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Abstract 
The high temperature heat capacity, Gibbs energy of formation, and standard enthalpy and entropy of 
formation at 298 K are combined with thermodynamic data for Cd and revised data for Te to provide 
an internally consistent data set for CdTe(c). Equations are given for the Gibbs energy of formation 
from Cd(g) and Te2(g) and from the solid or liquid elements as a function of temperature. These give 
values similar to those used before. However, the derived enthalpy and entropy of formation are 
significantly different due to a revised heat capacity for CdTe(c). The standard enthalpy and entropy of 
formation at 298.15 K from the gases are −293262 J/mol and −200.593 J/mol K, respectively. From the 
solid elements they are −100270 and −4.5334. 

Introduction 
Recently, high temperature heat capacity determinations for CdTe(c) by Malkova et al.[1] and by 
Yamaguchi et al.[2] and by others at lower temperatures have been reviewed by Pavlova et al.[3] Here 
we wish to extend this study of the thermodynamic properties of CdTe(c) to include experimental 
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values for the high temperature Gibbs energy of formation. The standard enthalpy and entropy of 
formation at 298.15 are also required, but both are fairly well established. Earlier assessments of the 
entire Cd-Te system by Jianrong et al.[4] in 1995 and by the author and coworkers.[5,6] depended in 
part on an estimate of the heat capacity of CdTe(c) made by Mills.[7] which was based on the heat 
content measurements by Mezaki et al.[8] According to Pavlova et al.,[3] this heat capacity is high by as 
much as 15 J/mol K at the 1365 K melting point. Besides, assessments of the entire system are more 
complicated than necessary to establish the thermodynamic properties of the CdTe(c) phase itself. For 
our purposes, the properties of cadmium and tellurium are of course required. Those of cadmium are 
well established. For tellurium, we use this author’s third law analysis[9] of the crystal-liquid-vapor 
equilibrium for Te. A heat capacity for the liquid determined by Medzhidov and Rasulov[10] was used 
which is much different than that used in previous thermodynamic calculations. A review of the heat 
capacity of Te by Davydov et al.[11] was shown[12] to give closely similar results. 

Formation of CdTe(c) from Its Cd(g) and Te2(g) 
Partial Pressure Data 
The predominant vapor species over CdTe(c) are cadmium and diatomic tellurium. The partial 
pressures of Cd(g) and Te2(g) over congruently subliming CdTe(c) have been determined by measuring 
the UV-VIS optical absorbance of the coexisting vapor.[13] The smoothed values for the partial 
pressure of diatomic tellurium are given by, 

log10 𝑃𝑃2(atm) = −10,000/𝑇𝑇 + 6.346; 1051-1230K. 

(1) 

Here and henceforth the partial pressure of diatomic tellurium will be written as P 2. At each 
measurement temperature, Eq 1 is used to calculate a partial pressure of diatomic tellurium. That of 
cadmium is taken as twice this. The standard Gibbs energy of formation for the reaction: 

Cd(g) +
1
2 Te2(g) → CdTe(c) 

(2) 

is given by: 

Δ𝐺𝐺f
o = 𝑅𝑅𝑇𝑇ln (𝑓𝑓Cd𝑃𝑃Cd𝑓𝑓2

1/2𝑃𝑃2
1/2), 

(3) 

where f j is the fugacity coefficient of gaseous species j. These fugacity coefficients account for the 
nonideality of the vapor phase and can be expressed in terms of virial coefficients. It is assumed that 
the pressures involved are low enough that the second virial coefficient suffices. Then if the virial 
coefficients are written as 𝐵𝐵𝐽𝐽𝐽𝐽 one has[14]: 

ln 𝑓𝑓Cd = 𝑃𝑃Cd(1 + 𝑃𝑃2/𝑃𝑃T)𝐵𝐵Cd + (𝑃𝑃22/𝑃𝑃T)(2𝐵𝐵Cd-Te2 − 𝐵𝐵Te2)
ln 𝑓𝑓2 = 𝑃𝑃2(1 + 𝑃𝑃Cd/𝑃𝑃T)𝐵𝐵Te2 + (𝑃𝑃Cd

2 /𝑃𝑃T)(2𝐵𝐵Cd-Te2 − 𝐵𝐵Cd)
, 



(4) 

where P T is the total pressure. Studies of tellurium vapor[15] have given its second virial coefficient as, 

𝐵𝐵Te2 = −440.397/𝑇𝑇 + 0.26899;𝑇𝑇 > 900K. 

(5) 

The second virial coefficient for Cd(g) is calculated here. For the ground state we use a Leonard-Jones 
6-12 potential determined from optical absorbance measurements[16] of the 228.7 nm line at a 
number of temperatures and cadmium pressures. These gave an energy minimum of 0.0475 eV and a 
separation at zero potential energy of 0.4295 nm. A published[17] series solution was evaluated 
numerically to generate the virial coefficient as a function of temperature. The numerical result was fit 
with a standard deviation of 5E−05 by the equation: 

𝐵𝐵Cd = 9.4649/𝑇𝑇1.25 − 2662.6/𝑇𝑇2; 800-1436K. 

(6) 

Finally, the virial coefficient for the Cd-Te2 interaction was assumed to be the average of those for Cd-
Cd and Te2-Te2, 

𝐵𝐵Cd-Te2 = (1/2)(𝐵𝐵Cd + 𝐵𝐵Te2). 

(7) 

Table 1 gives the temperature and value of the Gibbs energy according to Eq 3. The fugacity coefficient 
correction is negative and reaches its largest absolute value of 27 J/mol at 1245.2 K. 

Table 1 Gibbs energy of formation of CdTe(c) from gaseous and from condensed phase elements 
T, K −Δ𝐺𝐺f,298

o ,J/mol, from gases, Eq 2 and 3 −Δ𝐺𝐺f,298
o ,J/mol, from solid or liquid elements, Eq 15 and 16 

1052.6 89289 81067 
1078.8 84376 79872 
1096.5 81049 79065 
1133.8 74008 77313 
1154.7 70091 76356 
1165.5 68071 75852 
1179.2 65472 75189 
1201.9 61229 74127 
1216.6 58436 73386 
1245.2 53075 72043 

Calculated with partial pressure data from ref 13 
 

The smoothed partial pressures of Te2 and Cd over Te-saturated CdTe as determined from optical 
absorbance measurements[18] are given in Table 2. The Gibbs energy of formation of CdTe from Cd(g) 
and Te2 as calculated with Eq 3 and that from the liquid elements (discussed later) are also listed. The 
fugacity correction is negative, is essentially all due to tellurium, and is 210 J/mol or less in magnitude. 



Table 2 Gibbs energy of formation of CdTe(c) from gaseous and from condensed phase elements 
T, K P 2, 

atm 
P Cd, 
atm 

−Δ𝐺𝐺f,298
o ,J/mol from gaseous 

elements 
−Δ𝐺𝐺f,298

o ,J/mol from solid or liquid 
elements 

1337.0 0.042 0.190 36158 67957 
1351.0 0.023 0.310 34448 68204 
1360.0 0.012 0.480 33458 68472 
1366.1 0.0068 0.68 32933 68800 

Partial pressure data from ref 18 
 

The first three columns of Table 3 give the temperature and partial pressure of Te2 obtained from 
Knudsen cell measurements by Goldfinger and Jeunehomme.[19] The Gibbs energies are from an 
equation given in the caption of their Fig. 6 and are calculated for each temperature in that figure, 
which is a plot of log K versus 1000/T. The partial pressure of Te2 is calculated from this Gibbs energy 
assuming an effusion steady state in which the flux of Te2 out from the Knudsen cell in moles/sec is 
one-half that of Cd. Then inside the cell the pressures are related by, 

𝑃𝑃Cd = 2(𝑀𝑀Cd/𝑀𝑀Te2)1/2𝑃𝑃2 = 1.327𝑃𝑃2. 

(8) 

The quantities within the square root are the atomic weight of Cd and molecular weight of diatomic 
tellurium. The Gibbs energy was recalculated with these partial pressures according to Eq 3. The 
correction for a non ideal vapor was <1 J/mol. 

Table 3 Partial pressures from Knudsen cell measurements of reference 19 and Gibbs energy of 
formation 

T, K P 2, atm P Cd, atm −Δ𝐺𝐺f,298
o ,J/mol from gaseous 

elements 
−Δ𝐺𝐺f,298

o ,J/mol from solid or liquid 
elements 

733.1 3.84E−7 5.09E−7 140610 92192 
781.9 5.32E−7 7.06E−7 139030 91895 
794.8 8.50E−7 1.13E−6 136680 91438 
813.7 1.64E−6 2.17E−6 133280 90776 
829.1 2.74E−6 3.64E−6 130460 90187 
845.2 4.59E−6 6.09E−6 127570 89629 
860.3 7.33E−6 9.73E−6 124830 89670 
877.7 1.23E−5 1.63E−5 121700 88459 
895.6 2.05E−5 2.73E−5 118440 87785 
905.8 2.72E−5 3.61E−5 116620 87423 
916.2 3.60E−5 4.78E−5 114750 87055 
926.8 4.77E−5 6.33E−5 112820 86656 
950.6 8.78E−5 1.16E−4 108490 85727 
960.1 1.11E−4 1.47E−4 106790 85375 
979.7 1.77E−4 2.35E−4 103240 84630 
1006.5 3.26E−4 4.32E−4 98412 83623 

 



The corrected Gibbs energies from the above three sources are shown in Fig. 1 and can be seen to fall 
close to the same straight line. A least squares fit to the data gives a standard deviation is 303 J/mol 
and is represented by: 

Δ𝐺𝐺f
o(J/mol) = −284730 + 185.80𝑇𝑇.  

(9) 

 
Fig. 1 Gibbs energy of formation of CdTe(c) from gaseous cadmium and diatomic tellurium each at 
1 atm. Squares; ref 19, Knudsen cell. circles; ref 13, optical absorption. Circles at and above 1245 K, ref 18, vapor 
over Te-saturated CdTe (c). Dashed line from second law analysis, Eq 9. Solid line from third law analysis 
with Δ𝐻𝐻f,298

o = −293262 J/mol and 𝑆𝑆298o (CdTe(c)) = 96.367 or Δ𝑆𝑆f,298
o = −200.593 J/mol K 

 

The diamonds at high temperature are for Te-saturated CdTe[20] and were not included in the least 
squares fit. For the open diamonds the partial pressure was calculated from the Cd peak at 325.7 nm 
while for the closed diamonds it was calculated from the absorbance at 240.0 nm in the far wing of the 
strongly absorbing 228.7 nm peak. The fugacity correction ranges from −77 to −200 J/mol at 1348 K. 
For these points the partial pressure of diatomic tellurium is decreasing from 0.131 atm at 1238 K to 
0.0248 atm at 1348 K. With increasing temperature the points approach and then coincide with the 
least squares line. The discrepancy at the lowest temperatures is most likely due to the fact that the 
absorbance at the Cd peaks has not been corrected for pressure broadening by Te2. It would appear 
that this effect is negligible from about 1330 K upward. These data have not been included in the 
analysis except as an indication that the pressure broadening is negligible for the four circles from 
Table 2 at the highest temperatures. 

Third Law Analysis 
At equilibrium between CdTe(c) and the vapor phase, the chemical potential of cadmium must be the 
same in both phases, as must be that of tellurium. Moreover, the chemical potential of tellurium is 
equal to one-half that of the gaseous, diatomic tellurium molecule. Adding the two equations for the 
chemical potentials and applying standard thermodynamic formulae one arrives at the equation, 

https://link.springer.com/article/10.1007/s11669-009-9644-5/figures/1


Δ𝐺𝐺f
o = Δ𝐻𝐻f,298

o − 𝑇𝑇𝑆𝑆298o + (𝐻𝐻T
o −𝐻𝐻298o )CdTe − 𝑇𝑇(𝑆𝑆T

o − 𝑆𝑆298o )CdTe − (𝐻𝐻T
o −𝐻𝐻298o )Cd(g) +

𝑇𝑇𝑆𝑆T,Cd(g)
o − (1/2)(𝐻𝐻T

o −𝐻𝐻298o )Te2(g) + (1/2)𝑇𝑇𝑆𝑆T,Te2(g)
o  

(10) 

where Δ𝐺𝐺f
o is the standard Gibbs energy of formation of CdTe(c) from the gases as given by Eq 3. Our 

choice of the standard entropy at 298 K for CdTe(c) as a parameter, rather than the standard entropy 
of the reaction, is arbitrary and of no fundamental significance. If the heat capacity of CdTe(c), the 
chemical potentials of Cd(g) and Te2(g), and Δ𝐻𝐻f,298

o  and 𝑆𝑆298o  are known, then at each temperature one 
can calculate a value for the right side of Eq 10 for comparison with the experimental value of the 
Gibbs energy. Here we treat the enthalpy of formation and the entropy of CdTe(c) at 298 K as 
variables. Although values exist for them in the literature we expect that small adjustments will be 
necessary to minimize the standard deviation between the values of the standard Gibbs energy 
calculated with Eq 10 and those observed. Before discussing this minimization we indicate the values 
used for the other quantities in the right side of Eq 10. 

The sources of the quantities in Eq 10 that are assumed to be known are as follows. With a value of 
20.786 J/mol K for the constant pressure heat capacity[21] of Cd(g) above 298.15 K and a standard 
entropy at 298.15 K of 167.63 J/mol K one arrives at the results: 

(Δ𝐻𝐻T
o − Δ𝐻𝐻298o ) = 20.7861(𝑇𝑇 − 298.15)
𝑆𝑆T,Cd(g)

o = 49.201 + 20.7861Ln(𝑇𝑇) 

(11) 

Similarly, for T above 298 K the thermodynamic properties of Te2 (g, 1 atm) were calculated by Mills[7] 
from spectroscopic constants. These properties can be simply but accurately given between 400 and 
1400 K using the constant pressure heat capacity: 

𝐶𝐶𝑝𝑝(J/molK) = 29.070 + 0.02645𝑇𝑇 − 1.1484(10−5)𝑇𝑇2. 

(12) 

With this result and a standard entropy at 298.15 K of 258.66 J/mol K, one has, 

(𝐻𝐻T
o − 𝐻𝐻T

o)Te2(g) = 29.070(𝑇𝑇 − 298.15) + 0.013228(𝑇𝑇2 − 298.152) − 3.828(10−6)(𝑇𝑇3 − 298.153)
𝑆𝑆T,Te2(g)

o = 85.645 + .026456𝑇𝑇 − 5.742(10−6)𝑇𝑇2 + 29.070Ln(𝑇𝑇)  

(13) 

Because we have found that constant pressure heat capacities for CdTe(c) given by Yamaguchi et al.[2]. 
and by Pavlova et al.[3] give close to the same fits to the data used here we use a heat capacity that is 
the average of these two: 

𝐶𝐶𝑝𝑝 = 48.740 + .008505𝑇𝑇 − 1.171(105)/𝑇𝑇2. 

(14) 



The heat capacities given by Pavlova, by Yamaguchi, and in our study[6] of the Cd-Te system are 
all 50 ± 0.5 J/mol K at 298 K. However, they differ significantly at the 1365 K melting point where they 
are, respectively, 58.7, 62.0, and 70. We also note that the heat contents calculated with the heat 
capacity given by Yamaguchi et al. are larger than those calculated with that given by Pavlova et al., but 
by <1 J/mol between 298 and 800 K and by only 1 kJ/mol at 1365 K. 

The linear theory of adjustment[22] was used to obtain the values at 298 K for the standard enthalpy 
of formation of and the entropy for CdTe(c) which minimize the standard deviation between calculated 
and observed values for the Gibbs energy. The 95% confidence levels in these quantities were also 
obtained. Then the Simplex trial and error method of Nelder and Mead[23] was used to calculate the 
standard deviation and the value for the enthalpy for fixed values of the entropy in the neighbor hood 
of the best fit.. The best fit to the left side of Eq 10 is attained with Δ𝐻𝐻298o = −294,008 J/mol, 𝑆𝑆298o =
95.64 J/mol K, and a standard deviation of 410 J/mol. However, as is shown in Fig. 2, there is a wide 
range of enthalpy and entropy values falling along a straight line which give almost equally good fits. 
The standard deviation rises rapidly with small departures from this line. As has been pointed out,[24] 
this is a feature of linear least squares fits to a set of data made over a temperature range small 
compared to the average temperature of the measurements themselves. Moreover, if the enthalpy is 
expressed as a linear function of the entropy, then the slope (coefficient of the entropy) is the 
reciprocal of the average value of 1/T of the measurements, 1007.9 in this case. This best fit line is 
useful in attaining consistency with the quantities for the formation from the condensed phase 
elements since it turns out to be necessary to move away from the very best fit. It is also useful in 
graphically demonstrating that the uncertainties in the enthalpy and entropy are strongly correlated. 
Along this best fit line the literature value of −293,000 J/mol for the enthalpy change corresponds to a 
standard entropy at 298 for CdTe(c) of 96.6 and σ = 440, just above the minimum value. Similarly, the 
literature value of 95 for the entropy corresponds to an enthalpy of formation of −294,600 and a 
standard deviation of 420, again just above the minimum attained. However, the paired literature 
values of −293,000 and 95 are off the best fit line and correspond to σ = 1702. This is about four times 
the minimum value. It is apparent that a small adjustment is required in these parameters. Further 
discussion is delayed until the Gibbs energy of formation from the condensed phase elements is 
analyzed. 

 

https://link.springer.com/article/10.1007/s11669-009-9644-5/figures/2


Fig. 2 The parabola-like curve shows the best fit between the observed Gibbs energies of formation in Fig. 1 and 
third law values as a function of the standard entropy of CdTe(c) at 298 K. The best fit or standard deviation 
between observed and calculated values is given by the right vertical axis. The straight line shows corresponding 
values of the standard enthalpy of formation and the standard entropy of CdTe(c) at 298 K that give a best fit for 
a fixed value of the entropy 
 

Formation of CdTe(c) from Its Condensed Phase Elements 
Calculation of the Gibbs Energy of Formation from Data 
For the reaction, 

Cd(c,l) + Te(c,l) → CdTe(c), 

(15) 

the Gibbs energy of formation is given by, 

Δ𝐺𝐺f
o = 𝑅𝑅𝑇𝑇ln (𝑃𝑃Cd𝑓𝑓Cd/𝑃𝑃Cd

o 𝑓𝑓Cd
o ) + (1/2)𝑅𝑅𝑇𝑇ln (𝑃𝑃2𝑓𝑓2/𝑃𝑃2o𝑓𝑓2o), 

(16) 

where the superscript circle indicates a partial pressure or fugacity in the vapor over the pure element. 
For cadmium, the necessary properties are taken from Hultgren et al.[21] and have also been adopted 
by SGTE.[25] They are: 

𝐶𝐶𝑝𝑝 = 22.30 + .01213𝑇𝑇; 298 < 𝑇𝑇 < 594.2; m.pt.594.2K;  Enthalpy of fusion = 6192J/mol
𝐶𝐶𝑝𝑝 = 29.71;𝑇𝑇 > 594.2K

Cd(c); 𝑆𝑆298o = 51.80 J/molKCd(g); 𝑆𝑆298o = 167.63
Cd(c) → Cd(g) Δ𝐻𝐻f,298

o = 111,960J/mol
log10 𝑃𝑃Cd(atm) = 5.119 − 5317/𝑇𝑇;𝑇𝑇 > 594.2K

 

(17) 

The corresponding quantities for tellurium are taken from our third law analysis[9] of the crystal-liquid-
vapor equilibrium. As mentioned earlier, the heat capacity above the melting point is quite different 
from that given by Mills[7] and used in previous studies. It is close to that adopted by Davydov et 
al.[11] The enthalpy and entropy of Te(l) calculated with our heat capacity and that of Davydov et al. 
differ by <0.5% between 722.65 and 1365 K. However, our vapor pressures are 7-20% higher than 
those adopted by Davydov et al. and closer to the experimental values. The necessary thermodynamic 
data for tellurium are: 



m. pt. = 722.65K;  heat of fusion = 17,489 J/mol
𝐶𝐶𝑝𝑝 = 24.610 + 0.003217𝑇𝑇 + 1.678(10−6)𝑇𝑇2; 298 < 𝑇𝑇 < 722.65

𝐶𝐶𝑝𝑝 = 131.7 − 0.1185𝑇𝑇; 722.65 < 𝑇𝑇 < 833𝐾𝐾
𝐶𝐶𝑝𝑝 = 32.94;𝑇𝑇 > 833𝐾𝐾

Te(c) ; 𝑆𝑆298o = 49.1J/mol KTe2(g); 𝑆𝑆298o = 258.66

Te(c) →
1
2 Te2(g); Δ𝐻𝐻f,298

o = 81,031J/mol

 

(18) 

We originally gave[9] four equations for the vapor pressure between 722.65 and 1434 K. We now find 
that these can be approximated to better than two percent by the single equation: 

log10 𝑃𝑃(atm) = 4.3985 − 5267.68/𝑇𝑇 − 368192.2/𝑇𝑇2; 722.65 < 𝑇𝑇 < 1434K 

(19) 

In this temperature range, the saturated vapor is 99% or better Te2(g).[7] 

With the above input data the Gibbs energy of formation from the gaseous elements in Table 1-3 were 
converted to Gibbs energies of formation from the condensed phase elements following the reaction 
in Eq 15. The results are shown in the last column of Table 1-3. For the entries shown in Table 1, the 
correction for vapor phase nonideality are all positive and range from 81 J/mol at 1052 K, 73 of which 
arise from the tellurium correction, and 375 J/mol at 1245 K, 343 of are from the tellurium term. In 
Table 2, the corrections are all about 550 J/mol with the tellurium contribution being about 500. The 
corrections for Table 3 are all positive and range from 47 J/mol at 1006 K, 43 of which are from the 
tellurium term, to 0.2 J/mol at 733 K. The corrected Gibbs energies are shown in Fig. 3 as symbols. 

 
Fig. 3 Standard Gibbs energy of formation of CdTe(c) from its solid or liquid elements as a function of 
temperature. Squares and circles above 722.6 K as in Fig. 1. Line segments terminated by symbols and below 
722.6 K are from emf measurements. Squares: ref 27, circles: ref 25, diamonds: ref 28, triangles: ref 26, solid 
triangles: ref 29; Dashed line is a second law analysis and is given by Eq 20. Solid line is a third law analysis 
with Δ𝐻𝐻f,298

o = −100270 J/mol and Δ𝑆𝑆f,298
o = −4.53335 J/mol K 

https://link.springer.com/article/10.1007/s11669-009-9644-5/figures/3


 

Also shown in Fig. 3 are data from emf measurements. There are four line segments below 722.6 K 
terminated by symbols.[25-28] The symbols indicate the temperature limits of the measurements. The 
measurements of Shamsuddin and Nasar[29] are shown as solid triangles between 640 and 845 K. They 
were extracted by us from a scaled plot of emf versus T. The cell electrodes were described as Cd(l) 
and CdTe(c) + Te(c,l). However, the CdTe(c)-Te(s) eutectic is close to 722.6 K so the anode description 
cannot be correct above about 722.6 K. Taking the authors description of the CdTe(c) electrode as 
containing 10% Te to have been calculated with CdTe and Te as components, then this electrode is 
about 52 at.% Te using Cd and Te as components. This composition falls in the two phase CdTe and Te 
rich liquid region up to over 1000 K. The Gibbs energy measured is then the difference in the chemical 
potential of Cd in CdTe (c) as Te rich as possible and that in pure Cd(l). To obtain the Gibbs energy of 
formation of CdTe (c) from its elements one must add a correction term, 1

2
𝑅𝑅𝑇𝑇ln 𝑃𝑃2/𝑃𝑃2o,, where P 2 is 

the partial pressure of diatomic tellurium over the “Te-saturated” CdTe(c) and 𝑃𝑃2o is that over pure 
Te(l). The former partial pressure has been obtained from optical absorbance measurements[18] down 
to 934 K where it is 0.017 atm compared to 0.021 for pure Te(l). Thus, the correction term is 
−240 J/mol at 934 K and is expected to approach zero as the temperature is lowered to 722.6 K and the 
liquidus line approaches 100 at.% Te. We ignore this small correction here. It should be noted, as seen 
in Fig. 3, that the Gibbs energies from Shamsuddin and Nasar are more negative than those of all the 
others by about 2000 J/mole near 800 K and about 1000-2000 J/mol below 722.6 K. 

A linear least squares fit to the data in Fig. 3 above 722.6 K and excluding that of Shamsuddin and 
Nasar gives, 

Δ𝐺𝐺f
o(J/mol) = −126372 + 43.2897𝑇𝑇; Std. dev. = 415. 

(20) 

This equation is plotted as the dashed line in Fig. 3. 

Third Law Analysis 
The Gibbs energies for the formation of CdTe(c) from its condensed phase elements can be analyzed 
using an analogue of Eq 10. However, in contrast to Eq 10 we use the standard entropy of formation 
for the reaction given by Eq 15 as an adjustable parameter rather than the standard entropy of 
CdTe(c). The equation is: 

Δ𝐺𝐺f
o = Δ𝐻𝐻f,298

o − 𝑇𝑇Δ𝑆𝑆f,298
o + Δ(𝐻𝐻T

o −𝐻𝐻298o ) − 𝑇𝑇Δ(𝑆𝑆T
o − 𝑆𝑆298o )

where Δ(𝐻𝐻T
o −𝐻𝐻298o ) = (𝐻𝐻T

o − 𝐻𝐻298o )CdTe(c) − (𝐻𝐻T
o −𝐻𝐻298o )Cd − (1/2)(𝐻𝐻T

o −𝐻𝐻298o )𝑇𝑇𝑒𝑒2
 

(21) 

and where an equation analogous to the second of Eq 21 holds for the entropy. Knowing the heat 
capacities for CdTe(c) and its elements and the standard enthalpy and entropy of formation at 298 K, 
the right side of the equation can be calculated. Analogous to the discussion for the formation of 
CdTe(c) from the gases, the standard enthalpy and entropy of formation are considered as variable 
parameters. It is expected that these must be varied slightly from their literature values to achieve a 



compromise of a good fit to the observed Gibbs energies and consistency with the results for the 
formation from the gases. 

The values of Δ𝐻𝐻f,298
o  and Δ𝑆𝑆f,298

o  were determined which gave the smallest standard deviation between 
the observed values for Δ𝐺𝐺f

o and those calculated with the right side of Eq 21. Then, the best fit was 
determined for fixed values of Δ𝑆𝑆f,298

o . The results are shown in Fig. 4. Because the data from 
Shamsuddin and Nasar are more negative than all the other data, two determinations were made, one 
was including their data, the second omitting it. Excluding their data, the best fit to 33 points has a 
standard deviation of 416 J/mol with a standard enthalpy of formation of −100001 ± 726 J/mol and 
standard entropy of −4.245 ± 0.75 J/mol K, both at 298.15 K. Again, as shown in Fig. 4 there is a wide 
range of enthalpy-entropy values that fall along a straight line along which the standard deviation 
between experimental and calculated Gibbs energies of formation changes slowly. If one fixes the 
standard entropy at the literature value of −5.9 J/mol K then the corresponding enthalpy is 
−101645 J/mol with a fit of 528 J/mol. On the other hand if one fixes the standard enthalpy at the 
literature value of −100663 J/mol, then the corresponding entropy is −4.924 with a slightly better fit of 
424 J/mol. If both the standard enthalpy and entropy are fixed at the literature values of −100663 and 
−5.9, then the standard deviation of the fit more than doubles to 1148 J/mol. 

 
Fig. 4 Measure of fit for the standard Gibbs energy of formation of CdTe(c) from its condensed phase elements 
as a function of the standard entropy of formation at 298 K. Curves are analogous to those in Fig. 2. The curves 
shown with circles are from analyses using the data shown in Fig. 3 but excluding the data of ref 29. Those 
shown with squares include that data 
 

Discussion 
If one denotes Eq 2 for the formation of CdTe from Cd(g) and Te2(g) as II and Eq 15 for its formation 
from the condensed phase elements as I, then the corresponding enthalpies and entropies of 
formation are related by the equations, 

Δ𝐻𝐻f,298
o (II) = Δ𝐻𝐻f,298

o (I) − 192991
Δ𝑆𝑆f,298

o (II) = Δ𝑆𝑆f,298
o (I) − 196.06

𝑆𝑆298o (CdTe) = Δ𝑆𝑆f,298
o (II) + 296.96

 

https://link.springer.com/article/10.1007/s11669-009-9644-5/figures/4


(22) 

Equations 17 and 18 for the thermodynamic properties of pure cadmium and tellurium have been used 
in Eq 22. Furthermore, since the standard deviation of the fit to the experimental Gibbs energies of 
formation increases rapidly as the enthalpy-entropy point is moved away from the best fit line shown 
in Fig. 2 and 4, acceptable values for these enthalpies and entropies must lie on these lines. The lines 
are given by, 

Δ𝐻𝐻f,298
o (I) = 938.098 ∗ Δ𝑆𝑆f,298

o (I) − 96017.8
Δ𝐻𝐻f,298

o (II) = 1007.98 ∗ 𝑆𝑆298o (CdTe) − 390398 

(23) 

The solution to Eq 22 and 23 are enthalpies and entropies that give the best fits to the experimental 
Gibbs energies of formation which are consistent with the thermodynamic data assumed for pure 
cadmium and tellurium and the assumed heat capacity of CdTe. They are, 

Δ𝐻𝐻f,298
o (J/mol) Δ𝑆𝑆f,298

o (J/molK) 𝑆𝑆298o (CdTe) σ(J)
−100270 −4.53335 96.367 420
−293262 −200.593 96.367 430

 

Here σ is the standard deviation between experimental and calculated standard Gibbs energies of 
formation and is close to the minimum attained in each case. The Gibbs energies obtained with the 
above parameters are shown as the solid lines in Fig. 1 and 3. They are in good agreement with the 
experimental points and the dashed lines representing second law fits. Analytical expressions for the 
Gibbs energy of formation are listed in Table 4. It should be noted that determinations for Δ𝐻𝐻f,298

o (I) by 
metal solution calorimetry[30-32] are −101000 ± 418,−101000 ± 836, and − 99997 ±
1255(J/mol). The Gibbs energy of formation obtained here is in good agreement with the 
experimental values and with values used earlier by ourselves[5,6] and by Jianrong et al.[4] However, 
that from Yamaguchi et al.[30] is about 12 kJ/mol more negative since their measured value 
for Δ𝐻𝐻f,298

o (I) is about 12 kJ/mol more negative than all the other published values. The fact that they 
do not fit the measured Gibbs energy of formation would seem to indicate an error in their value 
of Δ𝐻𝐻f,298

o (I). The Gibbs energy is shown in Fig. 5 as a function of temperature. Fig. 6 and 7 show a 
similar comparison for, respectively, the enthalpy and entropy of formation. Now the results obtained 
by Jianrong et al. differ significantly at high temperature from those obtained here. At 1365 K, their 
enthalpy of formation is about 10 kJ/mol less negative while the entropy is about 9 J/mol K less 
negative. As mentioned earlier, this is because they used a heat capacity for CdTe that is about 
16 J/mol K greater near 1365 K than that adopted here. Our earlier[6] analysis of the thermodynamic 
and phase diagram data for CdTe also used a heat capacity based upon the measurements of Mezaki 
et al.,[8] which have been judged to be too large by Pavlova et al.[3] 

Table 4 Analytical formulae for the Gibbs energy of formation of CdTe(c) from its condensed phase 
elements and, in the last row, from Cd(g) and ½Te2(g) Δ𝐺𝐺f

o(J/mol) = 𝐴𝐴 + 𝐵𝐵𝑇𝑇 + 𝐶𝐶𝑇𝑇2 + 𝐷𝐷𝑇𝑇3 +
𝐸𝐸𝑇𝑇ln(𝑇𝑇) + 𝐹𝐹/𝑇𝑇 

Temp. range, K A B C D E F 



298-594.18 −100889 15.3341 3.4210E−03 2.7966E−07 −1.8300 5.8550E+04 
594.18-722.65 −104820 −21.7759 −2.6440E−03 2.79667E−07 5.5800 5.8550E+04 
722.65-833 −76940 −721.020 −6.3519E−02 0 112.645 5.8550E+04 
833-1365 −118058 −57.0652 −4.2525E−03 0 13.9150 5.8550E+04 
298-1365 −297496 289.970 2.36150E−03 −9.5700E−07 −13.419 5.8550E+04 

 

 
Fig. 5 The standard Gibbs energy of formation of CdTe as a function of temperature. Circles: ref 4, squares: 
ref 33, and diamonds: present work 

 
Fig. 6 The standard enthalpy of formation of CdTe as a function of temperature. Circles: ref 4, squares: ref 33, 
and diamonds: present work 

https://link.springer.com/article/10.1007/s11669-009-9644-5/figures/5
https://link.springer.com/article/10.1007/s11669-009-9644-5/figures/6


 
Fig. 7 The standard entropy of formation of CdTe. Circles: ref 4, squares: ref 33, and diamonds: present work 
 

Conclusions 
The thermodynamic data for CdTe(c) have been reanalyzed using newer high temperature heat 
capacities than used before. Although the standard enthalpy and entropy of formation are close to 
what has been accepted at 298.15 K, they diverge from previous values with increasing temperature. 
The results obtained here should be a more accurate representation of the thermodynamic properties 
of the solid, CdTe(c), which is of value in itself, but they also should be useful in any future analysis of 
the entire Cd-Te system in that only the model of the liquid phase need be established. 
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