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Abstract: We present the fabrication and characterization of fiber Bragg 

gratings (FBGs) in an endlessly single-mode microstructured polymer 

optical fiber (mPOF) made of humidity-insensitive high-Tg TOPAS cyclic 

olefin copolymer. The mPOF is the first made from grade 5013 TOPAS 

with a glass transition temperature of Tg = 135°C and we experimentally 

demonstrate high strain operation (2.5%) of the FBG at 98°C and stable 

operation up to a record high temperature of 110°C. The Bragg wavelengths 

of the FBGs are around 860 nm, where the propagation loss is 5.1dB/m, 

close to the fiber loss minimum of 3.67dB/m at 787nm. 

©2013 Optical Society of America 

OCIS codes: (060.2370) Fiber optics sensors; (060.4005) Microstructured fibers; (350.2770) 

Gratings; (060.2270) Fiber characterization; (160.5470) Polymers. 
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1. Introduction 

Polymer optical fibers (POFs) have several advantages compared to silica fibers. First of all, 

POFs can be used for clinical applications due to their biocompatibility, which combined with 

their flexibility and non-brittle nature makes them a potential platform for in-vivo biosensing 

applications [1–7]. Two other important properties of POFs are their high failure strain, which 

makes them suitable for high strain (above 1%) sensing applications [8], and the low Young’s 

modulus (30 times lower than silica), making the POFs more sensitive to displacement forces 

[8, 9]. The first polymer FBG sensor was a 1576 nm FBG fabricated in a photosensitive 

polymethylmethacrylate (PMMA) single-mode step-index POF in 1999 [10], whereas the first 

FBG written in a single-mode microstructured POF (mPOF), was a 1570 nm grating reported 

in 2005 [11]. It was first about 5 years later that FBGs at around 850 nm, where the mPOFs 

have lower loss, were reported [12, 13]. Traditionally, POFs, mPOFs, and polymer FBGs 

have been made of PMMA [1, 3, 6, 10–21], which makes the response of the FBGs dependent 

on both temperature and humidity [17–21]. This fact, together with the issue of high loss and 

low operating temperature, has been hindering the application of polymer FBGs in key strain 

sensing and biosensing areas [8]. 

The environmental conditions can be compensated for with the dual-grating technology, 

where only one FBG is subjected to strain [20, 21]. Although progress has been made towards 

reducing the influence of humidity on PMMA fibers by doping [22], the issue of humidity 
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dependency was first solved with the fabrication of the first TOPAS mPOF in 2007 [4, 5]. 

The polymer TOPAS belongs to the class of cyclic olefin copolymers (COCs), which is a 

class of optical thermoplastics that are chemically inert and have a very low moisture uptake, 

high water barrier, and good optical transmission [23]. This means that a TOPAS FBG is 

humidity insensitive [24]. However, the aim with the original fiber was to use the chemical 

inertness of TOPAS for localized fluorescence-based biosensing [4, 5]. It was first in 2011 

that a 1569 nm FBG was written into a TOPAS mPOF, using 325 nm UV writing [25]. Soon 

thereafter an 871 nm FBG in a TOPAS mPOF was reported and it was demonstrated that the 

TOPAS FBG was indeed humidity insensitive to within the accuracy of the climate chamber 

that was used [24]. Interestingly, it has been demonstrated that TOPAS is also a very good 

material for terahertz (THz) fiber fabrication due to its low material loss and material 

dispersion at THz frequencies [26–28]. 

In all published papers on TOPAS mPOFs, the fibers were made of the particular TOPAS 

grade 8007, which has a glass transition temperature of only Tg = 80°C [29]. This is even 

lower than that of PMMA (typically 110°C), which means that the issue of a low operating 

temperature remains a problem for polymer FBGs. Here we demonstrate for the first time the 

fabrication of an mPOF made of high-Tg TOPAS grade 5013 with Tg = 135°C. We further 

inscribe FBGs into the fiber and demonstrate strain sensing of 2.5% strain at 98°C, where a 

PMMA fiber would malfunction (max. operation temperature of 92°C demonstrated in [17]). 

Further we also demonstrate strain sensing at a record high temperature of 110°C. Due to 

setup limitations the strain sensing at 110°C is limited to strains up to 0.3%. For applications 

in for example accelerometers, the strain rarely exceeds 0.3% [9]. 

Taking into consideration that the TOPAS fiber is humidity insensitive [24] and that the 

TOPAS FBG strain sensor may be temperature compensated using dual-FBG technology [20, 

21], this demonstration of high-temperature operation at 110 °C provides a significant step 

towards a practically applicable polymer FBG sensor platform. The fiber is shown to have a 

minimum loss of 3.67 dB/m at 787 nm and a loss of 5.1 dB/m at the FBG wavelength 853 

nm. 

2. Experimental results 

2.1 Fabrication of high-Tg TOPAS mPOF and FBG inscription 

In our experiments we employed a high-Tg TOPAS mPOF fabricated in-house at DTU 

Fotonik using the drill and draw technique. The material used for the mPOFs was TOPAS 

COC of the particular grade 5013, obtained from TOPAS Advanced Polymers, Inc. The 

TOPAS was cast into 6 cm diameter rod and the desired hexagonal holes structure was drilled 

into the rod. The preforms were then drawn to fiber by first drawing a 5 mm cane, which was 

then sleeved and drawn again. The two final high-Tg TOPAS mPOFs we use here have a 

diameter of 130 µm and 180 µm, respectively, and a solid core surrounded by three rings of 

air holes arranged in a hexagonal lattice. For the fiber with a diameter of 130 µm the air-hole 

diameter is d = 2.2 ± 0.2 µm and the distance between the air-holes (pitch) is on average Λ = 

6 µm, which means that the fiber is endlessly single moded (d/Λ < 0.43). The end facet of the 

high-Tg fiber with a diameter of 130 µm is shown in the inset of Fig. 1(a). 

The grating inscription was performed using a 30 mW CW HeCd laser operating at 325 

nm (IK5751I-G, Kimmon). A circular Gaussian laser beam was expanded by a cylindrical 

lens in one direction, the one along the fiber, from 1.2 mm to 1.2 cm. The laser beam was 

then focused downwards using another cylindrical lens to sideways expose the core of the 

fiber through a phase-mask. The phase mask has been custom made for 325 nm writing with a 

uniform period of 572.4 nm (Ibsen Photonics). This would result in a Bragg grating 

wavelength λB of 872 nm if no annealing or pre-strain was applied. However, depending on 

the applied pre-strain and thermal treatment of the fiber the grating resonance will be blue-

shifted [20, 21]. As an example the final grating wavelength of the fiber with a diameter of 
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130 µm was 853.4 nm and the strength of the reflected peak was around 20 dB, as shown in 

Fig. 1(a). The about 19 nm blue-shift is because we both used pre-strain and afterwards 

annealed the FBG. 

Since the TOPAS high-Tg optical grade 5013 mPOF was not reported before, a cut-back 

measurement with 5 cuts was performed in order to determine the transmission loss of the 

fiber. Cleaving was done with a homemade electronically controlled hot blade cleaver with 

flat side blade at a temperature of 75°C for both the blade and fiber, giving a high quality 

cleaves [30]. Figure 1(b) shows the loss profile of the high-Tg TOPAS mPOF for the 

wavelength span of 500-1000 nm. The loss at the Bragg wavelength 853.4 nm is found to be 

5.12 dB/m, whereas the minimum loss is 3.67 dB/m at 787 nm. The loss can be reduced by 

optimizing the drawing process [16], but in our experiments the loss is not a limiting factor. 

 

Fig. 1. (a) Reflection spectrum of the high-Tg TOPAS FBG at room temperature. Inset: 

microscope image of the end fact of the mPOF (130 µm in diameter) with a 3-ring hexagonal 

holes structure. (b) Measured loss of the fiber. 

2.2 Thermal response of high-Tg mPOF FBGs 

The temperature response of the grating of the 130 µm fiber shown in Fig. 1(a) was studied 

by monitoring the reflection spectrum using a fiber circulator, a supercontinuum source 

(SuperK Versa by NKT Photonics A/S) and an optical spectrum analyzer (Ando AQ6317B). 

Light was launched into the mPOF using a silica step index fiber, which was butt-coupled to 

the mPOF. In order to reduce the background noise, a small amount of refractive index 

matching gel was applied between the silica fiber and the mPOF to minimize Fresnel 

reflections. The grating was then placed on a resistive hot stage to control the temperature. A 

thermocouple was placed as close to the grating as possible with a temperature uncertainty of 

2%, while several layers of lens paper were covering the grating to isolate it and create a more 

uniform temperature. For stable strain sensing it is crucial to anneal the fiber before operation 

[17, 19]. We therefore annealed the FBGs for ~3 hours at 80 degrees before operation. 
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Fig. 2. Temperature response of the FBG in the 130 µm fiber shown in Fig. 1. (a) Bragg 

wavelength shift versus temperature. (b) Normalized reflected peak power versus temperature. 

Figure 2(a) shows how the Bragg wavelength blue-shifts by 1.2 nm as the temperature is 

increased to 107°C, waiting 20 minutes at each temperature for the fiber to stabilize before 

making a recording. Only a very small hysteresis is observed, while the wavelength shift is 

returning to zero as the temperature is ramped down again at 20 minute intervals, which 

indicates that the fiber was properly annealed before operation. Figure 2(b) shows the 

reflected normalized power at the (temperature dependent) Bragg wavelength. The power 

returns also to the initial level after a full temperature cycle, but fluctuations are apparent and 

a maximum hysteresis of 0.75dB occurs at 50°C. The small power variation between the 

forward and reverse temperature cycle is probably due to experimental errors, such as laser 

fluctuation, coupling instabilities, etc. The total drop of the reflected power is 3.2 dB at the 

maximum temperature of 107°C. 

2.3 Small strain response of high-Tg mPOF FBGs under different temperatures 

The small strain response of the FBG in the 130 µm in diameter high-Tg TOPAS mPOF was 

investigated by mechanical stretching. The two ends of the fiber were clamped and glued to 

two micro-translation stages (Thorlabs) with UV-cured glue, with one of them used to butt-

couple the mPOF to the single-mode silica fiber. The glue is mechanically much stiffer than 

the high-Tg TOPAS mPOF, so that it does not unduly influence the strain. One stage can 

move longitudinally to apply axial strain to the grating manually with a low loading speed. 

The axial strain values were determined by dividing the fiber longitudinal elongation by the 

length of fiber between the two gluing points. The gratings were left to stabilize for about ten 

minutes at each value of the strain, before a recording was made. 
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Fig. 3. Small strain response of the FBG in the 130 µm fiber shown in Fig. 1. (a-b) Bragg 

wavelength shift vs strain at (a) 50°C and (b) 100°C. (c-d) Corresponding normalized reflected 

peak power for (c) 50°C and (d) 100°C. Red lines show strain loading, whereas black lines 

show subsequent strain release. At each strain value the grating is left for 10 minutes before a 

recording is made. 

Figures 3(a) and (b) show the Bragg wavelength shift versus strain for a complete strain 

loading and release cycle to over 0.3% and back, for operation at 50°C and 100°C, 

respectively. The grating shows almost a linear response of the wavelength shift over the 

whole strain loading range and a linear fit of the results give a slope of 0.76 pm/µε at 50°C 

and 0.80 pm/µε at 100°C. Figures 3(c) and (d) show the corresponding drop of the peak 

power at the same temperatures. At 50°C the peak power varies only by 0.45 dB, while at 

100°C, the power is reduced by about 2.5 dB. From Fig. 2(b) we see that the 2.5 dB drop 

corresponds well with the drop due to temperature alone. Again the small power variation 

between the forward and reverse strain loading cycle is probably due to experimental errors, 

such as laser fluctuation, coupling instabilities, etc. 

PMMA FBGs have been taken to 92°C without applied strain [17] and here the high-Tg 

TOPAS mPOF survived 100°C at 0.3% strain, which is clearly a record. A golden rule for 

long term stability is to keep the temperature at least 20°C below the glass-transition 

temperature. PMMA has a Tg around 110°C, so a PMMA FBG could therefore in principle 

survive 100°C for a short time. Our high-Tg TOPAS has a Tg of 135°C, so we therefore 

finally test our 130 µm FBG for small strain operation at 110°C. The Bragg wavelength shift 

for a strain loading-unloading cycle is shown in Fig. 4(a) giving a slope of 1.0 pm/µε. In order 

for the Bragg wavelength to be recoverable and avoid destroying the grating the operational 

strain regime of the FBG was kept below 0.16%, where the peak power has decreased by 6 

dB as shown in Fig. 4(b). We note that 0.16% is still significantly more than the 0.02% used 

in the recent demonstration of highly sensitive mPOF FBG accelerometers taken to 15 g [9]. 
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Fig. 4. Small strain response of the FBG in the 130 µm fiber shown in Fig. 1. (a) Bragg 

wavelength shift vs strain at 110°C. (b) Corresponding normalized reflected peak power. Red 

lines show strain loading, whereas black lines show subsequent strain release. At each strain 

value the grating is left for 10 minutes before a recording is made. 

2.4 Time response of high-Tg mPOF FBGs at 110°C 

In this section, we demonstrate the thermal stability of the 130 µm in diameter mPOF FBG 

made of high-Tg TOPAS mPOF at 110°C. In this measurement one end of the fiber was glued 

to a stage and used for incoupling, while the other end of the fiber was not mounted to avoid 

unwanted strain. Figure 5(a) shows the blue-shift of the Bragg grating with time while the 

variation of the Bragg wavelength shift is shown in Fig. 5(b). The total shift of the resonant 

wavelength was 5 nm after 7 hours at 110°C. After 7 hours the temperature was decreased to 

room temperature and after 17 hours at room temperature the resonant wavelength did not 

recover, but remained at the same wavelength. 

 

Fig. 5. (a) Normalized Bragg grating reflection spectrum indicating the blue-shift of the 

resonant wavelength. (b) The variation of Bragg wavelength with time at 110°C. After 17 

hours at room temperature, the Bragg wavelength remains at the same position as after 7 hours 

at 110°C. 

This permanent blue-shift of the resonant wavelength can be explained by fiber shrinking. 

The polymer optical fibers are pulled under tension, which results in an axial orientation of 

the polymer chains and a residual strain in the fiber [8, 31]. At a certain temperature the 

chains relax from the axial orientation, which causes shrinkage of the fiber. This effect is 

directly linked with the drawing tension, thermal history and the annealing process of the 

fiber and has been extensively studied [8, 31]. The blue-shift indicates that possibly the high-

Tg TOPAS FBGs would benefit from being annealed for a longer time than 3 hours at 80°C or 

at a higher temperature. However, an investigation into the optimum annealing time and 

temperature for the high-Tg TOPAS FBG is outside the scope of this initial demonstration of 

fiber drawing, FBG writing, and high-temperature operation. 
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2.5 Large strain response of high-Tg mPOF FBGs under different temperatures 

Although in many applications only small strains are needed [9], polymer fibers are superbly 

well suited in applications where large strains are needed, such as in geo-textiles monitoring 

land-slides and in respiratory monitoring, due to their high failure strain [8]. In this section 

the large strain response of the high-Tg TOPAS FBG is investigated. Using the same setup as 

in the low strain section and, a similar fiber, 180 µm in diameter with a hole diameter around 

3 µm and a pitch around 8 µm, is subjected to strains up to 3% at room temperature, 2.2% at 

50°C and 2.5% at 98°C. The Bragg grating wavelength of the unstrained fiber was 869.6 nm. 

The gratings were left to stabilize for about two minutes at each level of applied strain. The 

result of this strain investigation is shown in Fig. 6. 

 

Fig. 6. Large strain response of the 180 µm TOPAS FBG at room temperature, 50°C, and 98°C 

The gratings were strained until the glue holding the fiber failed. For this reason there is 

no data on the releasing of the strain. The large-strain response is also found to be 

approximately linear, with the grating response at 98°C having a fitted linear slope of 0.75 

pm/µε. 

3. Conclusions 

In this paper, we have demonstrated for the first time the response of FBGs inscribed in a new 

high-Tg TOPAS mPOF. The host material used for the fabrication of fiber was grade 5013 

TOPAS cyclic olefin copolymer, which has a glass transition temperature as high as Tg = 

135°C. We demonstrate that FBGs in the high-Tg TOPAS mPOF are able to operate at 110°C 

under applied tensile strain up to 0.16% and at 98°C under applied tensile strain up to 2.5%. It 

should be emphasized that there is not any report so far demonstrating the operation of 

PMMA POFs or mPOFs at higher temperature than 92°C [17]. The fiber was characterized 

under applied tensile strain at 50°C, 100°C and 110°C demonstrating consistent repeatability 

for all cases. We also investigated the thermal stability of the FBGs over time. The fiber was 

heated for around 7 hours at 110°C with a total resonant wavelength blue-shift of ~5 nm. It 

should be mentioned that after 24 hours at room temperature, the resonant Bragg wavelength 

remained at the same position. Overall, we believe that the current work is a significant step 

towards fabrication and commercialization of polymer FBG sensors based on TOPAS, which 

further enhances the ability of polymer fibers to operate at temperatures up to 110°C. 
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