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Abstract. The Tibetan Plateau (TP), known as Asia’s water tower, is quite sensitive to climate change, which is

reflected by changes in hydrologic state variables such as lake water storage. Given the extremely limited ground

observations on the TP due to the harsh environment and complex terrain, we exploited multiple altimetric mis-

sions and Landsat satellite data to create high-temporal-resolution lake water level and storage change time series

at weekly to monthly timescales for 52 large lakes (50 lakes larger than 150 km2 and 2 lakes larger than 100 km2)

on the TP during 2000–2017. The data sets are available online at https://doi.org/10.1594/PANGAEA.898411

(Li et al., 2019). With Landsat archives and altimetry data, we developed water levels from lake shoreline posi-

tions (i.e., Landsat-derived water levels) that cover the study period and serve as an ideal reference for merging

multisource lake water levels with systematic biases being removed. To validate the Landsat-derived water lev-

els, field experiments were carried out in two typical lakes, and theoretical uncertainty analysis was performed

based on high-resolution optical images (0.8 m) as well. The RMSE of the Landsat-derived water levels is 0.11 m

compared with the in situ measurements, consistent with the magnitude from theoretical analysis (0.1–0.2 m).

The accuracy of the Landsat-derived water levels that can be derived in relatively small lakes is comparable with

most altimetry data. The resulting merged Landsat-derived and altimetric lake water levels can provide accurate

information on multiyear and short-term monitoring of lake water levels and storage changes on the TP, and crit-

ical information on lake overflow flood monitoring and prediction as the expansion of some TP lakes becomes a

serious threat to surrounding residents and infrastructure.

1 Introduction

The Tibetan Plateau (TP), providing vital water resources

for more than a billion population in Asia, is a sensitive re-

gion undergoing rapid climate change (Field et al., 2014).

There are more than 1200 alpine lakes larger than 1 km2 on

the TP, where glaciers and permafrost are also widely dis-

tributed. With little disturbance by human activity in this

area, lake storage changes may serve as an important indica-

tor that reflects changes in regional hydrologic processes and

responses to climate change. Wang et al. (2018) showed that

global endorheic basins are experiencing a decline in water

storage, whereas the endorheic basin on the TP is an excep-

tion. Given the fact that TP lakes have been expanding for

more than 20 years (Pekel et al., 2016), quality data sets on

lake water level and/or storage could be the basis for investi-

gating its causes (e.g., climate change/variability) and inter-

actions with the water/energy cycles and human society (e.g.,

increasing risks of inundation and overflow floods).
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As an important component of the hydrosphere, terrestrial

water cycle, and global water balance, millions of inland wa-

ter bodies such as lakes, wetlands, and reservoirs have been

investigated globally, and their total storage was estimated to

be 181.9 × 103 km3 based on statistical models (Lehner and

Döll, 2004; Messager et al., 2016; Pekel et al., 2016). Lake

storage changes that play an important role in the regional

water balance can be derived from changes in lake water level

and area (Frappart et al., 2005). Lake water levels and areas

are mostly derived from satellite remote sensing due to the

scarcity of in situ data across the TP, where the harsh en-

vironment and complex terrain make in situ measurements

difficult to perform and costly (Crétaux et al., 2016; Song

et al., 2013; Yao et al., 2018b; Zhang et al., 2017a). Lake

water levels can be monitored using satellite altimeters ini-

tially designed for sea surface topography or ice sheet/sea

ice freeboard height measurements. Satellite altimeters de-

termine the range between the nadir point and satellite by

analyzing the waveforms of reflected electromagnetic pulses.

There are two major categories of satellite altimeters, i.e.,

laser and radar. Laser altimeters, e.g., the Ice, Cloud, and land

Elevation Satellite (ICESat), operating in the near-infrared

band have smaller footprints and generally higher accuracy

than radar altimeters, facilitating applications in glacier/ice

mass balance studies (Neckel et al., 2014; Sørensen et al.,

2011). Radar altimeters, operating in the microwave band,

have larger footprints and are more likely to be contaminated

by a signal from complex terrain when applied to inland wa-

ter bodies. Nevertheless, it is possible to remove these im-

pacts with waveform retracking algorithms (Guo et al., 2009;

Huang et al., 2018; Jiang et al., 2017). Zhang et al. (2011)

mapped water level changes in 111 TP lakes for the 2003–

2009 period using ICESat data that have a temporal resolu-

tion of 91 days. ICESat data have relatively denser ground

tracks but a lower temporal resolution than most of other al-

timetric missions. This means that ICESat covers more lakes

but provides few water levels for each lake. After ICESat

was decommissioned in 2010, CryoSat-2 data starting from

2010 were adopted in related studies (Jiang et al., 2017),

due to its similar dense ground tracks and competitive preci-

sion compared to ICESat. Other altimetric missions, such as

TOPEX/Poseidon (T/P), Jason-1/2/3, the European Remote

Sensing (ERS-1/2) satellite, and Envisat, also have some but

relatively limited applications in monitoring changes in lake

water level on the TP due to sparse ground tracks. In this

study, multisource altimetry data (i.e., Jason-1/2/3, Envisat,

ICESat, and CryoSat-2) were combined if available for lakes

in this study, with the Landsat-derived water levels developed

in this study as a critical reference to increase the water level

observations and merging data from multiple altimetric mis-

sions.

Changes in lake area can be captured by optical or syn-

thetic aperture radar (SAR) images from medium- or high-

spatial-resolution remote sensing data, such as Landsat and

Sentinel series. Extraction of lake water bodies can be manu-

ally (Wan et al., 2016) or automatically (Zhang et al., 2017b)

achieved. Automatic water extraction methods based on the

water index and auto-thresholding are more efficient in deal-

ing with a mass of remote sensing images. Even so, acqui-

sition and preprocessing of such a large amount of histor-

ical data (∼ 10 TB) covering TP lakes are still intractable

for researchers with limited computational resources. With

the help of cloud-based platforms, such as the Google Earth

Engine (GEE) that significantly reduces data downloading

and preprocessing time, tens of thousands of images may

be processed online in days instead of months (Gorelick et

al., 2017). In this study, more than 20 000 Landsat images

were processed online using GEE to extract lake water bod-

ies based on the water index (McFeeters, 1996) and Otsu al-

gorithm (Otsu, 1979).

There have been studies focusing on changes in lake wa-

ter storage on the TP over recent decades; e.g., Zhang et

al. (2017a) examined changes in water storage for ∼ 70 lakes

from the 1970s to 2015 with ICESat altimetry data and Land-

sat archives. An individual lake area data set from the 1970s

and annual area data after 1989 were used. Due to the short

time span of ICESat, they used the hypsometric method to

convert lake areas into water levels. Yao et al. (2018b) used

digital elevation models (DEMs) and optical images to de-

velop hypsometric curves for lakes on the central TP and es-

timated annual changes in water storage for 871 lakes from

2002 to 2015. These studies have a wide spatial coverage

of lakes but relatively lower temporal resolution and little

spaceborne altimetric information, which may limit the ac-

curacy of trends in lake water level/storage in some cases and

short-term monitoring of lake overflow floods. The Labora-

toire d’Etudes en Géophysique et Océanographie Spatiales

(LEGOS) Hydroweb provides a lake data set, including mul-

tisource altimetry-based changes in lake water level and stor-

age as well as hypsometric curves for 22 TP lakes (Crétaux

et al., 2016, 2011b). The data set incorporates more space-

borne altimetric information and has a higher temporal res-

olution. However, there may be a remaining bias when dif-

ferent sources of altimetric data are merged, due to the lack

of some important reference that can be derived from opti-

cal remote sensing to be shown in this study. We term the

reference data the “Landsat-derived water level” to be intro-

duced in Sect. 3.2. Here, we list recent studies and data sets

(Table 1) to provide a concise summary on remote sensing

monitoring of water levels and storage changes over lakes on

the TP.

The overall objective of this study was to examine multi-

year and short-term changes in water level and storage across

52 lakes with surface areas larger than 150 km2 on the TP

by merging multisource altimetry and optical remote sensing

images to generate more coherent high-temporal-resolution

lake water level and storage change data sets ranging from

weekly to monthly timescales during 2000–2017 and the

hypsometric curve (i.e., the lake-area–water-level relation-

ship) for each lake. To investigate changes in lake storage,
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Table 1. Recent studies and data sets on TP lakes. H, A, and V in the table denote lake water level, area, and volume, respectively.

Reference No. of lakes Data type Time span Temporal resolution Source data

Song et al.

(2013)

30 H, A, V, and

hypsometric

curve

4 records for the

1970s, 1990, 2000,

and 2011

Decadal Altimetry data:

ICESat

Optical data:

Landsat 5/7 TM/ETM+

Crétaux et

al. (2016)

22 H, A, V, and

hypsometric

curve

1995–2015

relative bias par-

tially removed

(only for altime-

ters with overlap-

ping period)

Submonthly for lakes

with T/P and Jason-1/2

data, and ∼ monthly for

lakes without Jason-1/2

or T/P data

Altimetry data:

T/P, ERS-2, GFO, Envisat,

Jason-1/2, SARAL, ICESat,

and CryoSat-2

Optical data:

Landsat 5/7/8 TM/ETM+/OLI

and MODIS

Jiang et al.

(2017)

70 H 2003–2015

relative bias

between ICESat

and CryoSat-2

unremoved

∼ Monthly Altimetry data:

ICESat and CryoSat-2

Zhang et al.

(2017a)

60–70 H, A, V, and

hypsometric

curve

One record for the

1970s, and annual

data for 1989–2015

Annual Altimetry data:

ICESat

Optical data:

Landsat 5/7/8 TM/ETM+/OLI

Li et al.

(2017b)

167 H 2002–2012 ∼ Monthly Altimetry data:

ICESat and Envisat

Yao et al.

(2018b)

871 H, A, V, and

hypsometric

curve

2002–2015 Annual Optical data:

Landsat 5/7/8 TM/ETM+/OLI

and HJ-1A/1B

DEM data:

SRTM and ASTER

Hwang et

al. (2019)

59 H 2003–2016

relative bias par-

tially removed

(only for lakes with

Jason data/in situ

data)

Submonthly for lakes

with Jason-2 data, and

∼ monthly for lakes

without Jason-2 data

Altimetry data: Jason-2/3,

SARAL, ICESat, and

CryoSat-2

(Jason-3 data for validation)

Our study 52 H, A, V, and

hypsometric

curve

2000–2017

all relative biases

removed

Submonthly for most

lakes

Altimetry data: Jason-1/2/3,

Envisat, ICESat, and

CryoSat-2

Optical data:

Landsat 5/7/8 TM/ETM+/OLI

lake water levels and areas need to be derived from multi-

source remote sensing.

First, water levels from various satellite altimeters (Fig. 1)

for each lake as well as lake shoreline positions and lake ar-

eas from optical remote sensing images (i.e., Landsat) were

derived. Second, systematic biases between different altime-

try data were removed by either comparing the mean wa-

ter levels during the overlap period (Fig. 1) or comparing

the two water level time series with lake shoreline positions,

depending on the length of the overlap period (details can

be found in Sect. 3.1). Lake-shoreline-position-derived water

levels, termed the Landsat-derived water levels in this study,

can serve as a unique source of information reflecting water

levels as well as a data merging reference. We will show that

after deriving two or three regression parameters, lake shore-

line positions can well reflect lake water levels with compa-

rable accuracy to altimetry-derived water levels. Third, with

information on lake water levels and areas derived from al-

timetry data and optical remote sensing images, the hypso-

metric curve that describes the relationship between the lake
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Figure 1. Spatial (the number of lakes covered) and temporal coverage and their overlap periods of multiple satellite altimetric missions

used in this study, including Jason-1/2/3, Envisat, ICESat, and CryoSat-2.

water level and storage changes can be derived. Fourth, the

integral of the hypsometric curve was performed to convert

lake water levels into storage changes.

Results of this study provide a comprehensive and detailed

assessment of changes in lake level and storage on the TP for

the recent 2 decades and short-term monitoring of lake over-

flow floods for some lakes. This study could largely benefit

more detailed investigations into lakes, lake basins, and re-

gional climate change, because the generated data sets have

the highest temporal resolution during the study period with

systematic biases well removed. To ensure the data quality,

field experiments were carried out and in situ data were col-

lected to examine the uncertainty in the Landsat-derived wa-

ter levels. Users are free to access the data set described in

this paper at https://doi.org/10.1594/PANGAEA.898411 (Li

et al., 2019).

2 Study area and data

2.1 Study area

The TP can be generally divided into 12 major basins (Wan et

al., 2016; Zhang et al., 2013), among which the inner/central

TP (CP) is the only endorheic basin and home to most TP

lakes, including ∼ 300 TP lakes larger than 10 km2. There-

fore, it was chosen as the main study area. The endorheic

basin covers an area of ∼ 710 000 km2 (∼ 28 % of total TP)

with a mean elevation of ∼ 4900 m and has a semiarid plateau

climate with annual precipitation ranging from 96 to 295 mm

(Li et al., 2017c). Most lakes in the endorheic basin were

expanding under the influence of climate change/variability

as opposed to other areas in the TP, e.g., Selin Co exceeded

Nam Co in area and consequently became the largest lake in

the endorheic basin between 2011 and 2012 and expanded

by 26 % over the past 40 years (Zhou et al., 2015), whereas

Yamzhog Yumco (also known as Yamdrok Lake; outside the

endorheic basin, 350 km to the southeast of Selin Co) shrunk

by ∼ 11 % during 2002–2014 according to Wan et al. (2016).

Located in the southeast endorheic basin, the Nam Co basin

covering about 10 800 km2, with 19 % of the basin lake water

area and a mean lake elevation of ∼ 4730 m, was chosen as a

field experiment spot. The mean annual temperature and pre-

cipitation of Nam Co are 1.3◦ and 486 mm, respectively (Li et

al., 2017a). The other experiment spot was Yamzhog Yumco,

which has a mean lake elevation of ∼ 4440 m. Subject to

steep mountainous terrain, the lake has a narrow-strip shape

with complex shorelines. The basin of Yamzhog Yumco cov-

ers ∼ 6100 km2, with mean annual temperature and precipi-

tation of 2.8◦ and ∼ 360 mm, respectively (Yu et al., 2011).

An overall map of experiment lakes is given in Fig. 2.

2.2 Data

Multisource altimetry data were used in this study as shown

in Table 2. The earliest record dates back to 2002 (i.e., En-

visat and Jason-1) and the latest record ends in 2017 (i.e.,

Jason-3 and CryoSat-2, Fig. 1). Most of the 52 lakes ex-

amined in this study were covered by ICESat, Envisat, and

CryoSat-2 data. ICESat data provided by the National Aero-

nautics and Space Administration (NASA) were available on

42 lakes in this study. Envisat and CryoSat-2 data provided

by the European Space Agency (ESA) were available on 35

and 51 lakes in this study. Jason-1/2/3 data provided by the

Centre National d’Etudes Spatiales (CNES) were available

only on 12 lakes in this study due to the relatively sparse

ground tracks or data quality issues. Note that Jason-2 in-

herited the orbit of Jason-1 after its launch in 2008, whereas

Jason-1 was shifted into an interleaved orbit and continued

functioning until 2013, thereby increasing the spatial cov-

erage of Jason altimetry series to some degree, e.g., Jason-

Earth Syst. Sci. Data, 11, 1603–1627, 2019 www.earth-syst-sci-data.net/11/1603/2019/
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Table 2. Multisource altimetry data used in this study.

Repeat Footprint Footprint Lake no.

Mission Sensor (type) Data record Duration cycle interval diameter with data Data source

(day) (m) (km)

Jason-1 Poseidon-2 (radar) S-GDR 2002–2013 10 ∼ 300 2–4 12 CNES Aviso+
Jason-2 Poseidon-3 (radar) S-GDR 2008– 10 ∼ 300 2–4 12 CNES Aviso+
Jason-3 Poseidon-3B (radar) S-GDR 2016– 10 ∼ 300 2–4 12 CNES Aviso+
Envisat RA-2 (radar) GDR 2002–2010 35 ∼ 390 3.4 35 ESA

CryoSat-2 SIRAL (radar) InSAR Level 1 2010– 369 ∼ 280 ∼ 1.65 51 ESA

(subcycle 30) (across track),

∼ 0.3

(along track)

ICESat GLAS (laser) GLAH 14 2003–2009 91 ∼ 170 ∼ 0.07 42 NASA

S-GDR stands for Sensor Geophysical Data Record; GDR stands for Geophysical Data Record; GLAH 14 stands for GLAS/ICESat L2 Global Land Surface Altimetry Data (HDF5), version

34; CNES stands for Centre National d’Etudes Spatiales; Aviso stands for Archiving, Validation and Interpretation of Satellite Oceanographic data; Aviso+ data set is available via FTP at

http://ftp-access.aviso.altimetry.fr with a registered username and password (last access: 18 August 2019); ESA Envisat products are available via FTP at http://ra2-ftp-ds.eo.esa.int with a

registered username and password (last access: 18 August 2019); ESA CryoSat-2 products are available via FTP at http://calval-pds.cryosat.esa.int with a registered username and password

(last access: 18 August 2019); NASA ICESat products are available at https://nsidc.org/data/icesat/data.html (last access: 18 August 2019).

Figure 2. Experiment locations: Nam Co and Yamzhog Yumco.

Nam Co is located in the endorheic basin of the TP, while Yamzhog

Yumco is located in the Yarlung Zangbo river basin (the upper

Brahmaputra River). Both lakes are close to Lhasa city.

1 data in Lake Qinghai, the largest lake on the TP, were

only available after 2008 due to the orbit shift. ICESat and

CryoSat-2 data have the largest spatial coverage but rela-

tively long repeat cycles of 91 and 369 days, respectively

(Bouzinac, 2012; Zhang et al., 2011). The Envisat mission

has a lower orbit than Jason-1/2/3 but higher than ICESat,

resulting in a moderate spatial coverage and a temporal res-

olution of 35 days (Benveniste et al., 2002). To determine if

the altimetry data fall into the lakes, a lake shape data set

generated by Wan et al. (2016) was used. An example of us-

ing the lake shape data set to determine altimetry data falling

into the lake boundaries is given in Fig. 3a, showing that data

from all altimeters are available in Zhari Namco.

It should be noted that different altimeters vary with

wavelengths of electromagnetic radiation and mechanisms.

For instance, Jason-1/2/3 using the Ku and C bands and

Envisat/RA-2 using the Ku and S bands work in the low-

resolution mode (LRM). These dual-frequency radar altime-

ters can provide more accurate range corrections due to

the ionospheric effect (Tournadre, 2004). The LRM is typ-

ical for the early version of satellite altimeters such as

TOPEX/Poseidon. There are more advanced modes, such as

SAR and interferometric synthetic aperture radar (InSAR),

for recent radar altimeters, which generally have smaller

footprints than the LRM mode. CryoSat-2/SIRAL working at

a single Ku band has three modes, including LRM, SAR, and

InSAR, which were designed to have an increasing resolution

in turn and work in different zones. The InSAR mode uses

interference phenomena so that the shift of the nadir point

across the track can be detected, improving the altimeter’s

performance on ice sheets with slopes (Bouzinac, 2012). The

Geoscience Laser Altimeter System (GLAS) is the laser al-

timeter carried by ICESat working in the near-infrared band.

We used Landsat 5 TM (2000–2011), Landsat 7 ETM+
(2000–2017), and Landsat 8 OLI (2013–2017) surface re-

flectance data sets provided by GEE to generate informa-

tion on lake shoreline positions and lake areas. Landsat 7

ETM+ was subject to sensor failure, and all the Landsat

7 ETM+ images contain gaps after 2003 (Markham et al.,

2004). There were more than 20 000 images processed, and

half of them were excluded from the final results due to cloud

contamination or gaps. We collected daily in situ water level

measurements in Yamzhog Yumco for validation purposes

with a pressure-type water level sensor. The in situ water

level measurements spanned half a year from May to Octo-

www.earth-syst-sci-data.net/11/1603/2019/ Earth Syst. Sci. Data, 11, 1603–1627, 2019
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ber 2018. We also performed unmanned aerial vehicle (UAV

or drone) imaging over a 1 km lake bank in Yamzhog Yumco

and Nam Co for obtaining better knowledge on the experi-

mental environment.

In addition, GaoFen-2 (GF-2, the China High-Resolution

Earth Observation System mission) images were used to

perform a rigorous statistical analysis of uncertainty in the

Landsat-derived water levels by taking the GF-2-derived lake

shoreline positions as the ground truth to analyze the sub-

pixel water area ratios of Landsat image pixels (see Sect. 4).

GF-2 images have a spatial resolution of 0.8 m for the

panchromatic band, and preprocessing including orthorecti-

fication and radiometric calibration was performed. Before

analysis, we performed an image-to-image registration with

manually selected tie points between GF-2 and correspond-

ing Landsat 8 OLI images until the coregistration error re-

duced to ∼ 2 m.

3 Method

3.1 Satellite altimetry water level

The first step of deriving satellite altimetry water levels is to

select correct ground tracks and valid footprints falling on the

lakes. Because there is a random ground track shift at ∼ 1 km

in different cycles for most altimetry missions, it is uncer-

tain whether valid lake footprints can be obtained for each

cycle, even though the nominal ground track seems to cross

the lake. This problem can be addressed by comparing geo-

graphic coordinates of the footprints with a lake shape data

set (Wan et al., 2016). After picking out the valid footprints,

the lake surface height can be calculated for each footprint.

All radar altimetry data share a relationship:

LSH = Alt − (Range + cor), (1)

where LSH represents the lake surface height with respect

to the geoid; Alt represents the altimeter height with respect

to the reference ellipsoid; Range represents the distance be-

tween the altimeter and lake surface; and cor represents sev-

eral range corrections due to atmospheric effects, sensor de-

sign defects, or geophysical effects. Radar altimeters and

laser altimeters need different corrections, given that they are

working in different wavelengths and have different designs.

For instance, corrections for radar altimeters include wave-

form retracking correction, wet/dry troposphere correction,

ionosphere correction, pole/solid tide correction, and geoid

correction. Laser altimeters also need atmospheric delay cor-

rection, geoid/pole tide correction, and geoid correction. Un-

like radar altimeters, saturation correction instead of wave-

form retracking correction is more important to laser altime-

ters.

The retracking correction plays an important role in re-

moving the contamination of land signal when radar altime-

try data are applied to inland water bodies. In this study,

Jason-1/2/3 data were retracked using a classical waveform

retracking algorithm, i.e., the improved threshold method

(ITR), whereas CryoSat-2 data were retracked using the nar-

row primary peak threshold (NTTP) method (Birkett and

Beckley, 2010; Cheng et al., 2010; Jain et al., 2015). Re-

tracking corrections were not performed for Envisat and ICE-

Sat data, because the Envisat/RA-2 product already provided

a retracked range using the ICE-1 method, and the ICESat

GLAH14 product already included several corrections (such

as saturation correction) that are sufficient for most appli-

cations including studies on inland water bodies (Zhang et

al., 2011). The original idea of the NTTP, ICE-1, and ITR

is quite similar. All of them adopt a threshold defined as the

percentage of the waveform peak to determine the retracking

gate and then to convert the difference between the retracking

gate and the nominal gate into range correction by multiply-

ing the gate range (c1t/2, where c is the speed of light and

1t is the time duration of a gate). The differences lie in the

choice of thresholds as well as the calculation of waveform

peaks. For instance, ICE-1 uses a 30 % threshold, whereas

ITR uses a 50 % threshold.

For each cycle of an altimeter, it is common that more

than one footprint fall on a lake, thereby providing several

lake surface height (LSH) observations on the same day. Af-

ter removing outliers with the three-sigma rule, frequency

distributions of the LSHs from the same cycle were calcu-

lated. The mean value of the histogram bin with the highest

frequency was selected to represent the LSH for the cycle.

Meanwhile, the frequency of the chosen histogram bin was

reserved to evaluate the data quality for the cycle; e.g., a cy-

cle was marked as high quality if the frequency was higher

than 0.8, moderate quality if it was only higher than 0.5, and

poor quality if the frequency was lower than 0.5. The LSH

from each cycle constituted the water level time series for a

lake. LSHs that were marked as poor quality and obviously

deviated from the moving average were removed from the

altimetry-based lake water level time series.

It is not uncommon that systematic biases exist in dif-

ferent altimetry data sets due to variations in orbit, the dis-

crepancy between correction models, errors associated with

sensors, and even the choice of the reference datum. After

deriving lake water level time series for each altimeter, we

first merged the Envisat and ICESat water levels if both were

available for a lake, because they have the longest overlap

period (Fig. 1). We chose Envisat-derived water levels as the

baseline and removed the difference of the mean values of

the two products during the overlap period from the ICESat

data, because Envisat data are generally denser and longer

than ICESat data. A similar process was applied to Jason-

1/2/3, as there are two overlap periods connecting the three

altimeters together. Figure 3b shows a result of merged al-

timetry data when all sensors are available. There are trade-

offs between CryoSat-2 and Jason-2/3 data in terms of spatial

coverage and time span. CryoSat-2 data are available for all

lakes in this study but they only have an overlap period with

Jason-2/3 data, whereas Jason-2/3 data are only available for
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Figure 3. (a) Ground tracks of multiple altimetric missions over Zhari Namco and (b) the merged altimetry water levels for Zhari Namco.

LSH stands for lake surface height.

12 lakes. For most lakes without Jason-2/3 data, we merged

CryoSat-2 data with either ICESat or Envisat using Landsat-

derived water levels spanning from 2000 to 2017, because

there is no overlap period between these altimetry water lev-

els (Fig. 1). Details on how Landsat-derived water levels aid

in merging the altimetry water levels are shown in Sect. 3.2.

3.2 Landsat-derived water level

For most lake basins, it is possible to find a relatively flat

portion of lake banks with an average slope of 1/30 or even

smaller, where obvious interannual or intra-annual changes

in lake shoreline positions can be detected using Landsat

images (30 m). These locations can be found by comparing

lake images from the first year and the last year of the study

period if the lake shows a clear expanding/shrinking trend.

Otherwise, we can compare images acquired in early sum-

mer when the LSH is at its lowest level with those acquired

in late autumn when the lake expands to its limit. In this

study, we assumed that the selected lake bank was flat enough

such that the relationship between the lake water level and

shoreline position can be depicted in a linear or quasilinear

(parabolic) way. Thus, we can transform the lake shoreline

positions into Landsat-derived water levels by fitting with al-

timetry water levels. The validity of this assumption can be

evaluated with the coefficient of determination (R2) for each

lake as shown in Table 3. For most lakes, the goodness of

fit is higher than 0.7, suggesting the generally good fitting

relationship between the lake water levels and shoreline po-

sitions.

Though there were ∼ 500 Landsat images obtained for the

selected lake banks during the study period, many of them

were largely affected by cloud or cloud shadow. All the im-

ages were processed online using the GEE application pro-

gramming interface (API). Preprocessing such as radiometric

calibration, atmospheric correction, and geometric correction

was already performed in the production of the data sets. In

addition, the failure of the Landsat 7 sensor SLC left all the

Landsat 7 ETM+ images with gaps after 2003 (Markham et

al., 2004), making the available images even fewer. We man-

aged to make use of some images with gaps in generating

lake shoreline positions. By choosing the region of interest

(ROI) that is parallel to the image gaps, we made most of

the Landsat 7 ETM+ images useable. However, the width

of ROI must be reduced to avoid shifting gaps as shown in

Fig. 4b. The gaps may vary with time but are more like vi-

bration around the midpoint. The ROI did not fill the interval

of gaps, because the wider the ROI, the higher possibility of

shifting gaps cross it.

Lake shoreline positions were characterized by water area

ratios detected in the ROI. To automatically extract water ar-

eas from a mass of Landsat archives on GEE, the water index

and Otsu threshold method were jointly used. We calculated

the normalized difference water index (NDWI) and the mod-

ified normalized difference water index (MNDWI) of the im-

ages and compared their performance in different seasons.

It was found that the MNDWI tends to be more sensitive to

shallow water in summer but is less effective than the NDWI

when the lake bank is covered by snow in the cold season

as shown in Fig. 5c. Therefore, the two water indices were

jointly used by applying the MNDWI to images acquired

during May to October and applying the NDWI to the re-

maining months. The NDWI and MNDWI can be calculated

as follows (McFeeters, 1996; Xu, 2005):

NDWI =
Bgreen − BNIR

Bgreen + BNIR
, (2)

MNDWI =
Bgreen − BSIR

Bgreen + BSIR
, (3)

where Bgreen, BNIR, and BSIR refer to surface reflectance of

bands 2, 4, and 5 for Landsat 5/7 TM/ETM+ images and

bands 3, 5, and 6 for Landsat 8 OLI images.

After calculating the water index, the grayscale image was

binarized using the Otsu method. If the selected ROI com-
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Table 3. Summary of regression analyses and hypsometric function by lake.

Lake No. of R2 of Landsat- R2 of hypsometric

Lake name area Landsat-derived derived water level curve Hypsometric function

(km2) water level (no. of data pairs) (no. of data pairs)

Ake Sayi Lake 260.74 113 0.8951 (14) 0.9556 (21) S = 0.45dh2 + 11.26dh + 163.97,

dh = H − 4846

Lake Aqqikkol 538.21 354 0.9717 (44) 0.9353 (36) S = 2.36dh2 + 0.21dh + 370.29,

dh = H − 4252

Lake Ayakum 987.23 183 0.9651 (50) 0.9695 (57) S = 0.16dh2 + 65.72dh + 658.28,

dh = H − 3878

Bam Co 255.81 209 0.901 (14) 0.9287 (27) S = 0.28dh2 + 2.84dh + 206.46,

dh = H − 4560.5

Bangong Co 661.64 232 0.5164 (172) 0.7991 (29) S = 1.43dh2 + 15.67dh + 619.28,

dh = H − 4238

Chibzhang Co 541.96 49 0.8766 (19) 0.9792 (15) S = 0.69dh2 + 3.36dh + 475.79,

dh = H − 4930

Co Ngoin1 268.37 174 0.6637 (15) 0.8803 (62) S = 3.67dh2 + −1.33dh + 263.1,

dh = H − 4564.5

Cuona Lake 192.15 254 0.7607 (12) 0.8876 (27) S = 1.77dh2 + 3.6dh + 184.79,

dh = H − 4585.5

Dagze Co 310.8 192 0.8334 (67) 0.8862 (28) S = 0.08dh2 + 6.14dh + 230.51,

dh = H − 4460

Dogai Coring 492.39 257 0.8624 (152) 0.9048 (33) S = 3.2dh2 + 5.66dh + 427.17,

dh = H − 4816

Dogaicoring Qangco 403.18 162 0.9202 (37) 0.9218 (47) S = 0.53dh2 + 3.93dh + 279.6,

dh = H − 4786

Donggei Cuona Lake 247.83 561 0.8776 (38) 0.925 (101) S = 0.54dh2 + 7.22dh + 222.19,

dh = H − 4084

Dung Co 139.4 145 0.9218 (49) 0.8652 (28) S = 0.07dh2 + 2.3dh + 137.06,

dh = H − 4547

Goren Co 477.95 191 0.6166 (24) 0.9096 (41) S = 2.91dh2 +−0.03dh+ 468.33,

dh = H − 4648.5

Gozha Co 246.91 96 0.4297 (12) 0.5564 (19) S = 1.57dh2 +−0.06dh+ 254.43,

dh = H − 5082

Gyaring Lake 535.84 253 0.6217 (20) 0.3451 (71) S = 1.99dh2 + 2.8dh + 517.18,

dh = H − 4292

Har Lake 621.52 370 0.8652 (63) 0.9893 (50) S = 1.1dh2 + 1.52dh + 582.34,

dh = H − 4075

Hoh Xil Lake 351.3 132 0.9038 (12) 0.9355 (27) S = 1dh2 + 5.29dh + 300.5,

dh = H − 4887.1

Jingyu Lake 339.69 224 0.8978 (51) 0.989 (34) S = 0.37dh2 + 4.77dh + 238.43,

dh = H − 4710

Kusai Lake 328.8 295 0.9787 (151) 0.8987 (49) S = 0.52dh2 + 5.04dh + 254.67,

dh = H − 4473

Kyebxang Co 187.32 233 0.75 (12) 0.8753 (135) S = 0.16dh2 + 5.4dh + 150.9,

dh = H − 4619

Langa Co 256.03 167 0.859 (157) 0.888 (47) S = −0.19dh2 + 4dh + 249.28,

dh = H − 4564

Lexiewudan Co 273.63 286 0.9216 (49) 0.9496 (40) S = 0.13dh2 + 4.63dh + 219.65,

dh = H − 4868

Lumajiangdong Co 386.71 220 0.9135 (28) 0.9708 (17) S = 0.62dh2 + 2.09dh + 353.95,

dh = H − 4812

Mapam Yumco 412.69 163 0.7096 (30) 0.9973 (30) S = 1.18dh2 + 5.16dh + 399.68,

dh = H − 4584

Margai Caka 137.7 247 0.9399 (12) 0.9955 (35) S = 0.03dh2 + 5.14dh + 112.12,

dh = H − 4791
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Table 3. Continued.

Lake No. of R2 of Landsat- R2 of hypsometric

Lake name area Landsat-derived derived water level curve Hypsometric function

(km2) water level (no. of data pairs) (no. of data pairs)

Memar Co 167.3 193 0.911 (39) 0.8626 (20) S = 0.27dh2 + 3.17dh + 134.69,

dh = H − 4923

Nam Co 2028.5 187 0.9064 (62) 0.8749 (18) S = 2.43dh2 + 5.55dh + 1970.1,

dh = H − 4724.5

Ngangla Ringco 492.86 88 0.4652 (25) 0.9498 (7) S = 3.87dh2 + 3.86dh + 490.69,

dh = H − 4715

Ngangze Co 471.21 245 0.9538 (236) 0.9332 (49) S = 0.2dh2 + 7.03dh + 391.21,

dh = H − 4680

Ngoring Lake 656.83 86 0.844 (71) 0.8613 (14) S = 4.69dh2 +−5.04dh+ 613.66,

dh = H − 4270

Paiku Co 272.85 231 0.8341 (21) 0.9079 (61) S = 0.91dh2 + 2.64dh + 264.89,

dh = H − 4578.5

Puma Yumco 290.98 250 0.6871 (18) 0.5629 (53) S = 0.48dh2 + 0.8dh + 286.34,

dh = H − 5011

Pung Co 176.93 187 0.8017 (12) 0.9841 (31) S = 0.03dh2 + 3.75dh + 151.66,

dh = H − 4526

Qinghai Lake 4495.33 323 0.9011 (151) 0.8181 (19) S = 3.45dh2 + 155.03dh +
4084.73,

dh = H − 3193

Rola Co 169.83 347 0.7842 (18) 0.9403 (96) S = −0.88dh2+14.87dh+115.59,

dh = H − 4816

Salt Lake 144.3 206 0.9344 (16) 0.9858 (32) S = 0.16dh2 + −0.69dh + 37.42,

dh = H − 4430

Salt Water Lake 212.47 347 0.9086 (27) 0.9494 (151) S = −0.82dh2+17.31dh+133.71,

dh = H − 4901

Selin Co 2300.49 179 0.9777 (70) 0.945 (22) S = 1.05dh2 +45.86dh+1754.31,

dh = H − 4536.4

Tangra Yumco 862.94 100 0.9155 (18) 0.8072 (11) S = 0.94dh2 +−0.28dh+ 862.94,

dh = H − 4536

Taro Co 485.15 268 0.8903 (39) 0.9576 (19) S = 0.18dh2 + 4.97dh + 477.32,

dh = H − 4567.3

Tu Co 448.64 257 0.9276 (41) 0.9875 (26) S = 0.02dh2 + 4.91dh + 396.59,

dh = H − 4926

Urru Co 356.35 260 0.71 (49) 0.8994 (27) S = 1.35dh2 + 2.67dh + 345.34,

dh = H − 4553

Wulanwula Lake 652.08 225 0.9679 (81) 0.9285 (10) S = 2.05dh2 + 16.49dh + 513.15,

dh = H − 4856

Xijir Ulan Lake 463.36 316 0.9736 (84) 0.9691 (44) S = 0.93dh2 + 13.3dh + 366.35,

dh = H − 4770.8

Xuru Co 209.87 144 0.5984 (9) 0.5527 (58) S = 0.12dh2 + 0.22dh + 206.53,

dh = H − 4714

Yamzho Yumco 549.61 398 0.9215 (140) 0.9364 (72) S = 0.51dh2 + 9.63dh + 531.79,

dh = H − 4436

Yelusu Lake 203.4 486 0.7014 (21) 0.8352 (92) S = 14.84dh2+−5.77dh+185.15,

dh = H − 4686.5

Yibug Caka 178.22 118 0.9206 (12) 0.9615 (25) S = −1.25dh2+15.79dh+147.03,

dh = H − 4558.5

Zhari Namco 1000.18 143 0.9177 (164) 0.8388 (52) S = 2.66dh2 + 10.07dh + 962.57,

dh = H − 4610

Zhuonai Lake 160.1 260 0.9528 (11) 0.973 (21) S = 0dh2 + 10.06dh + 124.29,

dh = H − 4742

Zige Tangco 238.67 171 0.9008 (186) 0.976 (24) S = 0.06dh2 + 4.62dh + 212.71,

dh = H − 4565
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Figure 4. (a) Yamzhog Yumco and its surroundings. The DEM was extracted from the SRTM Global 90 m DEM product (Jarvis et al.,

2008). (b) Region of interest (ROI, yellow area) selected from a Landsat 7 ETM+ image for detecting changes in lake shoreline (black

areas represent gaps in the image). (c) Linear regression of lake shoreline positions that are represented by water area ratios in the ROI and

altimetry water levels for Yamzhog Yumco. (d) Landsat-derived water levels and altimetry water levels for Yamzhog Yumco.

prises ∼ 50 % water and ∼ 50 % land, the performance of

the method is good, as the distribution of digital numbers

of the grayscale image is close to the assumption of the bi-

modal histogram implicit in the Otsu algorithm (Kittler and

Illingworth, 1985; Otsu, 1979). The binarized images were

further processed to provide the water area ratio in the ROI,

which represents the lake shoreline position. The lake shore-

line position time series were then converted into Landsat-

derived water levels using linear regression or second-order

polynomial fit with altimetry-derived water levels (Fig. 4c–

d). For most cases, we only used linear regression, and we

performed the second-order polynomial fit only for 2 lakes

with Jason-1/2/3 data, because a higher-order regression re-

quires more input information to ensure the reliability. How-

ever, cloud, cloud shadow, and shifting gaps may contami-

nate the ROI and cause errors in the Landsat-derived water

levels. Therefore, the QA band of the Landsat surface re-

flectance product was used to filter the images. Data were ex-

cluded if the fraction of the cloud or cloud-shadow-covered

area in the ROI was higher than 5 %. For every Landsat 7

ETM+ image acquired after 2003, the pixel number of the

ROI was counted and compared with those acquired before

2003. If the loss of pixels exceeded 2 %, the ROI was consid-

ered to be affected by a gap and the data were consequently

excluded from the subsequent analysis.

A critical function of Landsat-derived water levels is to aid

in merging altimetry water levels when there was no over-

lap period between altimeters or the overlap period was too

short. For lakes without Jason-1/2/3 data, lake shoreline posi-

tions were firstly translated into Landsat-derived water levels

by fitting with CryoSat-2 data functioning as extrapolation of

CryoSat-2 to 1–2 years. Then, we applied the same method

of merging Jason-1/2/3 to merge the extrapolated CryoSat-2

data with either Envisat or ICESat data. In doing so, we were

able to remove all systematic biases between multisource al-

timetry water levels. After merging the altimetry water lev-
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Figure 5. (a) A Landsat 7 ETM+ image of Lake Aqqikkol acquired in summer in 2001; (b) water area extractions using the modified

normalized difference water index (MNDWI) and the normalized difference water index (NDWI), showing that the MNDWI performs better

in detecting shallow water; (c) a Landsat 8 OLI image of Nam Co acquired in winter in 2015; (d) water area extraction using the NDWI,

showing good performance in distinguishing water from snow; and (e) water area extraction using the MNDWI, showing some confusion of

water and snow.

els, we performed regression analysis for the second time be-

tween the Landsat-derived water levels and merged altimetry

water levels to check if the linear relationship is stable dur-

ing the entire study period and at different elevations. If the

linear relationship was stable, the Landsat-derived water lev-

els would be merged with the altimetry water levels using

the linear fitting parameters from the second regression anal-

ysis. Otherwise, there may have been a change in the lake

bank slope, and, therefore, the extrapolation of CryoSat-2

data with Landsat-derived water levels was not suited. In this

case, we reselected the ROI to extract lake shoreline positions

and redid altimetry data merging until the Landsat-derived

water levels and merged altimetry water levels agreed well

with one another in the second linear regression. Detailed

analysis about the potential extrapolation issue can be found

in the Supplement.

In summary, the basic idea of removing systematic biases

of different altimetry water levels is to calculate the means

of two altimetry water level time series during the overlap

period. The difference between the means is removed from

one altimetry water level time series to make both altimetry

water level time series consistent and to form a longer time

series. This process was subsequently applied to all water

level time series with overlap periods to merge them into a

single time series for each lake. However, the overlap period

may not be long enough, such as Envisat and CryoSat-2 (e.g.,

there are limited data points (e.g., 1–2) during the overlap

period), or does not exist at all, such as ICESat and CryoSat-

2. On these cases, Landsat-derived water levels are used to

extend or create an overlap period that links two altimetry

water level time series.

3.3 Hypsometry

We derived the hypsometric curve for each lake by polyno-

mial fitting of the lake area and level time series. The lake

area comprises two parts: the inner invariable part and the

outer variable part. As the variable water area was of more

concern in this study, ROIs for extracting changes in lake

area only cover the lake shoreline and its neighboring areas

as shown in Fig. 6. The inner part of the water body was
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Figure 6. Programming interface of Google Earth Engine©. The red polygon is the region of interest for lake area change extraction of Selin

Co.

calculated only once and considered invariant, making the

calculation more efficient on GEE. Meanwhile, more images

are available as the area of ROI becomes smaller, because the

possibility of clouds covering the ROI is reduced compared

with an ROI covering the entire lake. Landsat 7 ETM+ im-

ages after 2003 were not included in this part of the calcu-

lation as gaps negatively affected the ROI for lake area ex-

traction. Similar to Sect. 3.2, we selected images with less

than 5 % cloud cover on an ROI to generate time series of

changes in lake area, obtaining 20–30 data points on average

for regression. R2 values for each lake are listed in Table 3,

indicating that most lake basins agree well with the parabolic

hypsometric curve.

4 Validation of data quality

4.1 Field experiment

Most Tibetan lakes are located in remote and inaccessible re-

gions, resulting in the scarcity of ground-based in situ mea-

surements that are vital for data quality assessment. We made

some in situ measurements in two lakes to validate the data

quality of Landsat-derived water levels. The data quality of

satellite altimetry on lakes or rivers has been widely inves-

tigated, and thus it is beyond the scope of our study. Many

studies used in situ water levels to calculate statistical met-

rics, e.g., root mean squired error (RMSE). However, results

provided by different studies vary, which could be associated

with the cross-section width of the study water body in the

ground track panel (Nielsen et al., 2017). This means that

these results may not be comparable due to their unique ap-

plications. In addition, it is not rigorous to use in situ data

of only one lake to represent the overall performance in the

uncertainty assessment for altimetry water levels. Instead, we

used the standard deviation of valid footprints acquired in the

same cycle as an estimate of uncertainty in satellite altimetry

water levels. In contrast, the applicable condition of Landsat-

derived water levels is not so variable as that of satellite al-

timetry data. Derivation of Landsat-derived water levels re-

quires a relatively flat bank as well as some altimetric in-

formation, which were available in all lakes. Since these se-

lected bank slopes were similarly small (∼ 1/30), it was pos-

sible to use a few typical lakes to represent all lakes. There-

fore, we carried out a field experiment (Fig. 7) in Yamzhog

Yumco and Nam Co to validate the Landsat-derived water

levels.

There were two main goals in our experiments: (1) col-

lecting daily in situ water level data in a TP lake to vali-

date the corresponding Landsat-derived water levels statisti-

cally and (2) testing the performance of extracting lake shore-

line positions from high-resolution optical images (GF-2) to

provide a theoretical uncertainty analysis of Landsat-derived

water levels. On Yamzhog Yumco, we installed a pressure-

type water level sensor (type H5110-DY, manufactured by
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Figure 7. Field experiments in two typical lakes: (a) an overview map of the experiment spot; (b) pressure-type water level sensor; (c) un-

manned aerial vehicle (UAV); (d) installation of the water level sensor; and (e) UAV image of a portion of the bank of Nam Co.

Shenzhen Hongdian Technologies Co., Ltd.), which mea-

sured water pressure and temperature at the installation depth

that were converted into water depths with a relative accu-

racy of ∼ 0.1 %. The device was carried onto the lake and

put ∼ 20 m below the water surface and 0.5 m above the lake

bottom, suggesting an absolute error of ∼ 2 cm. As for GF-

2 images, the spatial resolution of the panchromatic band is

0.8 m, which is able to provide a very accurate reference of

lake boundaries for assessing water classification results for

Landsat images. We used three GF-2 images acquired at dif-

ferent seasons (two in July and September 2015 and one in

February 2016) and different places on the TP to better rep-

resent the local conditions when extracting Landsat-derived

water levels or areas. Image coregistration was performed to

make sure that there was no obvious spatial shift between the

GF-2 images and corresponding Landsat images. The accu-

racy of the image coregistration was ∼ 2 m.

4.2 Uncertainty analysis of Landsat-derived water levels

Based on the in situ water level measurements made by the

pressure-type water level sensor, we evaluated the accuracy

of Landsat-derived water levels statistically. We first calcu-

lated anomalies of in situ water levels and Landsat-derived

water levels, and then water levels from the two sources ac-

quired on the same day were used for analysis. There were 16

Landsat-derived water level records available for the compar-

ison against the in situ measurements, indicating an RMSE

of the water level anomaly of 0.11 m. The linear fit shows

a slope close to 1 and an R2 of 0.89, suggesting the con-

sistency between the in situ water level measurements and

the Landsat-derived water levels (Fig. 8b). It should be noted

that the Landsat-derived water levels used for validation here

were translated from lake shoreline positions using param-

eters derived from fitting with CryoSat-2 data, i.e., there is

no in situ information involved in generating the Landsat-

derived water levels shown in Fig. 8.

Furthermore, we performed a theoretical uncertainty anal-

ysis of the Landsat-derived water levels by looking at the

original optical data and the generation process with the help

of high-resolution GF-2 images. First, we took GF-2 images

(after coregistration with the Landsat image for the same pe-

riod and after the coregistration errors were ∼ 2 m) as the

ground truth to determine the accurate position and shape

of the lake shoreline. Second, we performed water classifi-

cation from the Landsat 8 OLI image for the same period

jointly using the water index method and Otsu algorithm to

derive the binarized image. Landsat image pixels where the

lake shorelines from the GF-2 images cross were delineated

and marked as shoreline pixels as shown in Fig. 9a. Then the

water area in each shoreline pixel was calculated.

Given that these shoreline pixels were classified as either

water or land, a relationship between the water area ratio of

the shoreline pixel and the probability of the pixel being clas-

sified as water can be derived. This relationship generally

describes the function of the water classification method by

telling how likely a pixel is to be determined as water, given

the water area ratio of the pixel. Based on the observations

of a total of 4128 Landsat shoreline pixels, a power function
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Figure 8. (a) In situ water level anomaly versus Landsat-derived water level anomaly in Yamzhog Yumco; (b) linear regression between the

Landsat-derived water levels and in situ water levels during the same period.

Figure 9. (a–c) GF-2 images (upper layer) and corresponding Landsat 8 OLI images (bottom layer) acquired on 7 September 2015, 29 Jan-

uary 2016, and 5 July 2015; (d) Landsat 8 OLI shoreline pixels (the background is the GF-2 image) – blue pixels were classified as water,

and yellow pixels were classified as land; (e) the relationship between the water area ratio in a pixel and the frequency of the pixel being

classified as water. Blue bars are sampled at a 0.04 bin space from the 4128 pixels. The red line shows the fitting curve based on the maximum

likelihood method.

was chosen to represent the water classifier as Eq. (4) shows:

f (x) = xn, (4)

where x represents the water area ratio in the shoreline pixel,

f (x) represents the probability of the shoreline pixel being

classified as the water pixel, and n is the parameter that de-

termines the shape of the curve. Parameter n was determined

using the maximum likelihood method (Fig. 9e).

As expected, the probability of the pixel being classified as

water increases with the water area ratio in the pixel (Fig. 9e).

The enclosed area of the fitting curve (y = x1.43) is smaller

than that of y = x on [0, 1], suggesting that there may be

a lower probability of the occurrence of water pixels that is

associated with a systematic bias of the lake shoreline de-

tection. Note that the systematic bias can be removed when

linearly fitting the lake shoreline positions and altimetry wa-
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Figure 10. F (X): probability density function of the bias (X) be-

tween the classified water ratio (X1) and real water ratio (X0) in a

shoreline pixel.

ter levels as long as the bias is stable. Therefore, uncertainty

in Landsat-derived water levels developed in this study arises

mainly from the variation in this systematic bias.

To describe the variation in the systematic bias, a new ran-

dom variable X was introduced to represent the bias between

the classified water area and the real water area in a shoreline

pixel. Given the shape and position of the lake shoreline, the

real water area in each shoreline pixel is a complex function

of the relative position between the pixel and the shoreline.

To simplify the derivation, we assumed that the water area

ratio in a shoreline pixel is uniformly distributed on [0,1],

meaning that the probability of any value between 0 and 1 is

equal. If we use X0 to represent the true water area ratio in

the shoreline pixel and X1 to represent the classified results

based on the water area ratio, the random variable X can be

expressed as

X = X1 − X0, (5)

where X1 can take on 1 or 0 (i.e., the classified results only

tell us whether a pixel is a water pixel or not), so X can only

take on either 1 − X0 or −X0. Because the range of X0 is

[0,1], it is obvious that the range of X is [−1,1]. A derivation

of F (X), i.e., the probability density function (PDF) of X,

can be found in the Supplement (Part 2).

Overall, F (X) describes how the bias between the classi-

fied water ratio and real water ratio in shoreline pixels is dis-

tributed as shown in Fig. 10. If there are N shoreline pixels

in an ROI, we can take them as N independent observations

of X and calculate the mean value X. This value X can rep-

resent an average shift of the detected lake shoreline from the

real lake shoreline in the unit of 1-pixel width (30 m). As we

mentioned above, the systematic bias can be removed in the

regression between the lake shoreline positions and altime-

try water levels. As such, it is the variation of the bias that

determines the accuracy of the Landsat-derived water levels.

We can calculate the standard variation of X to represent the

uncertainty in lake shoreline position. Note that there is a

simple relationship between σx and σx :

σx =
σx√
N

. (6)

One only needs to calculate σx :

X =
1
∫

−1

F (X) · XdX ≈ −0.09, (7)

σx =

√

√

√

√

√

1
∫

−1

F (X) · (X − X)2dX ≈ 0.39. (8)

Combined with Eqs. (4) and (7), Eq. (8) was resolved nu-

merically, resulting in ∼ 0.39-pixel width. Substituting σx in

Eq. (6) with Eq. (8) gives

σx =
0.39
√

N
. (9)

If the slope of the shoreline is known, e.g., tan θ , the uncer-

tainty of the Landsat-derived water level can be expressed as

σho = σx · d · tanθ =
0.39 × 30 × tanθ

√
N

, (10)

where σho is the uncertainty of Landsat-derived water levels

and d is the spatial resolution of the satellite image (30 m).

In this study, a typical width of ROI for deriving Landsat-

derived water levels is ∼ 10-pixel width, meaning that N is

∼ 10. In addition, lake shores used for generating Landsat-

derived water levels here generally have a relatively mild

slope of ∼ 1/30 or even smaller, which can be roughly es-

timated from the maximum shoreline change and altimetry

water level change within a year. Here if we use 1/30 as

the slope tan θ , the uncertainty of the Landsat-derived wa-

ter levels can ultimately be estimated to be ∼ 0.12 m, which

is very close to the RMSE of 0.11 m based on the compari-

son between the optical water levels and in situ water level

measurements mentioned earlier.

However, for most cases we do not know the exact lake

bank slope tan θ , which is the reason why we performed the

regression analysis between the lake shoreline positions and

altimetry-derived water levels. Information on the real lake

bank slope is implicitly expressed in the linear fitting slope β

(if the fitting line is y = βx+α). Uncertainty in altimetric in-

formation could evolve into the fitting parameters and impact

the accuracy of the generated Landsat-derived water levels.

Given that the observed lake shoreline position is X1 (e.g.,

X1 = 5.6, meaning that the observed lake shoreline position

is 5.6 Landsat pixels away from the initial position corre-

sponding to the lowest water level, which is different from

Eq. (5), X1 here can be a rational number because it is deter-

mined by averaging all shoreline pixels in the ROI, whereas
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in Eq. 5 we focused on only 1 shoreline pixel), combining

Eq. (5), the Landsat-derived water level (y) can be expressed

as

y = β
(

X1 − X1

)

+Y = β
(

X0 − X0

)

+β
(

X − X
)

+Y , (11)

where
(

X1 − X1

)

denotes the observed lake shoreline change

(in the unit of a Landsat pixel), X1 denotes the mean of ob-

served lake shoreline positions used for linear regression, Y

denotes the mean of altimetry water levels used for linear re-

gression,
(

X0 − X0

)

denotes the real lake shoreline change,

(X − X) denotes the variation of the Landsat-derived shore-

line position caused by the water extraction method, and β is

the linear fitting slope. It is obvious that the expected value
(

X − X
)

is 0. As we discussed earlier, a systematic bias does

not affect the accuracy of the Landsat-derived water level but

the variation of the systematic bias does.

Based on Eq. (11), the overall uncertainty of the Landsat-

derived water level σy can be given as

σy =

√

√

√

√

σ 2
β

(

∂y

∂β

)2

+ σ 2
x

(

∂y

∂
(

X − X
)

)2

+ σ 2

Y

(

∂y

∂Y

)2

=
√

σ 2
β (X1 − X1)2 + σ 2

x β2 + σ 2

Y
, (12)

where β and σβ can be derived from the linear regression

analysis, σx is given in Eq. (9), and σY is the uncertainty of

the mean altimetry water level which can be estimated from

the altimetry data. For a typical lake like Yamzhog Yumco,

β = 0.35 m, σβ = 0.02 m, Max(|X1 − X1|) = 11, σx = 0.13,

and σY = 0.015 m, which gives a maximum σy of 0.22 m.

Note that
(

X0 − X0

)

is assumed to be the ground truth so

there is no error associated with this term. This relationship

shows that the uncertainty in the Landsat-derived water level

increases with the distance from the center point (X1, Y ) rep-

resented by (X1 −X1)2. Interpretation of this phenomenon is

that extrapolation of Landsat-derived water levels (far from

the center point) may cause some errors and should be used

with caution. More detailed discussion on the extrapolation

can be found in the Supplement.

Overall, the uncertainty quantification of the Landsat-

derived water levels developed in this study indicates clearly

that the accuracy of Landsat-derived water levels depends on

the width of an ROI, e.g., the number of pixels/observations,

slope of the lake shore, the effectiveness of the water clas-

sification method, and the uncertainty in the altimetry wa-

ter level used for regression. One of the advantages of the

Landsat-derived water level is that an ROI does not neces-

sarily cover a large area of lake shores, which maximizes

the potential of optical remote sensing images to increase

the spatial coverage and temporal resolution of lake water

level estimates that may not be realized by using satellite

altimetry alone. Optical remote sensing images provide im-

portant complementary information on altimetry water levels

and can subsequently facilitate lake water storage estimation.

4.3 Cross validation with similar products

We compared our product with a widely used lake water

level/storage data set provided by the LEGOS Hydroweb,

indicating that the two products are, on the whole, consis-

tent with each other (shown in Fig. 11), but our product may

perform better in terms of the temporal continuity as well as

the temporal resolution (shown in Sect. 6.2). Both advantages

are important in improving our understanding of responses of

lakes to climate change. There are 21 lakes that are the same

in both our study and LEGOS Hydroweb. Annual trends in

water level and lake storage during 2003–2015 are compared

in Fig. 11, indicating the overall consistency of the two prod-

ucts in terms of R2 of the linear fit.

4.4 Data set description

The data sets cover 52 large lakes (50 lakes with a surface

area larger than 150 km2 and 2 lakes that are 100–150 km2)

on the TP. The data sets consist of two parts: (1) a table

containing hypsometric curves and corresponding regression

statistics (R2 and the number of data pairs) for each lake,

with parameters of the hypsometric curves listed in sepa-

rate columns for the convenience of batch processing; and

(2) time series for each lake archived as 52 entities with geo-

graphic information (i.e., latitude, longitude, and size of the

lake) that can be checked in an online map provided by PAN-

GAEA, avoiding the confusion of lake names. The time se-

ries of each lake include lake water levels and lake storage

changes.

For data points in the water level time series, satellite or

sensor type is shown (i.e., from Jason-1/2/3, Envisat, ICE-

Sat, CryoSat, or optical images). Uncertainty was calculated

using the standard deviation of valid footprints in the cycle

(only for altimetry data). The lake water storage time series

were transformed from water level time series using the hyp-

sometric relationship so that they have equal data size. The

lake water storage time series represent changes in lake stor-

age with respect to a reference water level, which is listed

in the corresponding hypsometric curve table as a parame-

ter. The overall uncertainty of Landsat-derived water levels

within the regression range (the range of altimetry water lev-

els) is 0.1–0.2 m based on the experiment and analysis in this

paper. The extrapolation of Landsat-derived water levels may

occur during the time gap between altimetric missions and

before 2002. The average uncertainty of altimetry water lev-

els is 0.11 m.

5 Applications

5.1 Spatiotemporal analysis of changes in lake water

storage in the Tibetan Plateau

Based on the lake water storage changes we derived, spa-

tial patterns of lake storage trends during 2000–2017 were
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Figure 11. Cross validation of the TP lake level and storage changes derived from our study with those provided by the LEGOS Hydroweb

database (Crétaux et al., 2011a): (a) trends in lake water levels from 2003 to 2015 and (b) trends in lake water storage from 2003 to 2015.

Figure 12. Spatial distribution of trends in lake storage on the TP during 2000–2017. The black line shows the boundary of the endorheic

basin of the TP including 39 lakes in this study. The other 13 lakes are located outside the endorheic basin.

shown in Fig. 12. In the endorheic basin of the TP, simi-

lar to some reported results (Yao et al., 2018b; Zhang et al.,

2017a), most lakes have been expanding rapidly; e.g., Selin

Co (31.80◦ N, 89.00◦ E) gained 19.7 ± 2.0 km3 of water dur-

ing the study period, and Lake Kusai (35.70◦ N, 92.90◦ E)

experienced an abrupt expansion due to flood and gained

2.2 ± 0.2 km3 of water in 2011, as reported in related work

(Yao et al., 2012). In contrast, some lakes in the southern

part of the TP experienced shrinkage, e.g., Yamzhog Yumco

(28.93◦ N, 90.70◦ E) gained a total of 0.8 ± 0.4 km3 wa-

ter during 2000–2004 but has shrunk during the remaining

13 years (2005–2017) at a rate of −0.19 ± 0.03 km3 yr−1.

In contrast to Yamzhog Yumco, Lake Qinghai (36.90◦ N,

100.00◦ E) lost 2.2 ± 0.7 km3 water during 2000–2004 but

gained 7.7±0.6 km3 of water during 2005–2017. Similar pat-

terns can be detected in adjacent lakes of Lake Qinghai, e.g.,

Lake Donggei Cuona (35.28◦ N, 98.55◦ E) and Lake Ngoring

(34.90◦ N, 97.70◦ E).

However, spatial proximity cannot fully explain the in-

tricate trend distribution in the Selin Co basin, where large

lakes such as Selin Co were expanding, whereas smaller

adjacent lakes showed an opposite decreasing trend, e.g.,

Urru Co (31.70◦ N, 88.00◦ E), Lake Co Ngoin (31.60◦ N,

88.77◦ E), and Goren Co (31.10◦ N, 88.37◦ E). In fact, we

found that the decreasing trends in some small lakes like

Goren Co were not detected in Yao et al. (2018b), which

is likely due to the lower temporal resolution as shown in

Fig. 13. The three shrinking lakes are located in the upstream

region and feed Selin Co through two small rivers. One of the

rivers links lakes Goren Co, Urru Co, and Selin Co, whereas

the other links lakes Co Ngoin and Selin Co.
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Figure 13. Discrepancy of lake storage trends in Goren Co between Yao et al. (2018a) and our study.

Figure 14. (a) Total storage changes in the 52 lakes on the TP, which can be generally divided into two stages: (1) a rapidly increasing

stage (2000–2011) with a higher increasing rate of 6.71 km3 yr−1 and (2) a mildly increasing stage (2012–2017) with an increasing rate of

1.98 km3 yr−1. (b) Histogram of intra-annual changes in lake water levels of the 52 lakes on the TP.

A possible explanation of the disparity of changes in lake

water storage in the Selin Co basin could be the principle of

minimum potential energy. If we simplify the basin with the

tank model and take the upstream small lake as a tank with

a leaking hole, the storage of the small lake is mainly con-

trolled by the height of the leaking hole. Given that surface

water of the small lake increased, most of the increased water

would flow into the large lake (a lower tank), and the outflow

discharge of the small lake at higher elevations would in-

crease accordingly. The height of the leaking hole would de-

cline (erosion) so as to increase the overflow capacity, which

eventually results in the decrease in small lake storage. An-

other possible situation is that the height of the leaking hole

remains the same and the water surface height of the small

lake increases, but this situation is not consistent with the

minimum potential energy principle, as more water potential

energy is stored in the small lake. This phenomenon shows

that river-lake interactions may cause complex patterns of the

regional surface water distribution. Therefore, decreases in

small lake water storage and increases in water storage of

Selin Co in the basin detected by our study seem reasonable.

Increases in small lake water storage in this basin reported

in some published studies may be associated with the sparse

sampling of lake water levels.

We averaged the total lake water storage change in each

season to generate time series shown in Fig. 14a. The over-

all storage change in the 52 lakes is 100.1 ± 5.7 km3. The

total lake water storage was increasing rapidly during the

first 12 years but became relatively stable since 2012. Intra-

annual variation in the TP lakes can also be investigated us-

ing the densified lake water level time series generated by

our study. We removed the linear trend (sometimes there

were multiple linear trends for a lake in different periods,

which were removed in a stepwise fashion) and calculated

the mean monthly water level anomaly for each lake over

the study period. Then the intra-annual water level change

was represented by the difference between the maximum and

minimum values of the monthly water level anomaly. The
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Figure 15. Similarities and differences between water level time series from the LEGOS Hydroweb database (Crétaux et al., 2011a) and

our study. (a) Taro Co (31.14◦ N, 84.12◦ E). (b) Zhari Namco (30.93◦ N, 85.61◦ E). (c) Ngoring Lake (34.90◦ N, 97.70◦ E). Shading areas

highlight the differences between the two data sets. LSH represents lake surface height.
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histogram of the intra-annual water level change in Fig. 14b

shows that most of the TP lakes have water level variations

ranging from 0.3 to 0.75 m in a year on average. Similar work

was performed by Lei et al. (2017), but only a small number

of lakes were investigated in their study.

5.2 Quality assessment of similar data products

Some obvious discrepancies between the two data sources

can be noticed, e.g., water levels of Taro Co. Both Hydroweb

data and our estimation used ICESat and CryoSat-2 data. The

difference lies in the fact that our CryoSat-2 product was

more updated with a longer time span but Hydroweb used an

additional altimetry satellite SARAL. Because the system-

atic biases of both products were removed, it is possible that

we chose different baselines that resulted in the overall shift

as shown in Fig. 15a. For instance, we may use different sets

of ellipsoid and geoid models. In addition to the overall shift,

some time-dependent discrepancy can be found in Fig. 15,

e.g., periods highlighted by shading areas.

The black curve shows the Landsat-derived water level

we derived, which is a critical reference for connecting two

different altimetry data time series without an overlap pe-

riod. The Landsat-derived water level shows that the last two

samples of ICESat data should not be lower than the first

few samples of the CryoSat-2/SARAL data (see the dashed

boxes). However, it is apparent that Hydroweb data display a

reverse relationship, showing that the last two ICESat mea-

surements are smaller than the first few CryoSat/SARAL

measurements. It is likely due to an unremoved systematic

bias between ICESat and CryoSat/SARAL time series from

Hydroweb data in Taro Co.

Even though the Landsat-derived water levels were gener-

ated by linearly fitting the lake shoreline positions with al-

timetry data, the relative magnitude of water levels during

different periods should not be largely affected by the fit-

ting parameters, e.g., if Landsat-derived water levels show

that Ha >= Hb, where Ha (Hb) means water levels ac-

quired in period A (B), the Ha >= Hb relationship would

not change with the fitting parameters used to generate the

Landsat-derived water levels. This is the main reason for

us to use Landsat-derived water levels as reference. There-

fore, Hydroweb data may overestimate the increasing trends

in the water levels of Taro Co as their ICESat data are

∼ 0.3 m lower than the SARAL/CryoSat data. A similar is-

sue can be observed in Zhari Namco and Ngoring lakes

shown in Fig. 15b–c, and the explanation is similar to that of

Taro Co. This problem may also exist in some similar stud-

ies when multisource altimetry data without overlap periods

were used.

As shown in Fig. 16, optical data can be less noisy than

altimetry data in certain lakes and significantly improve the

continuity of lake level and storage change monitoring. In

addition, a more apparent seasonality in lake level change

can be seen from the generated lake level time series. These

advantages would largely benefit a better understanding of

responses of TP lakes to climate change and facilitate hydro-

logic modeling of lake basins, regional water balance analy-

sis, and even hydrodynamic analysis of lake water bodies.

5.3 Lake overflow flood monitoring

As mentioned earlier in Sect. 5.1, Lake Kusai experienced an

abrupt expansion in 2011, resulting from the dike break of

an upstream lake (Hwang et al., 2019; Liu et al., 2016; Xiao-

jun et al., 2012), named Lake Zhuonai (35.54◦ N, 91.93◦ E).

The outburst of Lake Zhuonai occurred on 14 September

(Liu et al., 2016), with 2.47±0.06 km3 of water leaking into

the Kusai River (as shown in Fig. 17b), the main inflow of

Lake Kusai. The water level of Lake Kusai increased by up

to 7.9 ± 0.5 m within 20 days (from 11 September to 1 Oc-

tober in 2011) based on Jason-2 data and then started to

drop as water overflowed from the southeast corner into Lake

Haidingnuoer (35.55◦ N, 93.16◦ E) and Lake Salt (35.52◦ N,

93.40◦ E). Lake Salt, the lowest part of the basin close to

the basin boundary, has gained 3.0 ± 0.1 km3 of water since

2011 and has become a critical threat to the surrounding res-

idents and railway ∼ 10 km southeast to the boundary. Note

that there are few satellite altimetry data available for Lake

Salt except several CryoSat-2 observations, where Landsat-

derived water levels can provide a near-real-time monitoring

of changes in lake water level and storage that are crucial to

flood early warning and risk management.

Aided by the high-temporal-resolution lake water level se-

ries, it was possible to estimate the height of the outlet of

Lake Kusai, an important parameter for overflow estimation.

The overflow of Lake Kusai can help predict the water level

rise in Lake Salt and even serve as an indicator of flood fore-

cast, as Jason-3 data with a 10-day revisit cycle are now avail-

able on Lake Kusai. Several pairs of Landsat 8 OLI images

and lake water levels for the same period were compared to

provide a range of possible outlet heights, which are likely

to be 4483.9 to 4484.1 m, as shown in Fig. 18a. Then we

measured the mean width of the outlet from high-resolution

optical images provided by Planet Explorer (Planet, 2017),

which is relatively stable in Dec 2011 at 31.5 ± 2.3 m in re-

cent years. Given lake water levels and the outlet height and

width, an estimation of overflow can be made using the broad

crest weir formula:

Q = C · b · H 1.5
√

2g, (13)

where C is a parameter mainly reflecting geometric charac-

teristics of the weir that mainly varies from 0.3 to 0.4, b is

the width of the weir, H is the water head with respect to the

top of the weir, and g is the acceleration of gravity.

We determined C (∼ 0.3) by using stage 1 shown in Fig. 19

as a calibration period. Details can be found in the supple-

mentary file. Then we applied this result to stage 2 shown

in Fig. 19 to estimate the total overflow from Lake Kusai

and compared the overflow with total water gain in stage 2
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Figure 16. Lake water level (left y axis) estimates from our approach for six TP lakes. Black lines represent optical data and red dots

represent altimetry data. LSH represents lake surface height.

in Lake Salt. Since Lake Salt mainly relied on the replenish-

ment of Lake Kusai during that period, with little precipita-

tion input and negligible glacier meltwater in winter, the out-

flow of Lake Kusai can be comparable with the water gain in

Lake Salt derived from remote sensing, though there was a

small amount of evaporation loss. This relationship can pro-

vide a straightforward validation of our developed method.

However, it was not available in stage 1, because the out-

flow of Lake Kusai first replenished Lake Haidingnuoer until

the latter began overflowing. Results based on Eq. (13) indi-

cate that the total outflow from Lake Kusai in stage 2 ranged

from 0.21 to 0.22 km3, whereas the water gain in Lake Salt

from remote sensing was 0.19±0.01 km3. This indicates that

our high-temporal-resolution lake water level time series are

valuable in monitoring and predicting lake outflow flooding

that is crucial for the safety of downstream residents and in-

frastructure.

6 Data availability

The derived TP lake water levels, hypsometric curves,

and water storage changes are archived and available at

https://doi.org/10.1594/PANGAEA.898411 (Li et al., 2019).

7 Conclusion

In this study, we develop high-temporal-resolution (i.e.,

weekly to monthly timescales) water levels and storage

change data sets for 52 large lakes on the TP during 2000–

2017 by combining multiple altimetric missions and opti-

cal remote sensing images. Generated from lake shoreline

positions and regression analysis with altimetry data, the

Landsat-derived water level serves as a unique reference cov-

ering the entire study period, enabling a more consistent

merging of multisource altimetry time series. Multisource al-
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Figure 17. (a) Lake storage changes in Lake Zhuonai, Lake Kusai, and Lake Salt corresponding to the outburst event in September 2011

and (b) storage changes in relevant lakes during the outburst event (a magnified plot of the shading area in a).

Figure 18. (a) Height variations in the outlet of Lake Kusai estimated from Landsat 8 OLI images indicate that the overflow would occur

when the water level increased from 4483.9 to 4484.1 m. (b) Google Earth© image before the outburst of Lake Zhuonai (December 2010).

(c) Google Earth© image after the outburst event (December 2013).

timetry water levels are first extracted separately from space-

borne altimetry products and then combined into a longer and

denser altimetry water level time series with systematic bi-

ases well removed using Landsat-derived water levels as ref-

erence. The combined altimetry and Landsat-derived water

levels increase the overall sampling frequency to submonthly

regardless of the lake size.

By comparison with a widely used LEGOS Hydroweb

data set, we show that without Landsat-derived water levels

as a reference there may be a remaining bias in the combined

Earth Syst. Sci. Data, 11, 1603–1627, 2019 www.earth-syst-sci-data.net/11/1603/2019/



X. Li et al.: High-temporal-resolution water level and storage change data sets (Tibetan Plateau, 2000–2017) 1625

Figure 19. Changes in the water level of Lake Kusai after receiving the outburst flood from Lake Zhuonai. Stage 1 was used to determine

the range of parameter C in Eq. (13). Stage 2 was used to compared the simulated lake outflow from Kusai Lake based on Eq. (13) with the

water gain estimate from remote sensing of Lake Salt downstream during the same period; and (b) changes in water storage of Lake Salt

derived from remote sensing using our developed method. There was 0.19 km3 of water gained in stage 2, which was comparable to the

outflow estimate of Lake Kusai (0.22 km3) based on Eq. (13).

altimetry water levels in certain lakes. Our study has consid-

erably improved the temporal resolution of the monitoring

of lake water level and storage changes in the TP. For most

lakes examined in the published studies, to our best knowl-

edge, the estimates from our study provide the observations

of the highest temporal resolution that can better reveal the

interannual and intra-annual variability and trends in lake

water level and storage, even in some relatively small lakes

whose annual trends may, however, be incorrectly estimated

by sparse sampling of lake water levels. The developed data

sets can also facilitate the monitoring of some rapidly ex-

panding lakes with overflow risks and provide important in-

formation on flood prediction and early warning.

We evaluate the uncertainty in the Landsat-derived water

levels by field experiments and rigorous uncertainty analy-

sis. Both methods are consistent that the magnitude of the

uncertainty is ∼ 0.1 m, which suggests that Landsat-derived

water levels are often more efficient and less noisy than al-

timetry data when the altimeter footprints on the lake surface

are insufficient, especially for small lakes. Based on our es-

timates, 52 large TP lakes accounting for ∼ 60 % of the total

TP lake area have gained 100.1±5.7 km3 of water during the

past 18 years. Lakes in the endorheic basin on the TP have

mostly expanded. The complex spatial pattern of lake storage

changes in the Selin Co basin was quantified and a possible

explanation was proposed in this study. Note that the quality

of the Landsat-derived water levels before 2002 may not be

as good as those after 2002, because no altimetry data before

2002 are used in this study. Extrapolation of the relationship

between lake shoreline positions and water levels may not be

stable if the water level during 2000–2001 was much lower

or higher than those from 2002 to 2017. Discussions on how

the extrapolation may affect the data quality can be found in

the Supplement.

Supplement. The supplement related to this article is available

online at: https://doi.org/10.5194/essd-11-1603-2019-supplement.
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