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p. cm.

Includes bibliographical references and index.
ISBN 0-387-22021-6 (alk. paper)
1. Heat- -Conduction. 2. Materials- -Thermal properties. I. Shindé, Subhash L. Goela,

Jitendra S. II. Title.

QC321.S44 2004
536′.2012—dc22 2004049159

ISBN-10: 0-387-22021-6 e-ISBN-: 0-387-25100-6

ISBN-13: 978-0387-22021-5

Printed on acid-free paper.

c© 2006 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews
or scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

Printed in the United States of America. (SBA/Techset)

9 8 7 6 5 4 3 2 1

springeronline.com



In loving Memory of
Dr. Bhagwat Sahai Verma (1920–2005),
Retired Dean of Engineering,
Banaras Hindu University,
Varanasi, India



Preface

The demand for efficient thermal management has increased substantially over
the last decade in every imaginable area, be it a formula 1 racing car suddenly
braking to decelerate from 200 to 50 mph going around a sharp corner, a
space shuttle entering the earth’s atmosphere, or an advanced microproces-
sor operating at a very high speed. The temperatures at the hot junctions
are extremely high and the thermal flux can reach values higher than a few
hundred to a thousand watts/cm2 in these applications. To take a specific
example of the microelectronics area, the chip heat flux for CMOS micropro-
cessors, though moderate compared to the numbers mentioned above have
already reached values close to 100 W/cm2, and are projected to increase
above 200 W/cm2 over the next few years. Although the thermal manage-
ment strategies for microprocessors do involve power optimization through
improved design, it is extremely difficult to eliminate “hot spots” completely.
This is where high thermal conductivity materials find most of their applica-
tions, as “heat spreaders”. The high thermal conductivity of these materials
allows the heat to be carried away from the “hot spots” very quickly in all
directions thereby “spreading” the heat. Heat spreading reduces the heat flux
density, and thus makes it possible to cool systems using standard cooling
solutions like finned heat sinks with forced air cooling. A quick review of
the available information indicates that the microprocessors heat fluxes are
quickly reaching the 100 W/cm2 values, which makes it very difficult to use
conventional air cooling (see for example, “Thermal challenges in micropro-
cessor testing”, by P. Tadayan et al. Intel Technology Journal, Q3, 2000, and
Chu, R., and Joshi, Y., Eds. “NEMI Technology Roadmap, National Elec-
tronics Manufacturing Initiative”, Herndon, VA, 2002).

One approach to address this problem is to design and develop materials
with higher thermal conductivities. This is possible by developing a detailed
understanding of the thermal conduction mechanisms in these materials and
studying how the processing and resulting microstructures affect their ther-
mal properties. These aspects are the subject matter of review in this book.



viii Preface

We have chosen to review our current understanding of the conduction
mechanisms in the high thermal conductivity materials, various techniques to
measure the thermal conductivity accurately, and the processing and thermal
conduction properties of a few candidate high thermal conductivity materi-
als. This is by no means an exhaustive review, but the chapters authored by
internationally known experts should provide a good review of the status of
their field and form a sound basis for further studies in these areas.

The eight chapters in this book are arranged to provide a coherent theme
starting from theory to understanding of practical materials, so a scientist
would be able to optimize properties of these materials using basic concepts.
In Chapter 1, Srivastava covers the thermal conduction mechanisms in non-
metallic solids in some detail. The thermal conductivity expression derived is
used to provide guidelines for choosing high thermal conductivity materials.
Thermal conductivity results for various materials including diamond, carbon
nanotubes, and various other forms of carbon are presented. The results are
also extended to polycrystalline, and low dimensional systems. In Chapter 2,
Morelli deals with the thermal conductivity of materials near their Debye
temperatures. It also compares the results of a simple model to experimental
data from various classes of crystal structures. Ashegi et al. discusses accurate
characterization of thermal conductivity of various materials in Chapter 3.
They review various thermal conductivity measurement techniques available
to a researcher in detail, and also recommend techniques particularly suit-
able for high thermal conductivity materials like AlN, SiC, and diamond. In
Chapter 4. Fournier reviews an elegant technique, perfected by her group,
for measuring thermal conductivity on a very small spatial scale in hetero-
geneous materials. It is believed that this technique would be very important
when evaluating thermal performance of complex systems. Virkar et al. pro-
vides the current status of the understanding of processing, and resultant
thermal conductivity of aluminum nitride ceramics in Chapter 5. This chap-
ter lays out the thermodynamic foundation for processing that will result in
oxygen impurity removal from AlN, and thus increase its thermal conductiv-
ity. We hope that general application of these concepts will help researchers
optimize thermal conductivity of a host of material systems. In Chapters 6
and 7, Goela et al. describe the details of CVD-SiC, and diamond materials
processing and their properties. Here again the inter-relationship between the
microstructure development through processing, and its effect on thermal con-
ductivity is presented. Finally, in Chapter 8, Kwon et al. describe theoretical
and experimental aspects of the thermal transport properties of carbon nano-
tubes. The strong carbon atom network in these novel materials lead not only
to very unusual mechanical and electrical properties, but also to high ther-
mal conductivity along the tube axis. We hope that the concepts described in
these chapters will survive the test of time, and launch many curious scien-
tists into their own forays in this field of highly interesting materials and their
properties.
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1

Lattice Thermal Conduction
Mechanism in Solids

G.P. Srivastava

The theory of lattice thermal conductivity of nonmetallic solids is presented. After
discussing the fundamental issues, the kinetic-theory expression for the conductivity,
based on the concept of single-mode phonon relaxation time, is developed in some
detail, emphasizing the role of phonon dispersion relations and phonon scattering
rates. The theory presented contains only one possible adjustable parameter, viz.
Grüneisen’s anharmonic coefficient γ. The simplified intrinsic conductivity expres-
sion, within the high-temperature approximation, is used to derive a set of rules
for choosing high-thermal-conductivity materials. The theory is extended to provide
a discussion on the conductivity of solids in polycrystalline and low-dimensional
forms. Thermal conductivity results of quantum wells, quantum wires, and different
solid forms of carbon, viz. diamond, graphite, graphene, nanotubes, and fullerenes,
are presented and discussed.

1.1 Introduction

One of the fundamental properties of solids is their ability to conduct heat.
This property is usually quantified in terms of the thermal conductivity coef-
ficient K, which is defined through the macroscopic expression for the rate of
heat energy flow per unit area Q normal to the gradient ∇T

Q = −K ∇T. (1.1)

Understanding and controlling the thermal conductivity K of semiconduc-
tors plays an important part in the design of power-dissipating devices. For
example, power transistors, solar cells under strong sunlight, diodes, tran-
sistors, and semiconductor lasers sustain large internal power dissipation,
and a high thermal conductivity of the device material can help transfer
this energy to a heat sink. On the other hand, a low thermal conductivity
of semiconductor alloys helps increase the figure of merit of thermoelectric
devices.
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In nonmetals heat is conducted by phonons, quanta of atomic vibrational
modes. The thermal conductivity of a hypothetical crystal is infinite at all
temperatures if it is considered to be infinitely large, is isotopically pure, has
no imperfections, and is characterized by purely harmonic atomic vibrations.
Within the pure harmonic limit a phonon is infinitely long-lived, characterized
with its frequency ω(qs) for wave vector q and polarization index s (longitu-
dinal L or transverse T). Thus, on the application of a temperature gradient,
phonons of a purely harmonic crystal would transport all heat from the hot
end to the cold end. In other words, the thermal conductivity of a purely har-
monic crystal would be infinite at all temperatures. However, real solids are
of finite size, contain defects, and exhibit anharmonicity in atomic vibrations.
These realities limit the lifetime of phonons, rendering finite values of ther-
mal conductivity. Experimental measurements indicate strong temperature
dependence of the conductivity.

Intrinsic phonon-phonon interactions, caused by anharmonicity at finite
temperatures, are inelastic in nature. This makes the concept of phonon
lifetime an intrinsically difficult, if not impossible, concept to comprehend
and thus evaluate theoretically. Thus, it is not usually possible to obtain an
exact expression for K. In this chapter we will discuss the progress made
toward developing plausible theoretical models for lattice thermal conduction
mechanisms in nonmetallic solids. It will be pointed out that whatever the-
ory is adopted for deriving an expression for the thermal conductivity of a
nonmetallic solid, its numerical evaluation requires an accurate knowledge of
two essential inputs: (1) phonon-dispersion relation, and (2) relevant phonon-
scattering mechanisms (to construct the phonon-scattering operator or to
derive the phonon relaxation time). After a brief discussion of these aspects,
we will follow a simple relaxation-time scheme, based on an isotropic contin-
uum model, to discuss the theory of thermal conduction in crystalline, poly-
crystalline, and low-dimensional forms of nonmetals. The high-temperature
expression for the conductivity will be used to derive a set of rules for choos-
ing high-thermal-conductivity materials. Thermal conductivity results for the
various solid forms of carbon, viz. diamond, graphite, graphene, nanotubes,
and fullerene, will be presented and discussed.

1.2 Theory of Thermal Conductivity

Let us consider a crystal with N0 unit cells, each of volume Ω. Let us also
identify a phonon with its wave vector q, polarization index s, frequency
ω(qs), and group velocity cs(q). The heat current Q can be expressed by
including contributions from phonons in all possible modes

Q =
1

N0Ω

∑
qs

�ω(qs)nqscs(q). (1.2)
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The quantity nqs, which is explained later, assumes its equilibrium value n̄qs

characterized by the crystal temperature T . In the presence of a temperature
gradient across the crystal we can express

nqs = n̄qs + δnqs, (1.3)

where δnqs indicates deviation from the equilibrium value. Clearly, then, the
heat current is governed by δnqs, so that Eq. (1.2) can be reexpressed as

Q =
1

N0Ω

∑
qs

�ω(qs)δnqscs(q). (1.4)

The deviation quantity δnqs, which is significantly controlled by crystal
anharmonicity, particularly at high temperatures, is in general unknown.

Microscopic theories of lattice thermal conductivity attempt to address
the quantity δnqs. Two fundamentally different approaches have been devel-
oped: (1) linear-response methods based on the Green-Kubo formalism and
(2) methods based on solving the phonon Bolzmann equation. A detailed dis-
cussion of these theoretical methods can be found in the book by Srivastava [1].
Here we will briefly outline the fundamental concepts underlying these
approaches.

1.2.1 Green-Kubo Linear-Response Theory

The Green-Kubo formalism is rooted in quantum statistics. It begins by
expressing Eq. (1.4) as

K =
kBT 2N0Ω

3
�

∫ ∞

0
〈Q(0) · Q(t)〉dt (1.5)

=
�

2

3N0ΩkBT 2 �
∫ ∞

0
dt

∑
qsq′s′

ω(qs)ω(q′s′)cs(q) · c′
s(q

′)Cqsq′s′(t), (1.6)

where
G(t) ≡ 〈δnqs(0)δnq′s′(t)〉 ≡ Cqsq′s′(t) (1.7)

is a correlation function. The quantity nqs is regarded as the number-density
operator for phonons in mode qs in the Heisenberg representation:

nqs(t) = a†
qs(t)aqs(t), (1.8)

where a†
qs and aqs are the creation and annihilation operators, respectively.

As δnqs is generally unknown, an exact evaluation of G is not possible.
Approximate expressions for G can be derived by employing several theoretical
techniques, such as the Zwangiz–Mori projection operator method, double-
time Green function method, and imaginary-time Green function method. The
first two of these methods have been described in the book by Srivastava [1],
to which the interested reader is referred for details.
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1.2.2 Variational Principles

In applying variational principles for deriving approximate expressions for
K, the quantity nqs is considered as a distribution function nqs(r, t) that
measures the occupation number of phonons (qs) in the neighborhood of a
point r in space at time t. In the absence of an external temperature gradient,
the thermal average of the distribution function is given by the Bose-Einstein
expression

n̄qs =
1

exp[�ω(qs)/kBT ] − 1
. (1.9)

In the steady state of heat flow through a crystal, the total time rate of change
of the distribution function nqs(r, t) satisfies the Boltzmann equation

∂nqs

∂t

∣∣∣∣
diff

+
∂nqs

∂t

∣∣∣∣
scatt

= 0, (1.10)

where the first term represents diffusion (i.e., variation from point to point)
of nqs(r, t) through the solid, and the second term represents the rate of
change of nqs(r, t) due to possible phonon-scattering processes. Noting that in
equilibrium ∂n̄qs/∂t = 0, a canonical form of the linearized phonon Boltzmann
equation reads

−cs(q) · ∇T
∂n̄qs

∂T
= −∂nqs

∂t

∣∣∣∣
scatt

. (1.11)

This form of the phonon Bolzmann equation can be written in a standard
form

Xs
q =

∑
q′s′

P ss′
qq′ψs′

q′ , (1.12)

where Xs
q is a measure of inhomogeneity caused by the application the of the

temperature gradient, P ss′
qq′ is an element of the phonon-scattering operator,

and ψs
q ≡ ψqs is a function that measures the deviation quantity δnqs defined

as follows

nqs =
1

exp[�ω(qs)/kBT − ψqs] − 1
(1.13)

� n̄qs + ψqsn̄qs(n̄qs + 1). (1.14)

Using Eqs. (1.4) and (1.12), the following expression for the thermal con-
ductivity can be obtained

K =
kBT 2

N0Ω | ∇T |2
∑
qs

ψs
qXs

q. (1.15)

This expression cannot be evaluated exactly, as the anharmonic contribution
to the deviation function ψqs is generally unknown. An effort to express ψ in
terms of the inverse scattering operator P−1 would remain unsuccessful, as
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the full set of eigenvalues and eigenvectors of the operator P is not known [2].
Obtaining an approximation for Eq. (1.15) thus becomes a cherished topic of
the variational method.

In a simple variational approach the deviation function is expressed as

ψqs = φqs + δφqs (1.16)

and the semidefinite property of the operator P is expressed as

(δφ, P δφ) ≥ 0. (1.17)

A simple form of variational trial function φqs can be chosen as

φqs = q · u, (1.18)

where u is some constant vector parallel to the applied temperature gradient.
This choice for a variational trial function has been made from the momentum-
conserving property of anharmonic phonon normal (N) processes [3, 4] (also
see Sect. 1.4.2). With this choice of the trial function a lower bound K<

0 for
the exact conductivity coefficient K can be derived [5, 6]: K<

0 ≤ K,

K<
0 =

(φ,X)
(φ, Pφ)2

, (1.19)

where (f ,g) =
∑

qs fqsgqs is implied. The Ziman bound K<
0 can be improved,

i.e., brought closer to K, by employing a more general trial function [7], such
as one made as a linear combination of a few simple trial functions in powers
of q: φ =

∑N
n=1 αnφn.

The ubiquitous simple form of the variational principle just described can
be extended to take the form of complementary variational principles [8]. To
develop such principles the phonon scattering operator P is split in the form
P = L + T ∗T , such that L−1 exists and T ∗ is the conjugate of T . Using the
split form of P the phonon Boltzmann equation in Eq. (1.12) can be expressed
in a canonical Euler-Lagrange form, from which an upper and a lower bound
on K can be derived. As an alternative to using the Euler-Lagrange variational
principles, the upper and lower bounds on K can also be derived by apply-
ing Schwarz’s inequality based on the positive semidefinite nature of P and
(PL−1 − Î): (f , P f) ≥ 0 and (f , (PL−1 − Î)f) ≥ 0 for any admissible vector
function f . Using these ideas, monotonically convergent sequences of lower
bounds {K<

m}, m = 0, 1, 2, . . . [9] and upper bounds {K>
n }, n = 1, 3, 5, . . . [10]

for thermal conductivity can be derived.
While the derivation and application of the method of complementary

variational principles are somewhat involved, it is easy to appreciate their
achievement. Consider a pair of complementary bounds: an upper bound K>

n

and a lower bound K<
m, with suitably chosen large values of m and n. From

these two bounds we can define a narrow window ∆m,n = K>
n − K<

m within
which the theoretical estimate of exact conductivity K must lie. For details
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on the applications of the complementary variational principles, interested
readers are referred to chapter 5 in the the book by Srivastava [1] and refer-
ences therein.

1.2.3 Relaxation-Time Approaches

The difficulty in deriving an (approximate) expression for lattice thermal con-
ductivity can be appreciated from the discussion provided in the previous two
subsections. Relaxation-time approaches provide simple alternatives to the
variational approaches for deriving expressions for the conductivity. In gen-
eral, due to their inelastic nature, anharmonic phonon interactions are not
amenable to a relaxation-time picture [11]. But for simplicity of understand-
ing the problem it is useful to introduce the concept of anharmonic phonon
relaxation time. Starting from the phonon Boltzmann equation, the quantity
−∂nqs/∂t|scatt in Eq. (1.11), or Pψ in Eq. (1.12), can be expressed using
the concept of a relaxation-time τqs for a phonon in mode qs. It is assumed
that on application of a temperature gradient each phonon in mode qs trans-
ports heat during its lifetime (i.e., before it is annihilated due to scattering
events). Important contributions to the theory of thermal conductivity based
on relaxation-time approaches have been made, among others, by Debye [12],
Klemens [13], Callaway [14], Simons [15], and Srivastava [1, 16].

The simplest of relaxation-time approaches is the so-called single-mode
relaxation-time method. In this picture it is assumed that while phonons in
mode qs have been driven out of their equilibrium distribution on application
of a temperature gradient and transport heat for the duration of their lifetime
τqs, phonons in all other modes remain in their thermal equilibrium. In the
language of the previous subsection, this means that while ψqs 	= 0, ψq′s′ = 0
for q′s′ 	= qs. With this restriction we can represent the scattering operator
P by its diagonal part only:∑

q′s′
P ss′

qq′ψs′
q′ � P ss

qqψs
q. (1.20)

This allows the right-hand side of the Boltzmann equation in Eqs. (1.11) and
(1.12) to be simplified to

−∂nqs

∂t

∣∣∣∣
scatt

=
nqs − n̄qs

τqs
=

n̄qs(n̄qs + 1)ψqs

τqs
= P ss

qqψs
q. (1.21)

The single-mode relaxation-time τqs is thus defined from the relation

τ−1
qs =

P ss
qq

n̄qs(n̄qs + 1)
. (1.22)
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Using Eqs. (1.12) and (1.15), the single-mode relaxation-time expression for
thermal conductivity Ksmrt becomes

Ksmrt =
�

2

3N0ΩkBT 2

∑
qs

c2
s(q)ω2(qs)τqsn̄qs(n̄qs + 1). (1.23)

This expression can be viewed as the kinetic theory result

K =
1
3
Csp

v c̄2τ̄ , (1.24)

with Csp
v as the phonon specific heat (heat capacity per unit volume), c̄ as

average phonon speed, and τ̄ as average phonon relaxation time. The single-
mode relaxation-time expression in Eq. (1.23) is sometimes known as the
Debye conductivity expression, as it was first used by Debye [12].

A significant improvement over the single-mode relaxation-time approach
was made by Callaway [14], who included the special role played by the
momentum conservation in anharmonic phonon interaction. In the language
of phonon-scattering operator P , the extra contribution to the phonon relax-
ation time over the single-mode result is that due to the off-diagonal part
of the operator corresponding to the momentum-conserving normal (N) pro-
cesses. The Callaway expression for the conductivity is of the form given in
Eq. (1.23), but with the single-mode relaxation-time τ replaced by an effective
relaxation-time τC

τC = τ(1 + βC/τN), (1.25)

where the parameter βC is a function of the single-mode relaxation-time τ and
a contribution τN from anharmonic N -processes. The resulting conductivity
expression can be expressed as

KC = Ksmrt + KN-drift. (1.26)

The contribution from the N -drift term can be significantly important for
pure materials.

An attempt to incorporate the role of off-diagonal anharmonic momentum
nonconserving (umklapp, or U) processes was made by Srivastava [16]. The
resulting model conductivity expression is similar to the Callaway expression,
but with τC replaced by τS, where

τS = τm(1 + βSτN) (1.27)

with βS including the effect of τm. Here τm includes a modification of the
single-mode relaxation-time τ arising from the contribution of U -processes to
the off-diagonal part of the operator P . Clearly, τS = τC in the absense of such
an attempt (i.e., when τm = τ).
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1.3 Phonon-Dispersion Relations

From the discussion in the previous section it is clear that whatever level
of the theory of lattice thermal conductivity we decide to use, evaluation
of K requires knowledge of phonon-dispersion relation ω = ω(qs), phonon
relaxation-time τ(qs), and a scheme for performing summation over phonon
wave vectors q and polarization s of the expression in Eq. (1.23). Calculation
of the phonon-dispersion relation is a research topic in its own right, known as
lattice dynamics, and is beyond the scope of this chapter. Interested readers
are referred to the books in Refs. [1, 17]. From a knowledge of ω(qs) for a
given polarization index s the sum over q can be replaced by an integral

∑
q

→
∫

g(ω) dω, (1.28)

where g(ω) is the density of phonon states at the frequency ω. In general,
the density of states is inversely proportional to the magnitude of the phonon
group velocity

g(ω) ∝ 1
|∇qω| . (1.29)

For a proper calculation of the density of states g(ω) it is essential to obtain
numerical values of the phonon-dispersion relation ω(qs) for a large number
of phonon wave vectors q within the irreducible part of the Brillouin zone of
the solid under consideration. We will not, however, discuss this further in the
present context.

With a view to restricting our discussion to high-thermal-conductivity
materials, in this section we will examine the main features of the phonon-
dispersion relation in diamond and aluminium nitride as examples of three-
dimensional systems, graphite as an example of quasi–two-dimensional system,
and carbon nanotubes as examples of quasi–one-dimensional systems. We will
also present a simplified version of the dispersion relation and density of
states of these systems within the continuum limit for crystal structure.

1.3.1 Three-Dimensional Materials

(i) Diamond. The diamond crystal structure can be constructed from a con-
sideration of the face-centered cubic lattice and by assigning each lattice point
two carbon atoms at a relative separation of a(1/4, 1/4, 1/4) from each other,
where a is the cubic lattice constant. The atomic positions of a solid with
a closely related structure, the zincblende structure, within the conventional
cubic unit cell of length a, is shown in Fig. 1.1. The diamond structure can
be identified with the zincblende structure when the two basis atoms are of
the same species.

The phonon-dispersion relation and the density of states for diamond are
shown in Fig. 1.2. The dispersion results are plotted along the three principal
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Fig. 1.1. Atomic positions in a solid with the zincblende structure, shown in the
conventional cubic unit cell of size a.

symmetry directions: from Γ to X along [100], from Γ to K and extended up
to X along [110], and from Γ to L along [111]. Due to two carbon atoms per
primitive unit cell, there are six phonon branches. With increasing energy near
the Brillouin zone center (Γ) these are the T1A (slow transverse acoustic),
T2A (fast transverse acoustic), LA (longitudinal acoustic), T2O (fast trans-
verse optical), T1O (slow transverse optical) and LO (longitudinal optical)
branches. The density of states shows a few characteristic peaks, correspond-
ing to flatness of the dispersion curves for the various polarization branches.

(ii) β-AlN. Aluminium nitride can assume two crystal phases: zincblende
and wurtzite, known as β-AlN and α-AlN, respectively. In the zincblende

Fig. 1.2. Phonon-dispersion curves and density of states for diamond. The
results are obtained from the application of a bond charge model [18]. Experimental
measurements are indicated by filled circles.
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Fig. 1.3. Phonon-dispersion curves and density of states for AlN in the zincblende
phase (β-AlN). Solid curves are obtained from calculations employing a bond charge
model, and empty diamonds indicate experimental results. Taken from [19].

phase the cubic lattice constant is 4.38 Å. The phonon-dispersion curves
for zincblende AlN, together with the density-of-states curve, are shown in
Fig. 1.3. There are two significant differences between the dispersion curves
for diamond and AlN. First, the TO branch in AlN is very flat, leading to a
sharp peak in the density of states. Second, there is a large LO − TO splitting
at the zone center (the Γ point) for AlN. This arises due to the ionic nature
of AlN.

(iii) α-AlN. The crystal structure of the wurtzite phase of AlN can be
constructed from the hexagonal lattice with a basis of four atoms such as: Al
at (0, 0, 0), (2a/3, a/3, c/2) and N at (0, 0, u), (2a/3, a/3, c/2 + u). For α-AlN
the hexagonal lattice constants are a = 3.11 Å and c =

√
(8/3)a, and the in-

ternal parameter is u = 0.382. Although each atom is tetrahedrally bonded to
four neighbors of another species in both the zincblende and wurtzite struc-
tures, the connectivity of covalent bonds is different in the two structures. The
crystal structure and the phonon-dispersion curves and the density of states
for the α phase are shown in Figs. 1.4 and 1.5, respectively.

As a result of the geometrical differences between the β and α phases,
there are a few differences in the phonon spectra and the density of states for
the two phases. The four atoms within the wurtzite primitive unit cell result
in three acoustic and nine optical branches. The lowest three optical branches
are found to lie in the acoustic range obtained for the zincblende phase. The
other six optical branches are well separated from the acoustic and the lower-
lying optical branches. Thus there is an optical-optical gap in the phonon
spectrum for α-AlN, as opposed to the optical-acoustic gap for β-AlN. This
occurs because the extent of the Brillouin zone in the wurtzite phase along
the [111] direction is only half of that in the zincblende phase. The density of
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Fig. 1.4. Wurtzite crystal structure.

Fig. 1.5. Phonon-dispersion curves and density of states for AlN in the wurtzite
phase (α-AlN). Solid curves are obtained from calculations employing a bond charge
model, and filled circles indicate experimental results. Taken from [19].

states for α-AlN shows the development of a small but sharp peak just below
the large peak in the lower part of the optical range for the zincblende phase.

1.3.2 Graphite, Graphene, and Nanotubes

(i) Graphite. The graphite structure is characterized by a basis of four carbon
atoms assigned to each point of a simple hexagonal lattice. The distribution
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of carbon atoms can be visualized in the form of atomic planes (the so-
called basal planes). The basal atomic planes perpendicular to the c-axis
have a honeycomb arrangement. The interplanar separation is 2.36 times the
nearest-neighbor interatomic distance (1.42 Å) in a basal plane, indicating
much weaker interlayer bonding.

The primitive translation vectors in a basal plane of graphite can be chosen
as shown in Fig. 1.6. Corresponding to four atoms per primitive cell, there are
12 phonon branches for graphite, shown in Fig. 1.7. However, these branches
are rather strangely ordered and show anomalous dispersion [20]. In a basal-
plane direction there are three acoustic branches. While the LA and fast TA
branches show normal dispersion, the slow TA branch (also called the bending
mode branch) shows an anomalous dispersion ω ∝ q2 for low q-values and a
linear behavior ω ∝ q for larger values of q. There is also a very low-lying
TO branch at the zone center which shows a dispersion behavior similar to
that of the slow TA branch. The frequencies of the in-plane TA, LA, and LO
branches extend up to about 25 THz, 32 THz, and 47 THz, respectively. Along
the interplanar direction the TA and LA branches are very low-lying (below
νc(LA) = (ωc(LA)/2π) � 4 THz) and get folded into dispersionless TO and LO
branches, respectively.

(ii) Graphene. A single graphite plane is a graphene sheet. This hypo-
thetical form of carbon, therefore, contains two carbon atoms per unit cell,
leading to 6 phonon branches, as shown in Fig. 1.8(a) [21]. The three optical
branches correspond to one out-of-plane mode and two in-plane modes. Near
the zone center, with increasing energy the three acoustic branches corre-
spond to an out-of-plane mode, an in-plane tangential (bond-bending) mode,
and an in-plane radial (bond-stretching) mode, respectively. The out-of-plane
(transverse) mode shows a q2 dispersion, similar to that of the slow TA mode
in graphite. The density of acoustic modes in the graphene sheet is a constant,
as seen in Fig 1.8(b).

Fig. 1.6. The basal plane of graphite (i.e., a graphene sheet). The primitive trans-
lation vectors are indicated.
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Fig. 1.7. Phonon-dispersion curves for the three-dimensional form of graphite.
Taken from [20] with permission.

Fig. 1.8. (a) Phonon-dispersion curves and (b) density of states for a graphene
sheet. Taken from [21] with permission.
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Fig. 1.9. A graphene layer and the unit cell of the (4,2) nanotube defined by the
chiral vector Ch and the translation vector T. There are 56 atoms in the nano-
unit cell.

(iii) Nanotubes. A carbon nanotube is made by rolling up a graphene sheet.
The structure of a single-wall nanotube can be specified by its chiral vector Ch

and its translation vector T. These vectors can be expressed as suitable linear
combinations of the primitive translation vectors a1 and a2 of the graphene
sheet. In particular, Ch = na1 + ma2 ≡ (n, m). The diameter D of the tube is
D = |Ch|/π. An armchair nanotube corresponds to Ch = (n, n). The lattice
translation vector parallel to the tube axis T is normal to the chiral vector
Ch: Ch · T = 0. Fig. 1.9 shows the Ch and T vectors for the (4,2) nanotube.

Figure 1.10 shows the phonon-dispersion curves and the density of states
for the (10,10) carbon nanotube [21]. There are 40 carbon atoms in the unit cell
for the (10,10) nanotube, giving rise to 120 phonon branches. In accordance


