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HIGH-TEMPERATURE, HIGH-POWER-DENSITY
THERMIONIC ENERGY CONVERSION FOR SPACE

by James F. Morris

Lewis Research Center
SUMMARY

Theoretic converter outputs and efficiencies indicate the need
to consider thermionic energy conversion (TEC) with greater power
densities and higher temperatures within reasonable limits for space
missions. This parametric presentation of converter-output power
density, voltage, and efficiency as functions of current density
covers 1400-to-2000K emitters with 725-to-1000K collectors. The
results encourage utilization of TEC with hotter-than-1650K emitters
and greater-than- 6W/cml outputs to attain better efficiencies, greater
voltages, and higher waste-heat-rejection temperatures for multihundred-
kilowatt space-power applications. For example 1%00K 30 A/em2 TEC
operation for NEP compared with the 1650K, 5 A/cm¢ case should allow
much lower radiator weights, substantially fewer and/or smaller emitter
heat pipes, significantly reduced reactor and shield-related weights,
many fewer converters and associated current-collecting bus bars, less
power conditioning, and lower transmission losses. Integration of
these effects should yield considerably reduced NEP specific weights.
So true overall system optimization with parametric TEC inputs is
desirable.

THERMIONIC ENERGY CONVERSION (TEC) FOR SPACE

Reliable, efficient, durable electric-generation systems with
high power-to-weight ratios are essential for future space missions--
particularly those with near-megawatt requirements. Such power-system
qualities characterize thermionic converters. In addition TEC embodies
simplicity, light weights, small volumes, negligible mechanical stresses,
no moving parts, modularity for space safety, great power densities,
and high temperatures which allow low-mass radiators. Thermionic
converters are also adaptable: They generate electricity directly
from thermal energy of nuclear, solar, or chemical origin.

At present the major space TEC application appears to be nuclear
electric propulsion (NEP) (refs. 1 to 3). But analyses that properly
recognize the high-temperature, high-power-density acvantages of TEC
may prove it valuable for solar, radioisotope, and topping utiliza-
tion in space also Unfortunately, though, some desian- feasibi]ity

omGINAL Aur!
OF POV

- -



L

studies assume without optimization that low or intermeriate temper-
atures)and small power densities are required for space TEC (refs.
1 tH-3).

The present report offers some theoretic results that emphasize
the need to consicder greater power densities and higher temperatures
within reasonable 1imits fcr TEC in space: Converter outputs and
efficiencies for 1400-t0-2000K emitters with 725-to-1000K collectors
make this point.

SOME TEC BACKGROUND AND THEORY

George Hatsopoulos and Elias Gyftopoulos, long-term international
TEC experts, as well as B. Ya. Moyzhes and G. Ye. Pikus, two other
world-renownad TEC contributors, elabora*e on the thermionic-conver-
ter heat engine in their reference works (refs. 4 and 5): For such
a device the heat supplied isothermally at absolute temperature Ty
is JdQp = JTh dSp = Th dSh. where (dSy is the entropy decrease
of the source. Sim lar]y e heat rejected isothermally at absolute
temperature T is [dQc = JT¢ dSc = Tc [dSc, where JdS. is the en-
tropy increase of the sink %hen according to Carnot the ideal heat-
engine efficiency is

1 S 1
B o[- e ]

From this basic principle comes the expectation that in general
raising tne emitter temperature or lowering the collector temperature
tends to increase TEC efficiency. Local exceptions to this corollary
may occur for optimizations of specific converters. But with freedom
of selection for electrode types and materials, enhancement modes,
and operating conditions this temperature generalization for TEC ef-
ficiency prevails.

Occasionally, disseminated information apparently contends with
the idea that TEC efficiencies generally rise with increasing emitter
temperatures (ref. 3). At such times reaffirmation of the validity
of Nicolas Carnot's thermodynamic legacy seems appropriate. But
merely pointing to the preceding equation is perhaps somewhat sim-
plistic. So the present report relies on TEC output and efficiency
calculations based on the assumptions used to produce pages IV-15
to IV-18 of ref. 3: "Back emission should be limited to 10%" for
1400, 1650, and 1800K emitters (2007K incluoed also) with 725, 925,
and 1000K collectors. However the nresent analysis deletes the ref. 3
assuthions that "converter power density shculd be set at 5 to 6
W,/cmé" and that the highest emitter temperature should be used only

?th the highest collectnr temperature. Also. assumed interelectrode



losses near zero by FY 81 (ref. 6) allow estimates of collector
work functions.

The appropriate converter outputs are the current density,

JO'JSE"JR' 1)
the electrode voltage,
VogﬂE'Qc-VD'VA=ﬂE-VB-VA. 2)
the voltage at optimum-lead terminals,
VOL"VD-zVL. 3)

the electrode power density,

and the effective power density with optimum leads attached to the
converter,

POL = JO VoL 5)

Here @¢ and Pc are emitter and collector work functions, Vp is the
1ntere§ectrode voltage drop, Vg = P~ + V. is the barrier index or

total internal loss, V, is the equi%alen% auxiliary input voltage

(not used in the present calculations), and Vi is the voltage loss
required for optimum leads.

The current-density cmponents correspond to emitter saturation,
Jgs = A (1-Rg) T 2 exp (-0e/KTp), 6)
which has a collector-saturation counterpart,
Jes = A (1-Re) T2 exp (-Dg/kTe), 7)

and to the reverse flow J,, which includes reflections, backscattering,
back emission, and other effects that diminish the output current
density. In equations 6) and 7) A and k are Richardson and Boltzmann
constants, Tg and T. are emitter and collector temperatures, and Rg
and RC are emitter End collector reflection coefficients.

An important theoretic detail relates to a common inconsistency
in the treatment of back emission (refs. 7 and 8): In generalized
TEC terminology back emission subtracts from the emitter current
in obtaining the net output current. This usual definition of back
emission requires it to be only that part of the collector emission
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that reaches the emitter and thereby diminishes the output current
according to a net-flow balance at the converter boundaries. Thus
back emission is not the saturated collector emission given by equation
7), regardless of Rc modification, because the emission barrier is
incorrect: This observation derives from the fact that, in the gen-
erally cited TEC power-producing mode, the emitter electron barrier
(motive maximum) is a few tenths of a volt (the interelectrode voltage
drop) above its collector counterpart. So during steady-state op-
eration the preponderance of collector saturated emission cannot

clear the emitter sheath, even in the absence of other deflecting
encounters., Therefore most of the collector saturated emission must
return to its source nullifying to a large extent its effect on the
diminution of the net output current.

Unless the interelectrode loss is much closer to zero than to
its currently common value of about a half volt, only a small frac-
tion of the collector emission, the true back emission JBE’ will
reach the emitter:

2
Jgg = M1-Rgg) Tc™ exp (-Vp/kT ) 8)

In this equation the effective back-emission reflection coefficient

Roe comprises R. and similar coefficients for all interelectrode
mBEhanisms that “return collector-emitted electrons to their source--
except those for noncollisional repulsion by the emitter sheath.

Thus, using equation 8) without Rgg produces a conservative estimate

of the converter output current. Euch an approximation seems reasonable
for lTow cesium concentrations, reduced enhanced-mode pressures, and
small interelectrode gaps. Of course, with zero interelectrode losses
assumed (ref. 6 for FY 81) as well as negligible interelectrode-reflec-
tion effects, equations 7) and 8) become identical.

A simplified, yet reasonable estimate of TEC efficiency with
optimum-lead losses (ng ) embodies the previously discussed input.
(refs. 4 and 9):

= 2 2 ¢ l.»
NoL = Jgg(Pg+2kTg)-Jgg (P +2KT()+5.7x10-12 [ 0.05+7.6x107>(Tg-1000) (TER-1cH)

Here the last term of the denominator approximates nonelectronic thermal
transport while the factor following the first 2 in the numerator
represents the optimum-lead loss V, . Deleting 2V, from equation 9)
transforms that expression into onb for the TEC e*ectrode efficiency

ngc used here to compute the optimum-lead loss. Of course, the electrode




efficiency is the true converter evaluation analogous to other power-
generator performance ratings. But because of relatively high TEC
current densities and low voltages the optimum-lead efficiency seems
more pragmatic.

TEC-PERFORMANCE TRENDS

Theoretic TEC outputs and efficiencies for converters with 10-
percent back emission and optimum leads appear parametrically in
figures 1, 2, and 3 for 725, 925, and 1000K collectors. Each figure
comprises plots of efficiency, voltage, and power density as func-
tions of current density for 1400, 1650, 1800, and 2000K emitters.

Without exception, for a given collector temperature, all perfor-
mance curves for higher emitter temperatures rise above those for
the lower emitter temperatures. This observation would have grati-
fied Nicolas Carnot.

The eff}ciency curves reach values very ﬁlose to their maxima
above 5 A/cm¢ for the 1400K Smitters; 20 A/cmé for 1650K emitters;
30 A/em?, 1800K; and 40 A/cmé, 2000K.

The two preceding paragraphs imply that studies of any TEC system
should evaluate parametrically the effects of converters wiih emitters
hotter than 1650K and current densities greater than 5 A/cm” (refs.

1 to 3). Table 1 for 925K collectors (refs. 2 and 3) further emphasizes
this observation. The underlined Table i entries indicate output and
efficiency improvements (for converters with optimum leads) result}ng
from raising tge emitter temperature from 1650K to 1800K at 5 A/cm

and at 30 A/cme.

These underlined values also reveal the significan§ output and
efficiency gains for }EC operation at 1800K and 30 A/cm® as compared
with 1650K and 5 A/cm® (refs. 1 to 3): The 28.5” increase in optimum-
lead efficiency means lighter radiators and either more output power
or smaller nuclear reactors and lighter shield-dependent weights for
NEP. The 10.8% higher optimum-lead voltage requires less power con-
ditioning capability and results in lower transmission-line losses
for a given quantity of output power. The 5607 gaia in effective
output power density allows many fewer converters and associated current-
collecting bus bars for a given output-power level. And of course
the higrer emitter temperature (coupled with yreater efficiency)
enables the use of substantially fewer and/or smaller emitter heat
pipes. This reduction in turn should produce significant decreases




in shielding-related as well as reactor weights. The higher emitter
temperature can also make possible considerably increased collector
temperatures if parametric studies indicate the need for lower
radiator weights (the T4 influence).

The previously enumerated agvantages of 1800K, 30 A/cmé TEC
operation over the 1650K, 5 A/cm* case have obviously strong effects
on NEP specific-weight reductions. So the importance of true overall
system optimization with parametric TEC inputs should not be under-
estimated.

Omitted tabulations similar to those of Tabie 1 are also available
for collector temperatures of 725K and 1000K. And as figures 1 to 3
attest, the order of performance remains unchanged: For a given
collector temperature the highest emitter temperature produces the
best TEC performance; the lowest emitter temperature gives the poorest
TEC performance.

If the only emitter, collector combinations considered were
14005 with 725K, 1650K with 925K, and 1800K with 1000K all at 5.5
W/cm® as in reference 3, the TEC-output relationshi;. would appear
quite different from those in figures 1 to 3. But a parametric TEC-
optimization study should evaluate each collector temperature with
each emitter temperature. When existing converter-component capa-
bilities preclude such pairings, appropriately directed technology
advancements may render them possible in the near future.

Reference 3 states that "the higher temperature converters are
limited to higher work function materials, and thus eventually extra-
polate to Tower operating efficiencies.” But the 1800K emitter work
functions in the table are obtainable with cesiated tungsten, for
example, without invoking oxygenatien. Such work functions are even
more readily accessible with rhenium and still more easily attainable
with iridium.

As for the collector work functions in the preceding table, they
are well within reach of cesiated, oxygenated tungsten: This collector
has a work-function minimum of 1.21 eV according to recent measure-
ments (ref. 9). Unoxygenated minimum cesiated work functions run
1.45 eV for rhenium (ref. 4) and probably 1.4 or lower for 111 iridium

(refs. 7, 8, and 10 to 14). And tungsten, rhenium, and iridium are all
satisfactory for 1800K-emitter service.



Incidentally the calculations for figures 1 to 3 give results
rather centrally located among those from other TEC efficiency models
for 10% back emission and zero arc drop (Private communication with
G. D. Fitzpatrick of Rasor Associates, Inc.). The variation occurs
because of differences in loss approximations. A comparison of TEC
efficiencies appear in Table 2.

Table 2 lists extremes of conditions primarily to compare TEC-
efficiency models over wide ranges. But these values also strongly
imply the desirability of high-temperature, high-power-density therm-
fonic energy conversion for space.
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Emitter
Temp, K

2000
1400
2000
1400
2000
1400
2000
1400

Collector Temp = 725K
Collector Work Function ~ 1.0 eV

¢ 22 2 2 ¥ U 2R

TABLE 2:

n

TEC EFFICIENCIES

60 A/cm2

40%
32%
417
29.5%
50
35.5%
43.47%
30.3%

R. Brettwieser
Rasor Associates, Inc,
Thermo Electron Corp.

J. Morris

10

Collector Temp.
Collector Work

S ! i '

A/cm2
= 1000K
Function

197
12%
247
147
282
13%
27%
132

1.6 eV



noL

VOL v

PoL Wicm?)

.6
TE €K

-4 1650
1400
0 T S )
2 —
\-
——— am
| 1650
1400
% I e S o S
200 —
2000
1800
100 1650
1400
I | J
2 40 60 B0 100

lo (Alcmzi

Figure 1. - Optimum-lead TEC efficiency mq ).
voltage (Vg ). and power (P ) versus cur-
rent (J %r four emitter temperatures (Tg)
at a collector temperature of 725 K with
10 percent back emission,
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Figure 2. - Optimum-lead TEC efficiency mg) ).
voltage (Vg ), and power (Pqy) versus cur-
rent Ugn) for four emitter temperatures (Tg)
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10 percent back emission.
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