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Abstract

The geometric features of agricultural trees such as canopy area, tree height and crown

volume provide useful information about plantation status and crop production. However,

these variables are mostly estimated after a time-consuming and hard field work and

applying equations that treat the trees as geometric solids, which produce inconsistent

results. As an alternative, this work presents an innovative procedure for computing the 3-

dimensional geometric features of individual trees and tree-rows by applying two consecu-

tive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV)

technology and 2) use of object-based image analysis techniques. Our UAV-based proce-

dure produced successful results both in single-tree and in tree-row plantations, reporting

up to 97% accuracy on area quantification and minimal deviations compared to in-field

estimations of tree heights and crown volumes. The maps generated could be used to

understand the linkages between tree grown and field-related factors or to optimize crop

management operations in the context of precision agriculture with relevant agro-environ-

mental implications.

Introduction

The geometric measurements of the agricultural trees, such as tree height and crown volume,

serve to monitor crop status and dynamic, to analyse tree production capacity and to optimise

a number of agronomic tasks, such as water use, nutrient application, pruning operations and

pest management. Conventionally, the main tree dimensions are measured by hand after an

intensive field work and next the crown volume is estimated with equations that treat the trees

as regular polygons or by applying empiric models [1]. However, collecting this data at the

field scale is very time-consuming and generally produces uncertain results because of the lack

of fit of the real tree to the geometric models or to the great variability in orchards that can

affect the suitability of models based on in-field measurements. Among the technological alter-

natives, the Light Detection And Ranging (LiDAR) laser scanners and the stereo vision systems
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by using terrestrial or remote-sensed measurements are currently the most relevant [2]. How-

ever, these techniques have also their own limitations in real tree orchards. On the one hand,

although the terrestrial devices are very precise to measure tree architecture [3–5], they are

inefficient in large spatial extents and are difficult to use in hard-to-reach field areas. On the

other hand, remote-sensed data collected with piloted aircrafts and satellites do not often fulfil

the technical requirements (e.g., sufficient spatial resolution or number of stereoscopic pairs)

needed to detect the 3-dimensional (3-D) characteristics of agricultural trees in most cases [2].

In recent years, a new aerial platform has joined the traditional ones: the Unmanned Aerial

Vehicles (UAV) or drones [6,7]. Several investigations [8] have demonstrated the advantages

of the UAVs in comparison to airborne or satellite missions regarding its low cost and greater

flexibility in flight scheduling [9], which make UAV technology a proper tool for farmers and

researchers to monitor crops at the field scale [10]. In addition, the UAV can automatically

flight at low altitudes and with large overlaps, which permit the acquisition of ultra-high spatial

resolution images (in the range of a very few centimetres) and the generation of the Digital

Surface Model (DSM) using automatic photo-reconstruction methods that are based on the

“Structure fromMotion” approach for 3-D reconstruction. As a consequence, recent investiga-

tions have focused on the generation of DSM with UAVs [11] and its interpretation over agri-

cultural areas [12–14].

However, in order to take full advantage of this technology, another primary step involves

the implementation of robust and automatic image analysis procedures capable of retrieving

useful information from the images. To reach a high level of automation and adaptability, we

propose the application of object-based image analysis (OBIA) techniques. OBIA overcomes

some limitations of pixel-based methods by grouping adjacent pixels with homogenous spec-

tral values after a segmentation process and by using the created “objects” as the basic elements

of analysis [15]. Next, OBIA combines spectral, topological, and contextual information of

these objects to address complicated classification issues. This technique has been successfully

applied in UAV images both in agriculture [16,17], grassland [18] and urban [19] scenarios.

In this article, we report an innovative procedure for a high-throughput and detailed 3-D

monitoring of agricultural tree plantations by combining UAV technology and advanced

OBIA methodology. After the DSM generation with UAV images, this procedure automatically

classifies every tree in the field and computes its position, canopy projected area, tree height

and crown volume. For training and testing purposes, we used olive plantations as model sys-

tems and selected several sites with a variable degree of tree shapes and dimensions, both in

conventional single-tree and in row-structured plantation systems. Efficacy of the procedure

was assessed by comparing UAV-based measurements and in-field estimations. In addition,

effects of spectral and spatial resolutions on the entire process were evaluated in each type of

plantation by performing different flight missions in which two flight altitudes and two sensors

(a conventional low-cost visible-light camera and a 6-band multispectral color-infrared cam-

era) were separately tested. Finally, time required by each stage of the full process was weighted

according to the flight mission performed.

Materials and Methods

The full procedure consisted on three main phases (Fig 1): 1) the acquisition of very high spa-

tial resolution remote images with an unmanned aerial platform, 2) the generation of orthomo-

saics and DSMs by applying close-range photogrammetry methods, and 3) the application of

advanced object-based algorithms to analyse the images and to retrieve the position and the

geometric features of each tree or tree-row in the whole field. Next, each stage is described

in detail.
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Description of the UAV and the sensors

The UAV used in this investigation was a quadrocopter with vertical take-off and landing

(VTOL), model MD4-1000 (microdrones GmbH, Siegen, Germany) (Fig 2a). This UAV is

equipped with four brushless motors powered by a battery and it can be manually operated by

radio control (1000 m control range) or it can fly autonomously with the aid of its Global Posi-

tion System (GPS) receiver and its waypoint navigation system. The VTOL system makes the

UAV independent on a runway, which allows the use of the UAV in a wide range of different

situations, e.g., even on steep olive orchards.

Two sensors were separately tested: 1) a still point-and-shoot visible-light camera, model

Olympus PEN E-PM1 (Olympus Corporation, Tokyo, Japan) (Fig 2b), and 2) a six-band multi-

spectral camera, model Tetracam mini-MCA-6 (Tetracam Inc., Chatsworth, CA, USA) (Fig

2c). On the one hand, the visible-light camera produces 12.2 megapixel format (4,032 x 3,024

pixels) images in true colour (Red, R; Green, G; and Blue, B, bands) with 8-bit radiometric reso-

lution, which are stored in a secure digital SD-card. It is equipped with a 14–42 mm zoom lens,

although it was fixed at 14 mm focal length for these works. The camera’s sensor size is 17.3 x

13.0 mm and the pixel size is 0.0043 mm. These parameters are needed to calculate the image

resolution on the ground or, i.e., the ground sample distance (GSD) as affected by the flight

altitude (Eq 1). On the other hand, the multispectral camera is a lightweight (700 g) sensor

composed of six individual digital channels arranged in a 2x3 array. Its sensor size is 6.66 x

5.32 mm and the pixel size is 0.0052 mm. Each channel has a focal length of 9.6 mm and a 1.3

megapixel (1,280 x 1,024 pixels) CMOS sensor that stores the images on a compact flash CF-

card. The images were acquired with 8-bit radiometric resolution. The camera has user config-

urable band pass filters (Andover Corporation, Salem, NH, USA) of 10-nm full-width at half-

maximum and centre wavelengths at B (450 nm), G (530 nm), R (670 and 700 nm), R edge

Fig 1. Flowchart of the entire procedure for 3-Dmonitoring of agricultural tree plantations by combining UAV technology and object-based image
analysis. (Abbreviations: 3-D (three dimensional); GPS (Global Position System); UAV (Unmanned Aerial Vehicle); GCP (Ground Control Point); DSM
(Digital Surface Model); G (Green band); NIR (Near Infra-Red band); OBIA (Object-Based Image Analysis).

doi:10.1371/journal.pone.0130479.g001
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(740 nm) and near-infrared (NIR, 780 nm). More details about the sensors and UAV configu-

ration can be consulted in [20].

GSD ¼
Sensor Pixel Size� Flight Altitude

Focal Length
ð1Þ

Study sites and UAV flight missions

We used olive plantations as model systems to develop and evaluate our procedure and selected

four different sites with a variable degree of tree shapes and dimensions, as well as with two dif-

ferent plantation patterns: two fields with a traditional single-tree distribution (Fig 3a and 3c)

and two fields with the trees in rows (Fig 3b and 3d). The fields were identified by four different

letters to facilitate the reading of the article, as follows: field A: located in the public research

farm “Alameda del Obispo” in Cordoba, field B: a private farm located in Adamuz (Cordoba

province), field C: a private farm located in Pedro Abad (Cordoba province), and field D: a pri-

vate farm located in Villacarrillo (Jaen province).

Different flight missions with the two sensors mounted independently in the UAV were per-

formed in every field (Table 1). In the private farms, the flights were authorized by a written

agreement between the farm owners and our research group. On the one hand, the UAV route

Fig 2. The quadrocopter UAV, model md4-1000, taking off in one of the studied fields (a) and the sensors used in this investigation: the visible-
light camera (b) and the multispectral camera (c). The individual in this figure has given written informed consent to publish his photograph.

doi:10.1371/journal.pone.0130479.g002
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was configured with the visible-light camera to continuously take photos at an interval of 1 sec-

ond, which resulted to a forward lap of 90% at least. In this case, the UAV flied in line with a

side lap of 60%. With the multispectral camera, the UAV route was programmed to stop in

every acquisition point due to camera technical limitations for continuum shooting (slower

processing speed). In this case, the images were taken with a side lap and a forward lap of 60%.

Fig 3. On-ground (top) and aerial (down) views of two plantations studied in this investigation with single-tree (a, c) and tree-row (b, d) patterns,
respectively.

doi:10.1371/journal.pone.0130479.g003
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In all flight missions, the image overlapping was high enough to apply the 3-D reconstruction

procedure in the next stage. According to these flight configurations, the visible-light camera

can cover roughly 10 ha and 20 ha and the multispectral camera roughly 3 ha and 6 ha, at 50

and 100 m altitude, respectively, in each regular 30-minutes flight.

The acquired images had different spatial resolutions according to the technical characteris-

tics of the sensor and to the flight altitude as follows (Eq 1): 1) the visible camera flying at 50-

and 100-m altitudes produced RGB images with a GSD of 1.53 and 3.06 cm, respectively; and

2) the multispectral camera flying at 50- and 100-m altitudes produced multispectral images

with a GSD of 2.71 and 5.42 cm, respectively. These experiments aimed to assess the influence

of spatial and spectral resolution on the accuracy of the DSM generation and on the perfor-

mance of the OBIA tasks (see sections 2.3 and 2.4, respectively). The flight routes fulfilled the

requirements that were established by the Spanish National Agency of Aerial Security for maxi-

mum flight altitude allowed for UAVs, which is currently fixed at 120 m [21].

Generation of the ortho-mosaics and of the Digital Surface Models
(DSM)

Mosaicking and DSM generation were performed using the Agisoft PhotoScan Professional

Edition software (Agisoft LLC, St. Petersburg, Russia). The mosaicking process was fully auto-

matic with the exception of the manual localisation of a few ground control points that were

taken in each field. The entire automatic process involves three principal stages: 1) aligning

images, 2) building field geometry, and 3) ortho-photo generation. First, the camera position

for each image and the common points in the images were located and matched, which refined

the camera calibration parameters. Next, the DSM was built based on the estimated camera

positions and the images themselves. This second stage needs high computational resources

and it usually takes a long time in the case of using many high-resolution images. Finally, the

separated images were projected over the DSM, and the ortho-mosaic was generated. The

DSM is a 3-dimensional polygon mesh that represents the overflown area and reflects the irreg-

ular geometry of the ground and the tree crowns. The DSMs were joined to the ortho-mosaics

as Tiff files, which produced a 4-band multi-layer file from the visible-light camera (RGB

bands and the DSM) and a 7-band multi-layer file from the multispectral sensor (6 bands and

the DSM). A more detailed explanation of the PhotoScan functioning is given in [22].

Table 1. Description of the tree plantations and of the flight operations performed in each field.

Tree plantation Flight operation2

Field ID Location1 Plantation pattern (tree spacing) Flight date Sensor Flight altitude (m)

A Cordoba (37.855N, 4.806W) Single-trees (7x7 m) 21st Aug, 2013 Visible-light 50, 100

Multispectral 50

B Adamuz (37.992N, 4.505W) Single-trees (8x8 m) 21st Feb, 2014 Visible-light 50,100

Multispectral 50,100

C Pedro Abad (37.960N, 4.466W) Tree-rows (3.75x1.3 m) 21st Feb, 2014 Visible-light 50,100

Multispectral 50,100

D Villacarrillo (38.113N, 3.163W) Tree-rows (8x4 m) 12th May, 2014 Visible-light 50,100

Multispectral 100

1 Lat/Lon coordinate system; Datum WGS84.
2 Multispectral images of the field “B” at 100 m altitude and of the field “D” at 50 m altitude were not taken due to technical problems.

doi:10.1371/journal.pone.0130479.t001
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Object-based image analysis (OBIA) procedure

The multi-layer files that were generated in the previous stage were analysed with an original

OBIA algorithm that was developed with the eCognition Developer 9 software (Trimble GeoS-

patial, Munich, Germany). This algorithm is auto-adaptive to any remote image with indepen-

dence of the plantation pattern and it can be apply with minimum user interference. The

algorithm is composed of a number of rules that are grouped in four consecutive main phases

(Fig 4):

1. Image segmentation: The image was segmented into objects using the multiresolution seg-

mentation algorithm [23] (Fig 4a). For a better delineation of the trees, the layers in which

the trees were more prominent, i.e., the DSM layer and either the Green band from the visi-

ble-light images or the NIR band from the multispectral image, were weighted to 1, and the

remaining layers were weighted to 0. The scale parameter varied in the function of the sen-

sor and the spatial resolution, and the remaining segmentation parameters were 0.6, 0.4, 0.5

and 0.05 for colour, shape, smoothness and compactness, respectively (Fig 4b).

2. Image classification: The classification task took advantage of the capacity of certain vegeta-

tion indices to enhance the discrimination of vegetation targets. In this investigation, the

Excess Green index (ExG, Eq 2, [24]) for the visible-light images and the Normalised Differ-

ence Vegetation Index (NDVI, Eq 3, [25]) for the multispectral images were calculated.

Then, a threshold for vegetation discrimination was established using Otsu’s automatic

thresholding method [26] as adapted to the OBIA framework [27]. After the application of

the threshold to the vegetation indices values, vegetation was isolated from bare soil (Fig

4c). Next, the herbaceous vegetation surrounding the trees was isolated considering the

DSM layer and applying the criterion of vegetation with low height compared to surround-

ing soil (Fig 4d). The vegetation pixel height was derived from the relative difference of the

DSM values between the pixels of each individual vegetation object and the pixels of the

bare soil surrounding each object. In this step, only the bare soil pixels that were very close

to each vegetation object were specifically selected as the baseline for height calculation,

eliminating potential errors due to the terrain slope (Fig 4e).

ExG ¼ 2g� r� b; being g ¼
G

ðR þ Gþ BÞ
; r ¼

R

ðR þ Gþ BÞ
; b ¼

B

ðR þ Gþ BÞ
ð2Þ

NDVI ¼
ðNIR � RÞ

ðNIR þ RÞ
ð3Þ

3. Computing and mapping of the 3-D features (canopy width, length and projected area, tree

height and crown volume) of each individual tree or tree-row: The vegetation objects that

were classified as trees in the previous stage were merged to compound each individual tree

or tree-row. This merging operation was performed in a new level created over the original

segmentation. Therefore, a hierarchical segmentation structure was generated, in which the

merged objects (trees or tree-rows) were in the upper level and the segmented objects were

in the bottom level. At this point, the geometric features such as width, length and projected

area of the tree canopy and the tree height were automatically calculated by applying a loop-

ing process in which each tree or tree-row was individually identified and analysed. Next,

the crown volume was calculated by integrating the volume of all of the individual pixels

(bottom level) that were positioned below each tree or tree-rwo (upper level) in the hierar-

chical structure. In this operation, the height and area of every tree pixel were multiplied to

3-D Monitoring of Agricultural-Tree Plantations with UAV

PLOSONE | DOI:10.1371/journal.pone.0130479 June 24, 2015 7 / 20



obtain the pixel volume, and the tree volume was subsequently derived by adding the vol-

ume of all of the pixels below each olive tree or tree-row. This step was performed at the

pixel level, which permitted dealing with the irregular shape of every tree or tree-row and

consequently avoiding the errors that are usually produced in empirical estimations due to

inexact comparisons of the trees or tree-rows to regular solids.

Fig 4. Partial views of each phase of the OBIA procedure developed to classify agricultural-tree plantations: a) Mosaicked image composed of the
spectral information (in this example, multispectral bands) and the DSM data, b) segmentation output, c) classification of the vegetation objects
(in green color), d) removal of the herbaceous vegetation, e) identification of the bare-soil area (in orange color), which is used as the base line to
calculate the height of the neighbouring vegetation objects (in dark green color), and f) classification of the trees (in bright green color),
herbaceous vegetation (in dark green color) and bare soil (in red color) based on the spectral information and the vegetation height.

doi:10.1371/journal.pone.0130479.g004
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4. Delivery of the map outputs: After computing the tree geometrical features, the OBIA pro-

cedure automatically exported such information as vector (e.g., shapefile format) and table

(e.g., excel or ASCII format) files for further analysis and applications.

Training and validation of the methodology

This investigation was conducted following a training/validation procedure. The training stage

was performed in the field A and the field C as representative of single-tree and tree-row plan-

tations, respectively, and consisted of testing the flight configuration and image acquisition.

This stage also involved visual tests of image quality and evaluation of the aptitude of the mosa-

icked images and their associated DSMs to build the tree structures and to retrieve their geo-

metric features. In addition, we also developed the OBIA algorithms in the training fields.

Next, the validation procedure was performed in the field B and the field D as representative of

single-tree and tree-row plantations, respectively. Three geometric features, namely the pro-

jected area of the canopy, tree height and crown volume, were evaluated by comparing the

UAV-estimated values and the on-ground values observed in the validation fields.

In the case of the projected area, the observed values were derived by manually delineating

the shape of all of the trees or tree-rows over the mosaicked images that were generated in each

flight route. Then, the classification outputs that were generated by the OBIA algorithms were

overlapped with the manual classifications to compute the area of coincidence for each tree or

tree-row and to calculate the overall classification accuracy in each scenario (Eq 4).

Overall Classification Accuracy ð%Þ ¼ 100�
Area correctly classified

Total area

� �

ð4Þ

In the case of height and volume quantification, 24 trees in the field B and 30 trees in the

field D were selected for validation. All of the trees were georeferenced with a GPS device to

locate their position in the mosaicked images. In addition, the tree height and canopy diameter

were manually measured with a ruler, and the crown volume was estimated assuming an ellip-

soid form and applying a validated method (Eq 5) for olive tree geometric measurements [28].

However, the crown volumes were not calculated in the field D because its row structure

impeded the identification of tree edges in the longitudinal axis.

Crown volume ðm
3
Þ ¼

p

6
�

ðCanopy length axisÞ þ ðCanopy width axisÞ

2

� �2

� ðTree heightÞ ð5Þ

The efficacy of the entire procedure (mosaicked images, DSM layer and OBIA algorithms)

to measure the tree height and crown volume of individual trees was assessed by comparing

the UAV-estimated values and on-ground values that were observed in the 54 validation trees.

Then, the overall accuracy and its associated average error (Eq 6) that were attained in each

scenario (two validation fields and several flight altitudes), as well as the root mean square

error (RMSE) and correlation coefficient that were derived from the regression fit, were calcu-

lated to quantify the influence of each factor on monitoring each studied tree variable.

Average Feature Error ¼

X

n

i¼0

jðUAV�measured FeatureiÞ � ðField� observed FeatureiÞj

Number of trees
ð6Þ
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Results and Discussion

Quality of ortho-mosaic and DSM generation

The Fig 5a and 5b show the 3-D representation generated in two fields with single-tree and

tree-row systems, respectively. Each image was composed of two products: the ortho-mosaic

and its associated DSM. Both plantations were modelled in 3-D with high accuracy, showing

the irregular shape of the trees and of the tree-rows including typical crown gaps and branch

distribution, which allowed computing tree volume regarding the real crown shape. The ortho-

mosaics were successfully created in all the studied scenarios (four fields, two sensors and two

flight altitudes), with the exception of the images that were collected with the multispectral sen-

sor over the tree-row plantations. However, the quality of the DSMs was variable as affected by

the sensor type and the tree plantation system (Table 2). With the independence of the flight

altitude, the DSMs were satisfactorily generated in both single-tree plantations (field A and

field B) with the multispectral sensor and in both tree-row plantations (field C and field D)

with the visible-light camera. In fact, more than 96% of the trees in the single-tree fields and

the 100% of the rows in the tree-row fields were correctly modelled, and only some mixing

effects were observed after the image analysis process in the DSMs that were generated with

the visible-light images that were captured at a 100-m altitude. In contrast, the DSM generation

procedure partially failed with the visible-light images collected in the single-tree fields (mainly

in the field B). In these cases, the 3-D structure of some of the trees was not built and, conse-

quently, the mosaicked images showed some blurry areas. On the one hand, we observed that

the procedure for 3-D reconstruction with the visible-light images was more problematic in

the trees with a low canopy density. As a consequence, we hypothesized that the low colour

contrast between some trees and their surrounding bare soil area was the reason of the errors

in the generation of the DSM in the separated-tree cropping system scenarios. In fact, greater

Fig 5. 3-D representation of a single-tree plantation generated with a multispectral sensor (a) and of a tree-row plantation generated with a visible-
light camera (b).

doi:10.1371/journal.pone.0130479.g005
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errors were obtained in the field B, where the colour of many trees was similar to that of bare

soil, than in the field A, where a greater contrast between the trees and the bare soil was

observed. On the other hand, the multispectral sensor totally failed in both row-tree planta-

tions due to certain difficulties of the 3-D reconstruction software to find common points dur-

ing the image alignment process. We attributed these errors to insufficient spatial resolution of

this sensor in order to match similar points in overlapped images taken over homogeneous tar-

gets, as we also observed in additional investigations on herbaceous crops.

Classification accuracy as affected by the flight altitude

After building the 3-D models of the four studied fields, we applied our original OBIA proce-

dure in order to classify the remote images (Fig 6) and to measure the geometric features of

each individual tree or tree-row, whichever applies. Our OBIA procedure was designed to

auto-adapt, with minimum user intervention, to any agricultural tree plantation with a similar

crop patterns (e.g., citrus groves, vineyards or Prunus orchards). The algorithms were submit-

ted to a training/validation procedure, in which the images collected in the fields A and C were

used for creating and training the OBIA algorithm and the images collected in the fields B and

D were used to validate the results (section 2.5). The classification procedure achieved an over-

all accuracy of approximately 95% or even higher in the most cases (Table 3). With the inde-

pendence of the sensor used and the field studied, minor differences in the classification

accuracy were observed for different flight altitudes. The visible-light and the multispectral sen-

sors captured images with pixel sizes ranging from 1.5 cm to 3.1 cm and from 2.7 cm to 5.4 cm

at the studied flight altitudes, respectively. The high spatial resolution imagery that was gener-

ated by both sensors, even at a 100-m flight altitude, permitted the correct identification of the

tree canopy, which produced a successful classification in every case. Generally, at least four

pixels are required to detect the smallest objects within an image [29]. Accordingly, the sensors

that were used in this investigation were adequate for analysing individual tree or tree-row

structures with a minimum dimension of approximately 10x10 cm or even smaller if the flight

Table 2. Number and percentage of trees or tree-rows correctly reconstructed during the DSM gener-
ation procedure as affected by the sensor type and the flight altitude in each of the studied fields.

Trees or tree-rows
correctly

reconstructed

Field ID Plantation pattern Sensor Fligh altitude (m) Number %

A Single-trees Visible-light 50 65 73

100 86 97

Multispectral 50 89 100

B Single-trees Visible-light 50 27 20

100 74 55

Multispectral 50 135 100

100 130 96

C Tree-rows Visible-light 50 9 100

100 9 100

Multispectral 50 0 0

100 0 0

D Tree-rows Visible-light 50 10 100

100 10 100

Multispectral 50 10 100

doi:10.1371/journal.pone.0130479.t002
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Fig 6. Classification outputs generated by the OBIA algorithm developed in this investigation.Our innovative algorithm automatically classified
individual trees (a, b) or tree-rows (c, d), herbaceous vegetation and bare soil areas and, simultaneously, computed the geometric features (projected canopy
area, tree height and crown volume) of each individual tree or tree-row in the whole plantation.

doi:10.1371/journal.pone.0130479.g006
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altitude was lower than 100 m. Therefore, these results recommend collecting the UAV remote

images at the highest altitude allowed by the aviation regulations (in Spain, 120 m maximum

[21]) in order to capture the maximum ground area in each image and to consequently opti-

mise the flight mission length and image ortho-mosaicking process.

Quantification of the tree geometric features (canopy area, tree height
and crown volume)

Canopy area. The relation between canopy projected area classified by the OBIA proce-

dure and the observed values at the 50-m-altitude images was close to the 1:1 line (R2 = 0.94,

RMSE = 1.44 m2), although it tended to a subtle underestimation of the trees or groups of

nearby trees larger than 20 m2 (Fig 7). With the 100-m-altitude images, this relationship was

also close to the 1:1 line, but the correlation coefficient (R2 = 0.90) and the RMSE (2.14 m2)

was slightly worse than at the ones reported at 50-m-altitude. The canopy areas of all the trees

were estimated with minimum errors in the images at both flight altitudes, which demon-

strated algorithm robustness. In fact, the tree canopy edges were automatically defined with

high precision even in zones with surrounding herbaceous vegetation, where discriminating

vegetation types is a complicate task due to their similar spectral responses. In this case, tree

classification was facilitated by incorporating the DSM information (i.e., pixel height) as an

input layer in the segmentation procedure and, afterwards, by using an automatic height-based

thresholding method for identifying the tree canopy edges.

Tree height. Tree height was estimated with unprecedented accuracy, reporting averaged

errors in the range of 0.17–0.18 m from the images captured with the visible-light camera and

of 0.22–0.53 m from the images captured with the multi-spectral camera (Table 4). Previous

investigations with a similar image-based UAV technology reported RMSE values on tree

height estimations in the range of 0.33–0.39 m [12] and of 0.44–0.59 m [30] in olive-tree and

palm-tree plantations, respectively. An essential difference with these investigations refers to

the image analysis technique used to compute the tree parameters in each case. We imple-

mented an OBIA algorithm instead of the pixel-based filtering algorithms applied in [12,30].

OBIA has various advantages for analysing high-resolution images where the pixels can be

aggregated to create new elements (e.g., trees) with an evident spatial pattern. Here, the OBIA

algorithm identified all the trees in the plantation with very high accuracy (Table 3) and treated

each of the trees as an individual object. This tree-by-tree procedure can exactly select the local

maxima (in the tree apex) and minima (in the surrounding on-ground base-line) extreme

pixels that are used by the OBIA algorithm to calculate the height of each individual tree. By

comparing the on-ground observed and the UAV-measured height values, the coefficient of

determination was 0.90 and 0.84 for the UAV-images captured at 50-m and 100-m flight alti-

tudes, respectively (Fig 8). The regression line was very close to the 1:1 line with the results

Table 3. Overall accuracy attained by the OBIA algorithm in the classification stage.

Field ID Plantation pattern Sensor Flight Altitude (m) Overall Accuracy (%)

A Single-trees Multispectral 50 97.4

B Single-trees Multispectral 50 96.9

100 94.5

C Tree-rows Visible-light 50 93.1

100 86.8

D Tree-rows Visible-light 50 96.4

100 95.7

doi:10.1371/journal.pone.0130479.t003
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derived from the images captured at 50-m flight altitude, although some under-estimation was

obtained from the 100-m-altitude images, particularly in the case of trees shorter than 4 m

height. In general, the UAV-based estimations of the tree heights only deviated a few centi-

metres from the on-ground measurements. However, these deviations were greater in the

shortest trees and using the highest flight altitude, which likely denotes a positive relationship

between both variables. For this application, these errors are tolerable but, if required, vertical

estimations could be improved by reducing the flight altitude according to tree heights,

although further investigation is needed to determine the optimal flight configuration for

image-based 3-D photo-reconstruction.

Crown volume. A precise measurement of tree projected area and tree height was crucial

for modelling tree crowns and consequently for computing tree volume in the next phase. The

relationship between the UAV-based and the on-ground-based volume estimations of the

Fig 7. Classified vs. observed tree projected area after applying the OBIA algorithm in the remote images collected at 50 m (left) and 100m (right)
of flight altitude over the field B. The solid line is the fitted linear function and the dotted line is the 1:1 line.

doi:10.1371/journal.pone.0130479.g007

Table 4. Tree height quantification errors (average and standard deviation) accounted in the validation fields.

Tree height quantification error

Field ID Plantation pattern Sensor Flight Altitude (m) Averaged Standard deviation

B Single-trees Multispectral 50 0.22 m (6.32%) 3.41

100 0.53 m (15.55%) 8.12

D Tree-rows Visible-light 50 0.18 m (3.75%) 3.06

100 0.17 m (3.54%) 3.16

doi:10.1371/journal.pone.0130479.t004
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individual trees is shown in the Fig 9. The coefficient of determination was 0.65 and 0.63 with

the 50- and the 100-m-altitude images, respectively. In this case, the differences between both

variables do not denote real errors of the UAV-based measurements because the on-ground-

based values were derived by applying the conventional geometric equation that considers the

trees as ellipsoid forms [1], which can produce inexact on-ground estimations. On the con-

trary, the 3-D products derived in this investigation reconstruct the irregular shape of the tree

crown, which hypothetically allows better estimations of tree volume than those ones derived

from on-ground measurements. In any case, similar magnitudes were observed between both

approaches with independence of the flight altitude considered; i.e., the trees that were identi-

fied as bigger on the ground were also quantified as trees with larger volumes by the UAV-

based procedure and vice versa (Fig 10).

Detailed map information provided by the OBIA algorithm

After extracting the geometric features of every individual tree or tree-row in the entire planta-

tions, an additional advantage of the OBIA procedure was its capacity to automatically com-

pute such information at different levels and export accurate data as vector (e.g., shapefile

format) and table (e.g., excel or ASCII format) files. On the one hand, global information at the

field level includes field dimensions, the number of trees, averaged tree spacing and tree statisti-

cal data (e.g., medium and standard deviation of tree heights and crown volumes). On the

other hand, spatial data at the tree or tree-row level includes the central coordinates,

Fig 8. Comparison between on-ground observed and UAV-estimated tree height valuesmeasured from the images captured at 50 m (left) and 100
m (right) of flight altitude, respectively. The results in the tree-row plantations (blue dots) were obtained with the visible-light camera and in the single-tree
plantations (red dots) with the multispectral sensor. The solid line is the fitted linear function and the dotted line is the 1:1 line.

doi:10.1371/journal.pone.0130479.g008

3-D Monitoring of Agricultural-Tree Plantations with UAV

PLOSONE | DOI:10.1371/journal.pone.0130479 June 24, 2015 15 / 20



dimensions of the main length and width axes, canopy projected area, tree height and crown

volume (Table 5). This spatial information allows creating maps of each one of the geometric

features studied (Fig 10), which show the heterogeneity of the whole plantation and the zones

in the field with different tree growth.

Time consumption

Considering the entire workflow from flight operation to features extraction, the required time

to monitor one hectare of field surface varied from several minutes to a few hours depending

on the sensor used and the number of the remote images collected by the UAV (Table 6). Most

percentage of time was dedicated to image mosaicking and analysis, which is mainly affected

by image spatial resolution. For this reason, time needed to process the visible-light images

(4,032 x 3,024 pixels) was pretty longer in comparison to multispectral images (1,280 x 1,024

pixels). However, processing time was registered using a standard computer (16 GB of RAM,

Intel core i5 processor and graphic card of 1 GB), so a drastic reduction of this time is possible

with a more powerful computer.

Accordingly, an agreement between result accuracy and operation length is needed in order

to select the sensor and the optimum flight configuration. In our investigation, results obtained

at 50 m altitude were around 10–20% better than the ones obtained at 100 m altitude, although

image processing was around four times longer at 50 m altitude. From a practical point view,

the 100-m-altitude images are recommended in order to increase the ground area covered in

each flight and, consequently, to reduce both the mission length and size of the image set. How-

ever, the potential precision expected from each flight altitude should also be considered

according to the project quality requirements.

Fig 9. Comparison between on-ground-based volume estimations and UAV-based tree volume values computed from the UAV-images captured at
50 m (left) and 100m (right) of flight altitude, respectively. The UAV-based values were calculated by integrating the volume of all the pixels within each
image-object corresponding to each individual tree, which permitted dealing with the irregular shape of every tree and consequently avoiding the errors due
to inexact comparisons of the trees to regular solids. The UAV-based values were compared to on-ground estimations, which were calculated after manually
measuring tree canopy diameter and tree height with a ruler and then applying the ellipsoidal geometric model.

doi:10.1371/journal.pone.0130479.g009
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Conclusions

This investigation has shown the capacity of UAV technology to efficiently produce 3-D geo-

metrical data of hundreds of agricultural trees at the field level. In combination with an innova-

tive object-based image analysis algorithm, we computed the canopy area, tree height and

crown volume of the trees in a timely and accurate manner, which offers a very valuable

Fig 10. Spatial position and crown volume computed in the validation field B by using UAV-images captured at 50 m (green circles) and at 100 m
(dotted circles) of flight altitude with the multispectral sensor and their relative comparison to the on-ground estimations of the validation trees
(solid circles).

doi:10.1371/journal.pone.0130479.g010
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alternative to hard and inefficient field work. After comparing a set of remote images collected

with both a visible-light camera and a multispectral sensor, we concluded that the upper one is

better recommended for fields with a tree-row plantation pattern and the latter one for single-

tree plantations. We also observed minimum differences between the results obtained with the

images collected at 50-m and at 100-m of flight altitude, concluding that the taller altitude

should be generally selected in order to reduce the time needed to collect and to process the

images.

The georeferenced information provided by our procedure allows creating maps of orchard

heterogeneity and, consequently, observing zones with different tree sizes. These maps are criti-

cal to understand the linkages between tree grown and field-related factors (soil properties,

weed infestations, etc.) or to study the mutual relationship between nearby trees, which can

help to detect problems associated to soil or crop deficiencies or to diagnostic tree pathologies.

In addition, these maps allow adopting a strategy for site-specific management of homogenous

zones based on filed field or tree spatial variability in the context of precision agriculture [8],

which could increase farmer net economic returns by economising on inputs (fertiliser, pesti-

cide, water, etc) and field operations (pesticide application, irrigation, harvesting, pruning, etc).

Particularly in this context, there is a demand for developing a timely site-specific program

to reduce the issues that are associated with current pest control practices in crops and to com-

ply with the European legislation and concerns for the Sustainable Use of Pesticides (Regula-

tion EC No 1107/2009; Directive 2009/128/EC). These regulations include such key elements

as reductions in applications using an adequate amount of pesticides according to the specific

Table 5. A sample of the output data file computed at the tree level.

Tree ID Position1 Geometric features

X Y Length axis (m) Width axis (m) Projected area (m²) Height (m) Volume (m3)

1 367,769 4,206,048 4.78 4.00 13.21 3.85 21.84

2 367,774 4,206,048 5.15 4.72 12.98 1.67 11.66

3 367,777 4,206,042 2.51 1.59 2.57 3.25 5.47

. . . . . . . . . . . . . . . . . . . . . . . .

135 367,784 4,206,050 4.59 4.34 12.91 3.49 33.21

1UTM coordinate system (zone 30N); Datum WGS84.

Accurate spatial data of each individual tree was automatically computed by the OBIA procedure in a field with 135 trees. In this case, the remote images

were taken at 50 m flight altitude with a multispectral sensor.

doi:10.1371/journal.pone.0130479.t005

Table 6. Averaged time per surface hectare consumed by each step of the UAV-based workflow as affected by the type of sensor and flight
altitude.

Time (h:min)/ha

Sensor Flight altitude (m) # images/ha Flight operation1 Image mosaicking OBIA analysis Total

Multispectral 50 60 0:13 0:25 0:09 0:47

100 10 0:07 0:02 0:04 0:13

Visible-light 50 70 0:05 4:00 1:10 4:15

100 20 0:03 0:40 0:25 1:08

1 With the visible-light camera, the UAV route was configured to continuously take photos with an interval of 3 seconds, flying in lines at 3 m/s with a side

lap of 60%. With the multispectral camera, the UAV route was programmed to stop in every acquisition point. The multispectral images were taken with

60% side and forward overlaps.

doi:10.1371/journal.pone.0130479.t006
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requirements. Our investigation offers a reliable tool for an accurate and high-throughput

monitoring of the spatial variability of agricultural-tree fields under two different plantation

patterns, including tree height and crown volume of all the trees in the whole plantation, which

could be used to save agricultural inputs and to optimize crop management operations with

relevant agro-environmental implications.
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