperatures (reduced tem-
perature T∗ ≥ 10 ) for two reasons—they are appropriate for classical mechanics 
(quantum mechanical approach has been applied in some studies [17, 18]) and 
allow extending study to the interaction of not only atoms but also molecules (at 
high temperatures, molecular rotations are fast and, thus, enable to average over 
rotations and use effective potential energy curve (PEC) [17]; the most appropri-
ate data for the interaction of molecules are, however, based on full potential 
energy surfaces [10]).

The most basic and the most widely used is the Lennard-Jones (12-6) poten-
tial energy function, for which high-accuracy data are available for comparison 
[14]. Due to its simplicity, scattering data based on this potential and its modifi-
cation are still in commonly used [19, 20].

Other possible potential functions that can be considered to correctly describe 
interatomic interactions (or effective atom-molecule or molecule-molecule) and 
in particular successfully compared with the experiment, are the m-6-8 potential 
[21]. An advantage of the m-6-8 potential that it allows optimizing the collisions 
of particular atoms (or molecules) [22].

The third potential considered in the present study is the Hulburt–Hirschfelder 
potential (generalized Morse potential), which is commonly used to describe 
interatomic potential and the related collision integrals, notably for high-tem-
perature applications such as hypersonic flows [13, 23–25]. Some PECs (can 
be described by the Hulburt–Hirschfelder functional form) may have multiple 
extrema [26], but in the studied cases, such features were not found and so they 
are not included in the scope of the present study.

This study aimed to determine collision integrals in reduced variables for 
m-6-8 and the Hulburt–Hirschfelder potentials with up to six-digit precision 
(with prior testing on the Lennard-Jones potential).

The calculations are made for potentials with parameters adjusted for describ-
ing argon dimer, but Mathematica notebooks allow changing the parameters of 
potential and generating collision integrals for the interaction of other atoms. 
The m-6-8 potential is appropriate for describing of rare gas dimers (espe-
cially it perfectly agrees with the ab initio curve of Ref. [27]), whereas the Hul-
burt–Hirschfelder potential is more appropriate for common molecules such as 
nitrogen or oxygen atoms.

The main purpose of this study is to demonstrate the usefulness of the method 
(hence, the Mathematica notebooks are made available) rather than the gen-
eration of data. However it has analyzed the interaction of nitrogen atoms, for 
which new values are calculated (and fitted to functional forms) and compared 
with those known so far.
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2  Theory

The deflection angle of particles (refers here to atoms) interacting with the potential 
energy function V(r) is calculated in the scattering theory as follows [28]:

where b is the impact parameter, rc is the classical turning point (distance of the 
closest approach), and �2 = �g2∕(2kT) ( � reduced mass, g relative velocity, k Boltz-
mann constant, and T temperature).

Collision integrals are defined in terms of deflection angle � and collision cross 
section Q(l) [1]

by the formula

If the potential energy has the form V(r) = �f (r∕�) , it is customary to introduce 
reduced variables [1], namely r∗ = r∕� (with � defined by V(�) = 0 ), b∗ = b∕� , 
V∗ = V∕� , T∗ = kT∕� , and g∗ = �g2∕(2�) , and divide by the hard sphere expression; 
the resulting expression for collision integrals is

with

The Lennard-Jones (12-6) potential in the reduced coordinates is

The m-6-8 potential is [29]

with � � = 3.0 , m = 11 , and d = 1.11446 which are the parameters for argon atom 
collisions [21, 30].
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The Hulburt–Hirschfelder potential in the reduced form is written as follows:

with � = 6.21571 , � = −13.8668 , � = −4.4466 , and d = 1.12042 . Note that this 
potential has four free parameters (one more compared to the m-6-8 potential) which 
are related to spectroscopic constants.

For collision of the ground-state nitrogen atoms, the parameters of the Hul-
burt–Hirschfelder potential were taken from Ref. [31]. The missing values of � cal-
culated from non-reduced PECs are �1 = 1.581369 ( d = 1.31173 ) for X1Σ+

g
 state, 

�2 = 1.93955 ( d = 1.25355 ) for A3Σ+
u
 , �3 = 2.75276 ( d = 1.11089 ) for A�5Σ+

g
 , and 

�4 = 6.19849 ( d = 1.13254 ) for 7Σ+
u
.

2.1  Computational Details

Multidimensional integration was performed in the Mathematica software [32] using 
the inbuilt NIntegrate function with Method → {GlobalAdaptive,MaxErrorIncreases → 100000, }

{SymbolicProcessing → 0, SingularityHandler → None} options (such options are suggested by 
the Mathematica community for complex numerical integration cases). The number of 
significant digits is fixed by the PrecisionGoal option. This approach was evaluated 
on high-quality collision integrals known for the Lennard-Jones potential. At higher 
temperatures ( T∗ ≥ 10 ), six significant digits can be reached with a moderate computa-
tion time, whereas at lower temperatures, only four significant digits can be evaluated. 
Calculations with six-digit precision take more than 10 times longer time compared to 
those done with four-digit precision.

Although the calculations of collision integrals involved singularities, they are effec-
tively dealt by the algorithm (also, setting SingularityHandler → Automatic gives the 
same results within the given precision).

As for accuracy, there are no analytical results available for the real potentials to 
make definite comparisons, but in case of the Lennard-Jones potential comparison is 
done with the results of specialized software.

At low temperatures, the Mathematica issues warnings. However, comparisons with 
the Lennard-Jones and m-6-8 potentials also show that the results are reliable (at least 
for those simple potentials). Since warnings are only seen at lower temperatures, it can 
be concluded that the present approach is reliable and capable of yielding many signifi-
cant digits for high temperatures and PECs with one minimum and no maxima.

3  Results

3.1  Testing—Comparison with High‑Precision Data for the Lennard‑Jones 
Potential

The high-precision data for the Lennard-Jones potential were previously calculated 
by Kim and Monroe [14].

(8)
V∗
HH

(r∗) = exp(−2�(r∗∕d − 1)) − 2 exp(−�(r∗∕d − 1))+

+ �(r∗∕d − 1)3[1 + �(r∗∕d − 1)] exp(−2�(r∗∕d − 1)),
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Prior to the comparison of the collision integrals themselves, the deflection angles 
were compared (Table 1). After appropriate round off, the values perfectly agreed. It 
should be noted that both Lennard-Jones values and Kim and Monroe values differ 
from the old Hirschfelder data [33], especially in the case small impact parameters 
but agree with the contemporary Sharipov and Bertoldo values [34].

The reduced collision integrals �(l,s)∗ were compared with the Kim and Monroe 
data as shown in Tables 2 and 3.

It can be noted that all six or at least five significant digits are the same, which 
confirms the success of the proposed general, non-specialized approach.

Values at lower temperatures can also be calculated with the same precision but 
the calculation can take a significantly longer time. For example, for at T∗ = 10 , 
the calculation times with precision of four, six, and eight significant digits can be 
related as 1:12:80 (calculation time with four digits is set to unity but of course the 
actual time depends on the machine used).

Also for lower temperatures calculation is longer, for example the calculation 
time (with the same precision) for the reduced temperature 50 is more than 4 times 
faster than for reduced temperature 10.

It is crucial to note that even though no specialized treatment of singularities was 
applied the method agrees well with high-accuracy data. The deflection angle of 
course had singularities (orbiting) in the integration interval, as indicated in Fig. 1.

Table 1  Comparison of the 
Lennard-Jones deflection angles 
�(b,

√

0.1) of the present 
method (Eq. 1) with Kim and 
Monroe (KM) values (given in 
Table 3 of Ref. [14])

b Eq. 1 KM

2.838 − 0.32 303 − 0.3230
2.643 − 0.70 494 − 0.7049
2.538 − 2.9027 − 2.903
1.881 − 0.11 185 − 0.1119

Table 2  Comparison of the Lennard-Jones collision integrals �(l,s)∗ , results of the proposed method, and 
Kim and Monroe (KM) results

T
∗ �(1,1)∗ �(1,1)∗ KM �(2,2)∗ �(2,2)∗ KM �(2,3)∗ �(2,3)∗ KM

10 0.7 422 348 0.74 223 469 0.8 243 708 0.82 436 995 0.7 926 503 0.79 264 954
50 0.5 759 676 0.57 596 616 0.6 497 919 0.64 979 124 0.6 255 534 0.62 555 277
100 0.5 167 658 0.51 676 535 0.5 851 479 0.58 514 739 0.5 627 464 0.56 274 587
400 0.4 141 855 0.41 418 524 0.4 710 329 0.47 103 246 0.4 522 682 0.45 226 789

Table 3  Comparison of the 
Lennard-Jones collision 
integrals �(l,s)∗ , results of the 
proposed method, and Kim and 
Monroe (KM) results

T
∗ �(2,4)∗ �(2,4)∗ KM �(4,4)∗ �(4,4)∗ KM

10 0.7 693 016 0.76 930 082 0.8 000 159 0.80 001 509
50 0.6 067 059 0.60 670 537 0.6 336 970 0.63 369 637
100 0.5 453 505 0.54 535 011 0.5 705 011 0.57 050 077
400 0.4 377 739 0.43 777 361 0.4 588 874 0.45 888 704
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3.2  The m‑6‑8 and Hulburt–Hirschfelder Potentials

To test the applicability to other potentials, the m-6-8 (with m = 11 here) and Hul-
burt–Hirschfelder potentials were chosen. The values obtained from the presented 
approach were compared with the Hanley and Klein data, as presented in Table 4 [1, 
21]. The agreement comparison revealed that the method does not agree well with the 
m-6-8 potential compared to the Lennard-Jones potential but that the Hanley and Klein 
data are older than the highly accurate Kim and Monroe data.

The values noted for the m-6-8 potential are similar to the Lennard-Jones potential-
based values, but it is known that it translates to significantly different transport proper-
ties [21], and therefore, highly accurate collision integrals are crucial.

Finally, the Hulburt–Hirschfelder potential was used to compare with the previ-
ous data. Figure 2 shows the differences between all three potential functions, while 
Fig. 3 shows the differences between the respective �(1,1)∗ collision integrals. Interest-
ingly, the difference between collision integrals is smaller at higher temperatures than 
at lower ones, which is contrary to the case of thermodynamics where discrepancies 
between potentials increase with increase in temperature [35].

Table 4  Comparison of the 11-6-8 collision integrals �(l,s)∗ , results of the proposed method, and Hanley 
and Klein (HK) results

T
∗ �(1,1)∗ �(1,1)∗ HK �(2,2)∗ �(2,2)∗ HK �(2,3)∗ �(2,3)∗ HK

10 0.7 489 515 0.7 489 310 0.8 310 240 0.8 310 339 0.7 999 100 0.7 999 400
20 0.6 712 188 0.6 712 284 0.7 513 594 0.7 513 709 0.7 243 664 0.7 243 714
30 0.6 304 578 0.6 304 562 0.7 086 693 0.7 086 581 0.6 829 526 0.6 829 331

Fig. 1  Deflection angle for the Lennard-Jones potential
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3.3  Application of the Hulburt–Hirschfelder Potential to Collisions of Nitrogen 
Atoms

The PECs of nitrogen atoms interactions can be conveniently presented in the form 
of the Hulburt–Hirschfelder potential, and the data of, often needed, collision inte-
grals can be generated and compared with other data.

The collision integral of atoms is defined as the weighted average (in units of 
squared Angstroms by change of units of �’s)

(9)
�2�(1,1)∗ ∶=

�2
1
�(1,1)∗(X1Σ+

g
) + 3�2

2
�(1,1)∗(A3Σ+

u
) + 5�2

3
�(1,1)∗(A�5Σ+

g
) + 7�2

4
�(1,1)∗(7Σ+

u
)

1 + 3 + 5 + 7
,

Fig. 2  Potential energy curves of the Lennard-Jones, m-6-8, and Hulburt–Hirschfelder potentials

Fig. 3  Collision integrals �(1,1)∗ on the Lennard-Jones (LJ), m-6-8 (m-6-8), and Hulburt–Hirschfelder 
(HH) potential energy curves
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the statistical weights are determined form molecular term symbols (for each PEC) 
of the N 2 molecule electronic states given in brackets. The average is done because 
the N 2 molecule dissociates from those four electronic states and becomes the 
ground state nitrogen atoms, so that when the atoms collide they interact according 
to one of those curves with appropriate statistical weights (to determine the prob-
ability of the potential curve) and such weighted average is the proper description of 
the total process that reflected by macroscopic transport properties.

Some datasets are available for the ground-state nitrogen atoms, and they show 
certain disagreement. Those datasets are the values of Levin et al. [36] (Levin1990 
in Table 5) calculated using the semiclassical approach on PECs based on ab initio 
data and experimental data; the values of Capitelli et al. from year 2000 [37] which 
are based on Lennard-Jones and Morse potential models (Capitelli2000 in Table 5), 
and the values of Capitelli et al. from year 2007 [38], in which the collision integrals 
were revisited using of Piriani PEC (Capitelli2007 in Table 5).

The differences may be due to the use of classical versus semiclassical approach 
(at lower temperatures) and differences other than the shapes of reduced poten-
tials—potentials in reduced coordinates generate negligible differences at high tem-
peratures (Fig. 3) so that the difference can be attributed to the depths of PECs (used 
to calculate reduced temperatures T∗ = kBT∕De ; it should be noted that they are dif-
ferent for each PEC) or the values of � (the choice for mostly repulsive 7Σ potential 
can differ).

Because the reduced temperatures are often lower than unity (especially for the 
ground electronic state curve), the three significant digits were calculated. However, 
due to the differences between datasets, such precision is satisfactory.

Graphical comparison in Fig. 4 shows that the present values at lower tempera-
tures agree with Capitelli2000 [37] or Capitelli2007 data [38]. At higher tempera-
tures, Capitteli2007 [38] data start to significantly diverge, whereas Levin1990 [36] 
and the present data are in much better agreement.

Table 5  Collision integrals 
�2�(1,1)∗ for the interaction of 
ground-state nitrogen atoms

T(K) Levin1990 
( Å2 ) [36]

Capi-
telli2000 
( Å2 ) [37]

Capi-
telli2007 
( Å2 ) [38]

This work ( Å2)

500 7.03 7.76 7.34 7.67
1000 5.96 6.79 6.30 6.65
2000 5.15 5.25 5.42 5.69
4000 4.39 – 4.64 4.73
5000 4.14 4.27 4.40 4.44
6000 3.94 – 4.21 4.21
8000 3.61 – 3.93 3.85
10 000 3.37 3.55 3.72 3.59
15 000 2.92 3.11 3.36 3.12
20 000 2.62 2.81 3.13 2.80
25 000 2.39 – – 2.57
30 000 2.22 – – 2.39
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Other collision integrals are only given in the work of Levin et al. [36] and are 
compared in Table 6.

The fits for �(1,1)∗ and �(2,2)∗ are the following (symbol f underlines that it is the 
fitting function and not the actual calculated value):

and

where T ∈ [1000K, 30, 000K].

4  Conclusions

The collision integrals �(l,s)∗ were calculated by applying the general numerical inte-
gration method using the Mathematica software at higher and lower temperatures 
for the Lennard-Jones, m-6-8, and Hulburt–Hirschfelder potentials (the basic case of 
one minimum and no maxima was considered). The high precision of six digits was 
reached at higher reduced temperatures. The results observed for the Lennard-Jones 
potential agree very well with the previous high-precision calculations, which con-
firms not only good precision but also accuracy of the results. Moreover, there was 
no need to develop specialized software to deal with singularities.

(10)

f�2�(1,1)∗ (T) = 4.5727 − 1.9884 ⋅ 10−4T + 8.3134 ⋅ 10−9T2 − 2.0674 ⋅ 10−13T3+

+ 2.155 ⋅ 10−18T4 + 3651.9∕T − 1.3798 ⋅ 106∕T2,

(11)

f�2�(2,2)∗ (T) = 4.8663 − 1.9083 ⋅ 10−4T + 8.7536 ⋅ 10−9T2 − 2.444 ⋅ 10−13T3+

+ 2.7856 ⋅ 10−18T4 + 4273.8∕T − 1.6939 ⋅ 106∕T2,

Fig. 4  Graphical comparison of collision integrals �2�(1,1)∗ given in Table 5
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The present results for the m-6-8 potential are not in such good agreement with 
other data which are older and most probably not so accurate as the recent Len-
nard-Jones results. The Hulburt–Hirschfelder potential-based collision integrals 
were calculated and compared with those based on other potential energies showing 
increased discrepancies with lowering temperature—collisions at low energies are 
more sensible to the structure of potential.

The Hulburt–Hirschfelder potential was also utilized to calculate collision inte-
grals for ground electronic state nitrogen atoms (using four potential energy curves) 
and successfully compared with other known data. Those collision integrals were 
fitted to functional forms to facilitate their use.

The Mathematica notebooks for each potential are made freely available in order 
to facilitate the use of the proposed approach.

5  Supplementary Material

The Mathematica notebooks are provided for the Lennard-Jones potential, the m-6-8 
potential, and the Hulburt–Hirschfelder potential.
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Table 6  Comparison of 
collision integrals �2�(2,2)∗ for 
the interaction of ground-state 
nitrogen atoms with Levin1990 
[36]

T(K) Levin1990 ( Å2) This work ( Å2)

500 7.94 8.39
1000 6.72 7.26
2000 5.18 6.23
4000 4.98 5.20
5000 4.70 4.89
6000 4.48 4.65
8000 4.14 4.29
10 000 3.88 4.03
15 000 3.43 3.57
20 000 3.11 3.25
25 000 2.87 3.01
30 000 2.68 2.81
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