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ABSTRACT  

 

Despite significant clinical progress in cell and gene therapies, maximizing protein expression in order to 

enhance potency remains a major challenge. One approach to increase protein expression is by optimizing 

translation through the engineering of 5’ untranslated regions (5’ UTRs). Here, we developed a high-

throughput strategy to design, screen, and optimize novel 5’UTRs that enhance protein expression from a 

strong human cytomegalovirus (CMV) promoter. We first identified naturally occurring 5’ UTRs with high 

translation efficiencies and used this information with in silico genetic algorithms to generate synthetic 5’ 

UTRs. A total of ~12,000 5’ UTRs were then screened using a recombinase-mediated integration strategy 

that greatly enhances the sensitivity of high-throughput screens by eliminating copy number and position 

effects that limit lentiviral approaches. Using this approach, we identified three synthetic 5’ UTRs that 

outperformed commonly used non-viral gene therapy plasmids in expressing protein payloads. Furthermore, 

combinatorial assembly of these 5’ UTRs enabled even higher protein expression than obtained with each 

individual 5’ UTR. In summary, we demonstrate that high-throughput screening of 5’ UTR libraries with 

recombinase-mediated integration can identify genetic elements that enhance protein expression, which 

should have numerous applications for engineered cell and gene therapies.    
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INTRODUCTION 	

In recent years, gene therapies that enable the exogenous production of proteins to replace defective genes 

have started to have transformative clinical impact1–3. Gene therapies can be delivered into patients through 

viral vectors or non-viral vectors. One of major challenges facing current gene therapy approaches is 

maximizing potency, since increasing the amount of exogenously expressed protein can reduce dose 

requirements and thus manufacturing costs, while improving human clinical results4. Multiple strategies 

are being employed to improve potency, such as enhancing cellular transduction efficiency by using more 

efficient viral vectors or non-viral transduction reagents, or by improving the gene expression construct 

itself.  For example, recombinant adeno-associated virus (rAAV) is one of the major modalities used in 

gene therapy due to its infectivity and ability to achieve long-term gene expression in vivo5,6. However, 

1016-1017 genome copies (GCs) of rAAVs are being used in clinical trials, which requires the use of 100-

10,000-L scale bioreactors to produce exceptionally large amounts of cGMP-grade viruses and is 

expensive4,7. Furthermore, a recent non-human primate study showed that high-dose intravenous rAAVs 

administration can lead to severe liver and neuronal toxicity8. Thus, there is a significant unmet need to 

improve protein production from viral gene therapies to improve the therapeutic window and reduce costs. 

      In addition, enhancing gene expression for non-viral DNA therapy remains a significant challenge. Non-

viral gene therapy delivers DNA into cells to produce therapeutic proteins or vaccine antigens in vivo, with 

several potential advantages over viral gene therapies9–11. First, non-viral DNA therapy is potentially less 

immunogenic than viral particles since it uses chemical delivery strategies12–14. Second, the ability to deliver 

large amounts of DNA cargo via non-viral routes is greater than with viral vectors, where packaging limits 

place significant restrictions. Third, plasmids are relatively inexpensive to produce at the research and 

industrial scale and are more stable compared to viruses1516. The efficiency of in vivo DNA delivery has 

improved significantly as a result of recent advancements in liposome chemistry and nanoparticles, but is 

still not as efficient as viruses in many cases17–19. Thus, repeat dosing or increased dose levels have been 

attempted but these strategies can incur greater costs, risk of side effects, and sacrifice patient convenience.  

In addition to optimizing delivery efficiencies, protein expression from gene therapies can be enhanced by 

optimizing the nucleic acid payload being delivered. Gene expression cassettes consist of multiple elements: 

promoter (which may include an enhancer), 5’ untranslated region (5’ UTR), protein coding region, 3’ UTR, 

and polyadenylation (PolyA) signal20. Previous work has involved promoter engineering to enhance 

transcription or to enable cell-type specific gene expression21,22. However, fewer efforts to modulate 

translation through UTR engineering have been described. 

  Here, we focused on optimizing the 5’UTR to improve protein production in a non-viral gene therapy 

context. The rational design of 5’ UTRs to enhance protein expression remains challenging, even though 
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regulatory elements and 5’ UTR sequences that regulate gene expression in certain scenarios have been 

identified 23–27. The design of 5’ UTRs has been held back by limited knowledge of the relationships 

between 5’ UTR sequences and associated levels of protein expression. In this study, we identified naturally 

occurring 5’ UTRs with different translational activities in multiple human cell types. We then applied a 

genetic algorithm to obtain novel synthetic 5’ UTRs, which were generated by evolving strong endogenous 

human 5’ UTRs in silico (Fig. 1). To enable high-throughput testing of 12,000 distinct 5’ UTRs, we 

developed a recombinase-based library screening strategy to eliminate copy number artefacts and positional 

effects, which introduce significant noise in traditional lentiviral-based library screening approaches28,29. 

Ultimately, we identified three synthetic 5’ UTRs that significantly outperformed both naturally occurring 

5’ UTRs, as well as a commonly used non-viral gene therapy plasmid (pVAX1)30. Finally, we showed that 

the three synthetic 5’ UTRs enhance protein expression across a variety of cell types and can be combined 

together to achieve further improvements, thus highlighting the potential of this approach for gene therapy 

applications. 

 

RESULTS 	

5’UTR model training and library design by genetic algorithms  

Protein production comprises two major steps: in the first step, DNA is transcribed into mRNA; and in the 

second step, mRNA is translated into protein. While transcription and translation are coupled in prokaryotic 

cells, these two steps are uncoupled in eukaryotic cells. Consequently, eukaryotic protein expression levels 

are highly dependent on mRNA levels, which are governed by the transcription machinery, but also on the 

translation efficiency (TE) of the transcripts, which is governed by the translation machinery31,32. In this 

context, given an identical transcription rate for two transcripts, the differences in the final amount of 

protein can be modulated by features found in the 5' UTR regions, which are involved in the recruitment of 

ribosomes33. The TE of a gene, i.e., the rate of mRNA translation into protein, can be calculated as the ratio 

of the ribosomal footprints (RPF) observed on a given mRNA of interest, which can be measured using 

Ribo-seq34, to the relative abundance of that mRNA transcript in the cell, which can be measured using 

RNA-seq.	

   We first investigated the TEs of naturally occurring 5’ UTRs (Fig. 2). To this end, we gathered publicly 

available Ribo-seq and RNA-seq data from human muscle tissue35, as well as from two human cell lines, 

human embryonic kidney (HEK) 293T36 and human prostate cancer cell line PC337. A 5’ UTR length of 

100 bp was chosen and fixed for training algorithms and engineering 5’ UTRs, which is compatible with 

the limits of current commercially available ssDNA template biosynthesis. For 5’ UTR sequences that were 

longer than 100 bp, sequences were extracted from the 5' end and 3' end to construct two new 100-bp long 
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5’UTRs; those shorter than 100 bp were filled up with repeats of a CAA motif that does not have known 

secondary structure38 to create two sequence versions, one having a shift of one nucleotide relative to the 

other (see Methods). AUGs were removed by randomly mutating one of the three nucleotides to avoid 

generating undesired upstream open reading frames (Supplementary Table 1).  

    Next, we computationally generated synthetic sequences by mutating and evolving endogenous 5’ 

UTRs in silico. We trained and developed a computational model to predict TE based on 5’ UTR 

characteristics (Fig. 2). Specifically, we extracted sequence features of 5' UTR regions that could be 

associated with gene expression levels and TE, which included k-mer frequency, codon usage, RNA folding 

energy, 5’ UTR length, and number of ORFs. A random forest regression model was then trained on 

sequence features to predict TE and mRNA expression (Supplementary Fig. 1). The model was trained on 

experimentally determined TE rates and mRNA levels, which were obtained from analyzing publicly 

available RNA-seq and Ribo-seq data of endogenous genes from the three human cell types noted above: 

HEK 293T cells, PC3 cells, and human muscle tissue39. Given that searching for all 4100
  possible 100-bp 

sequences would be too computationally demanding, we applied a genetic algorithm40, which simulates the 

evolution process, to search for “optimal” sequences by mutating and recombining the endogenous 

sequences (see Methods). We created 2388 synthetic 5’ UTRs that were predicted to have high TEs 

(Supplementary Table 2), in addition to a testing set designed by evolving 1198 5’ UTRs with a range of 

TEs within 2 evolutionary generations (Supplementary Table 3). Overall, a total of 3586 synthetic 

sequences and 8414 naturally occurring sequences were used to build the ~12,000 100-bp 5’UTR library 

for this study. 

Recombinase-mediated library screening to minimize copy number and position effects 

Lentiviral-based library screening is the most commonly used method for high-throughput genetic 

screening41–43. In this method, diversified genetic elements are cloned into a lentiviral carrier plasmid and 

transfected into a virus-producing cell line with packaging and envelope plasmids to produce a lentiviral 

library, which is then used to infect the cells of interest.  A multiplicity of infection (MOI) of ~0.1-0.3 is 

widely used to ensure that most of infected cells receive only one copy of the element of interest. However, 

even at 0.1 MOI, 10% of the cells receive two or more copies. Moreover, lentiviruses insert randomly into 

the cellular genome, resulting in significant variations in gene expression44,45. As a result, a significant 

amount of noise due to copy number variations in cells and positional effects can obscure accurate 

phenotypic assessment of genetic constructs in lentiviral screens.  

  To address this issue, we designed a recombinase-based gene integration strategy to screen the 5’ UTR 

library; this strategy ensures single-copy integration within each cell at a defined “landing-pad” location 

(Fig. 3A). We used the serine recombinase Bxb1 to integrate a plasmid containing the Bxb1 attB site into 
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the Bxb1 attP site on the genome, which results in destruction of the attP site to prevent additional 

insertions46–49.  

      We first constructed HEK 293T cell lines with a landing pad by lentiviral infection. In these cell lines, 

the landing pad comprised a constitutive promoter, a mutant BxbI attP site with enhanced integration 

efficiency50, and a yellow fluorescent protein (YFP)47 as a reporter for the integration of the landing pad. 

Nine cell clones with insertion of the landing pad were identified and expanded. We chose to use two 

different cell lines with different YFP expression levels during our screens to reduce the impact of genomic 

location on the screening phenotype. The 5’UTR library was cloned upstream of the GFP reporter on the 

payload plasmid, which also encoded a BxB1 attB site and a red fluorescent protein (RFP) and puromycin 

duo selection marker (Fig. 3B). In this system, successful integration activates expression of RFP and 

puromycin and inhibits YFP expression. We integrated the 5’UTR library into the two different landing 

pad cell lines with >25-fold more cells than the size of the library (>300k integrated cells). The transfected 

cells were grown for one week, then subjected to puromycin selection for another 4 days.  

      To identify 5’UTRs with increased protein expression, we used FACS to sort the cell library into four 

bins based on GFP expression levels: top 2.5%, 2.5-5%, 5-10%, and 0-100% (unsorted). We then extracted 

genomic DNAs from cells in each bin and optimized PCR conditions for unbiased amplicon amplification41. 

The amplicons were then barcoded and sequenced using Illumina NextSeq. We calculated the relative 

abundance of each 5’ UTR sequence in each of the three top bins (2.5%, 2.5-5%, and 5-10%) and 

normalized them to the counts in the control bin (0-100%). Log2 ratios were used to represent the 

enrichment of each 5’ UTR in each bin.  

      Our results showed that this recombinase-based library screening approach achieved Pearson 

correlation values greater than 0.93 between results obtained from the two landing pad cell lines in all three 

bins, thus demonstrating the high reproducibility of the screening process (Fig. 3C). This level of 

reproducibility exceeded that of traditional lentiviral-based library screening, which had correlation values 

equal to 0.49, 0.49 and 0.54 for each of the three bins, respectively. Overall, our results clearly show that 

recombinase-based integration can significantly improve the reproducibility of high-throughput screening.  

Validation of the 5’ UTR hits in HEK 293T cells  	

To select candidates for further experimental validation, we ranked the 5’ UTRs based on their relative 

expression levels in top expressing bins (2.5%, 2.5-5%, and 5-10%), relative to the unsorted bin. 

Specifically, differentially enriched 5’UTRs in the top-expressing bins were determined using DESeq251, 

which takes into account variability across biological replicates to identify differentially expressed 

candidates. Top candidates were defined as 5’ UTRs that showed at least 50% increased expression level 

in all three top-expressing bins (fold change greater than 50%) with significant adjusted p-values in all three 
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bins (p-adj<0.05) (Supplementary Tables 4-6), relative to control (Fig. 4A). Using these criteria, thirteen 

5’ UTRs with enriched expression in all three bins were used for further validation. Interestingly, six of 

these thirteen 5’ UTRs were synthetic 5’UTRs, implying a 300% enrichment towards synthetic sequences 

predicted to have high TEs (six out of 2388) compared to the pool of natural 5' UTRs included in the 

screening (seven out of 8414).	

 We then tested the selected 5’UTR candidates in the pVAX1 non-viral gene therapy plasmid30. pVAX1 

has a human CMV promoter for high-level protein expression, a multiple cloning site for foreign gene 

insertion, and a bovine growth hormone (bGH) PolyA signal for transcriptional termination. We 

synthesized and inserted the thirteen candidate 5’ UTRs (100 bp long) along with a green fluorescent protein 

(GFP) reporter (with Kozak sequence; pVAX1-UTR-GFP) downstream of the CMV promoter in the 

pVAX1 plasmid. As a control, we used only the GFP reporter (with Kozak sequence; pVAX1-GFP) (Fig. 

4B). We co-transfected HEK 293T cells with the engineered 5’UTR-containing plasmids and the control 

plasmid along with a blue fluorescent protein (BFP) expression plasmid. This allowed us to normalize GFP 

expression to transfection efficiency, as determined by BFP levels. Six out of the thirteen tested plasmids 

showed higher GFP expression than the commercial protein expression plasmid pVAX1 in HEK 293T cells 

(Supplementary Fig. 2). 

     To demonstrate the potential therapeutic utility of these UTRs, we expressed two different therapeutic 

proteins with these 5’ UTRs: vascular endothelial growth factor (VEGF), which stimulates the formation 

of blood vessels58; and C-C motif chemokine ligand 21 (CCL21), which can recruit immune cells for 

immunotherapy59. Two out of the three 5’ UTRs increased VEGF expression compared to the commercial 

plasmid, and one of these, NeoUTR2, increased VEGF production by 42% relative to pVAX1 (p = 0.01) 

(Fig. 4E). All three 5’ UTRs increased CCL21 expression by greater than 100% relative to pVAX1 (p = 

0.02, 0.04, 0.0002, respectively), and NeoUTR3 showed an impressive increase of 452% (Fig. 4F). In 

summary, we identified three novel 5’ UTR thru in silico design and high-throughput screening that 

significantly increase protein expression levels for fluorescent protein reporters (by up to 58%) and 

therapeutic proteins (by up to 452%) from non-viral gene therapy vectors.  

Combinatorial synthetic 5’ UTRs can further enhance protein expression	

Considering our promising results using synthetic 5’UTRs, we sought to investigate whether novel 

combinations of these 5’UTRs might further enhance GFP expression levels (Fig. 5A). Using our three 

NeoUTR leads as building blocks, we constructed six combinatorial 5’ UTRs (CoNeoUTRs) by joining 

two of the NuUTRs with a 6-nt linker (CAACAA). These were labeled as CoNeoUTR2-3 (NeoUTR2-

NeoUTR3), CoNuUTR1-3 (NeoUTR1-NeoUTR3), CoNeoUTR3-2 (NeoUTR3-NeoUTR2), CoNeoUTR1-

2 (NeoUTR1-NeoUTR2), CoNeoUTR3-1 (NeoUTR3-NeoUTR1), and CoNeoUTR2-1 (NeoUTR2-
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NeoUTR1). We inserted each combinatorial 5’ UTR upstream of the GFP coding sequence, co-transfected 

HEK 293T cells with the resulting plasmids and the BFP expression plasmid, and then measured GFP and 

BFP fluorescence (Fig. 5B). We observed that the strength of the 5’ UTR combinations was positively 

correlated with the strengths of the two individual 5’ UTRs (Supplementary Fig. 4)  Moreover, we 

observed that for the CoNeoUTRs constructed with two different NeoUTRs, the strength was higher if the 

stronger NeoUTR was placed at the 3’ end: CoNeoUTR1-2 > CoNeoUTR2-1, CoNeoUTR1-3 > 

CoNeoUTR3-1, and CoNeoUTR2-3 > CoNeoUTR3-2.   

      Finally, we tested how the artificial 5’ UTR elements modulate gene expression in different cell types. 

We chose: i) human breast cancer cell line MCF-7, ii) human muscle cancer rhabdomyosarcoma (RD) cells 

and iii) mouse muscle cell line C2C12. We found that all three 100-bp artificial 5’ UTRs (NeoUTR1, 

NeoUTR2 and NeoUTR3) enhanced protein expression in the three cell types and HEK 293T cells; however, 

the relative strengths of the 5’ UTRs were different in different cell types (Fig. 5C). Overall, 78% of all 

conditions tested, the synthetic 5’UTRs were statistically stronger than pVAX1 (the p-values are labeled in 

Fig. 5C) across the four cell types. Thus, these results show that the novel 5’ UTR sequences and their 

combinatorial counterparts identified in this study can significantly enhance protein expression across a 

variety of mammalian cell types, further validating the applicability of our approach.  

      In summary, synthetic 5’UTRs can enhance protein production across multiple cell types and can be 

combined together to further modulate protein levels.	

 

DISCUSSION 

In this study, we developed a robust strategy for the systematic discovery and engineering of 5’ UTRs for 

enhanced protein expression. We trained a computational model using gene expression information on 

naturally occurring 5’ UTRs and evolved a novel synthetic 5’UTR library. We developed a recombinase-

based high-throughput screening platform to overcome significant heterogeneity that limits the accuracy of 

lentiviral-based screens. The serine recombinase BxbI integrates one copy of tagged genetic elements at a 

specific location in the host genome, eliminating the copy number and position effects that are seen in 

conventional lentiviral-based library screening. We observed high reproducibility of this recombinase-

based library screening strategy for 5’ UTR engineering, allowing us to identify three synthetic 5’ UTR 

candidates that increase protein production across multiple cell types. This strategy allowed us to identify 

synthetic 5’ UTRs that outperformed the commonly used pVAX1 vector and 4 commonly used introns in 

terms of their ability to increase protein production as non-viral gene delivery vectors. 

      Although the synthetic 5’ UTRs we validated in this study were strong across multiple contexts, their 

relative performance did vary depending on cell type. To optimize gene therapy for specific types of cells, 
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it could be useful to repeat the strategy employed here but focused on the cells of interest. In addition, future 

work should test whether these synthetic 5’ UTRs work in other contexts, including AAV and lentiviral 

vectors, and with additional payloads. Finally, optimized 5’ UTRs need to be ultimately validated in vivo 

for clinical translation and may need to take into account translational efficiencies across multiple model 

systems beyond human cells to ensure translatability. 

  

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.24.006486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.006486


ACKNOWLEDGEMENTS 

 

The authors thank Dr. Stuart Levine at MIT MicroBio Center for assisting with NGS, and Karen Pepper for 

help with paper editing. The work was financially supported by Army Research Office (funding under the 

OSP account 6924758), Boston University (funding under the OSP account 6924758), HFSP to TKL, and 

NIH (R01 GM113708, R01 HG004037) to MK. EMN thanks Human Frontier Science Program 

(LT000307/2013-L) for their financial support. 

 

AUTHOR CONTRIBUTIONS 

 

JC, GCGC, EMN, MK and TKL conceived idea and designed the study. EMN, ZZ, GCGC 

designed the 5’ UTR library. JC designed and performed experiments and analyzed data. EMN 

performed the NGS data pre-processing. ZZ and DL developed the computational analysis. JC, 

EMN, ZZ and DL performed the computational analysis. WC performed the ELISA experiments. 

GCGC and ASLW helped with library cloning. JC, ZZ, GCGC, EMN, MK and TKL wrote the 

paper. All authors discussed the results and edited the manuscript. 

 

COMPETING INTERESTS 

 

JC, EMN, ZZ, MK and TKL have filed patent applications on the work. TKL is a co-founder of 

Senti Biosciences, Synlogic, Engine Biosciences, Tango Therapeutics, Corvium, BiomX, and 

Eligo Biosciences. TKL also holds financial interests in nest.bio, Ampliphi, and IndieBio. The 

other authors declare no competing interests. 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.24.006486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.006486


REFERENCES 

 

1. Dunbar, C. E. et al. Gene therapy comes of age. Science 359, 175 (2018). 

2. Sheridan, C. Gene therapy finds its niche. Nat. Biotechnol. 29, 121-128 (2011). 

3. Kumar, S. R., Markusic, D. M., Biswas, M., High, K. A. & Herzog, R. W. Clinical development of 

gene therapy: results and lessons from recent successes. Mol. Ther. - Methods Clin. Dev. 3, 

16034(2016) 

4. Joshi, P. R. H. et al. Achieving High-Yield Production of Functional AAV5 Gene Delivery Vectors 

via Fedbatch in an Insect Cell-One Baculovirus System. Mol. Ther. - Methods Clin. Dev. 16, 279-

289 (2019). 

5. Naso, M. F., Tomkowicz, B., Perry, W. L. & Strohl, W. R. Adeno-Associated Virus (AAV) as a 

Vector for Gene Therapy. BioDrugs 31, 317-334 (2017).  

6. Waehler, R., Russell, S. J. & Curiel, D. T. Engineering targeted viral vectors for gene therapy. Nat. 

Rev. Genet. 8, 573-587 (2007).  

7. George, L. A. Hemophilia gene therapy comes of age. Hematology Am. Soc. Hematol. Educ. 

Program.  2017, 587-594 (2017). 

8. Hinderer, C. et al. Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose 

Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN. Hum. 

Gene Ther. 29, 285-298 (2018).  

9. Ramamoorth, M. & Narvekar, A. Non viral vectors in gene therapy - An overview. J. Clin. Diagn. 

Res. 9, GE01-06 (2015).  

10. Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541-555(2014). 

11. Hardee, C. L., Arévalo-Soliz, L. M., Hornstein, B. D. & Zechiedrich, L. Advances in non-viral DNA 

vectors for gene therapy. Genes 10, 8 (2017). 

12. Hacein-Bey-Abina, S., Fischer, A. & Cavazzana-Calvo, M. Gene therapy of X-linked severe 

combined immunodeficiency. Int. J. Hematol. 24, 580-584 (2002). 

13. Hacein-Bey-Abina, S. et al. A Serious Adverse Event after Successful Gene Therapy for X-Linked 

Severe Combined Immunodeficiency. N. Engl. J. Med. 384, 255-256 (2003). 

14. Escors, D. & Breckpot, K. Lentiviral vectors in gene therapy: Their current status and future 

potential. Arch. Immunol. Ther. Exp. 58, 107-119 (2010). 

15. Schmeer, M., Buchholz, T. & Schleef, M. Plasmid DNA Manufacturing for Indirect and Direct 

Clinical Applications. Hum. Gene Ther. 28, 856-861 (2017).  

16. Rodrigues, G. A. et al. Pharmaceutical Development of AAV-Based Gene Therapy Products for the 

Eye. Pharm. Res. 36, 29 (2019).  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.24.006486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.006486


17. Jones, C. H., Hill, A., Chen, M. & Pfeifer, B. A. Contemporary Approaches for Nonviral Gene 

Therapy. Discov. Med. (2015). 

18. Shim, G. et al. Nonviral Delivery Systems For Cancer Gene Therapy: Strategies And Challenges. 

Curr. Gene Ther. 18, 3-20(2018).  

19. Bai, H., Lester, G. M. S., Petishnok, L. C. & Dean, D. A. Cytoplasmic transport and nuclear import 

of plasmid DNA. Biosci. Rep. 37, 6 (2017).  

20. Dronadula, N. et al. Construction of a novel expression cassette for increasing transgene expression 

in vivo in endothelial cells of large blood vessels. Gene Ther. 18, 501-508(2011).  

21. Wu, M. R. et al. A high-throughput screening and computation platform for identifying synthetic 

promoters with enhanced cell-state specificity (SPECS). Nat. Commun. 10, 2880 (2019). 

22. Ho, S. C. L. & Yang, Y. Identifying and engineering promoters for high level and sustainable 

therapeutic recombinant protein production in cultured mammalian cells. Biotechnol. Lett. 36, 1569-

1579 (2014). 

23. Asrani, K. H. et al. Optimization of mRNA untranslated regions for improved expression of 

therapeutic mRNA. RNA Biol. 15, 756-762(2018). 

24. Weinberger, A. et al. Deciphering the rules by which 5’-UTR sequences affect protein expression 

in yeast. Proc. Natl. Acad. Sci. 110, E2792-801 (2013).  

25. Decoene, T., Peters, G., De Maeseneire, S. L. & De Mey, M. Toward Predictable 5′UTRs in 

Saccharomyces cerevisiae: Development of a yUTR Calculator. ACS Synth. Biol. 7, 622-634 (2018).  

26. Ding, W. et al. Engineering the 5′ UTR-Mediated Regulation of Protein Abundance in Yeast Using 

Nucleotide Sequence Activity Relationships. ACS Synth. Biol. 7, 2709-2714 (2018).  

27. Sample, P. J. et al. Human 5 ′ UTR design and variant effect prediction from a massively parallel 

translation assay. Nat. Biotechnol. 37, 803-809 (2019). 

28. Matreyek, K. A., Stephany, J. J. & Fowler, D. M. A platform for functional assessment of large 

variant libraries in mammalian cells. Nucleic Acids Res. 45, e102 (2017).  

29. Duportet, X. et al. A platform for rapid prototyping of synthetic gene networks in mammalian cells. 

Clin. Cancer Res. 24, 6015-6027 (2018). 

30. Muthumani, K. et al. Optimized and enhanced DNA plasmid vector based in vivo construction of a 

neutralizing anti-HIV-1 envelope glycoprotein Fab. Hum. Vaccines Immunother. 9, 2253-2262 

(2013).  

31. Kozak, M. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic 

ribosomes. Proc. Natl. Acad. Sci. 87, 8301-8305 (1990).  

32. Kozak, M. An analysis of 5’-noncoding sequences from 699 vertebrate messenger rNAS. Nucleic 

Acids Res. 15, 8125-8148 (1987).  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.24.006486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.006486


33. Ingolia, N. T. Ribosome profiling: New views of translation, from single codons to genome scale. 

Nat. Rev. Genet. 15, 205-213 (2014).  

34. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. S. & Weissman, J. S. Genome-wide analysis in 

vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218-223 (2009).  

35. Ardlie, K. G. et al. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene 

regulation in humans. Science 348, 648-660 (2015). 

36. Andreev, D. E. et al. Translation of 5’ leaders is pervasive in genes resistant to eIF2 repression. Elife 

4, e03971 (2015). 

37. Hsieh, A. C. et al. The translational landscape of mTOR signalling steers cancer initiation and 

metastasis. Nature 485, 55-61 (2012). 

38. Hanson, S., Berthelot, K., Fink, B., McCarthy, J. E. G. & Suess, B. Tetracycline-aptamer-mediated 

translational regulation in yeast. Mol. Microbiol. 49, 1627-1637 (2003).  

39. Ho, T. K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. 

Mach. Intell. 20, 832-844 (1998).  

40. Scrucca, L. GA : A Package for Genetic Algorithms in R. J. Stat. Softw. 53, 1–37 (2015). 

41. Wong, A. S. L., Choi, G. C. G., Cheng, A. A., Purcell, O. & Lu, T. K. Massively parallel high-order 

combinatorial genetics in human cells. Nat. Biotechnol. 33, 952-961 (2015). 

42. Chang, K., Elledge, S. J. & Hannon, G. J. Lessons from Nature: microRNA-based shRNA libraries. 

Nat. Methods 3, 707-714. (2006). 

43. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science  343, 

84-87 (2014). 

44. Akhtar, W. et al. Chromatin position effects assayed by thousands of reporters integrated in parallel. 

Cell 154, 914-27 (2013). 

45. Wilson, C. Position Effects On Eukaryotic Gene Expression. Annu. Rev. Cell Dev. Biol. 6, 679-714 

(1990). 

46. Roquet, N., Soleimany, A. P., Ferris, A. C., Aaronson, S. & Lu, T. K. Synthetic recombinase-based 

State machines in living cells. Science 353, aad8559 (2016). 

47. Guye, P., Li, Y., Wroblewska, L., Duportet, X. & Weiss, R. Rapid, modular and reliable construction 

of complex mammalian gene circuits. Nucleic Acids Res. 41, e156 (2013). 

48. Perez-Pinera, P. et al. Synthetic biology and microbioreactor platforms for programmable 

production of biologics at the point-of-care. Nat. Commun. 7, 12211 (2016). 

49. Brown, W. R. A., Lee, N. C. O., Xu, Z. & Smith, M. C. M. Serine recombinases as tools for genome 

engineering. Methods 53, 372-9 (2011). 

50. Jusiak, B. et al. Comparison of Integrases Identifies Bxb1-GA Mutant as the Most Efficient Site-

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.24.006486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.006486


Specific Integrase System in Mammalian Cells. ACS Synth. Biol. 8, 16-24 (2019). 

51. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-

seq data with DESeq2. Genome Biol. 15, 550 (2014).  

52. Lee, S. H., Danishmalik, S. N. & Sin, J. I. DNA vaccines, electroporation and their applications in 

cancer treatment. Hum. Vaccines Immunother. 11, 1889-1900 (2015). 

53. Kim, T. J. et al. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA 

vaccine in CIN3 patients. Nat. Commun. 5, 5317 (2014). 

54. Https://bioscience.lonza.com/lonza_bs/US/en/Transfection/p/000000000000191671/pmaxCloning-

Vector. 

55. Kang, M. et al. Human β-globin second intron highly enhances expression of foreign genes from 

murine cytomegalovirus immediate-early promoter. J. Microbiol. Biotechnol. 15, 544-550(2005). 

56. Mariati, Ho, S. C. L., Yap, M. G. S. & Yang, Y. Evaluating post-transcriptional regulatory elements 

for enhancing transient gene expression levels in CHO K1 and HEK293 cells. Protein Expr. Purif. 

69, 9-15 (2010). 

57. Xia, W. et al. High levels of protein expression using different mammalian CMV promoters in 

several cell lines. Protein Expr. Purif. 45, 115-24 (2006). 

58. Johnson, K. E. & Wilgus, T. A. Vascular Endothelial Growth Factor and Angiogenesis in the 

Regulation of Cutaneous Wound Repair. Adv. Wound Care 3, 647-661 (2014). 

59. Lin, Y., Sharma, S. & John, M. S. CCL21 cancer immunotherapy. Cancers 6, 1098-1110 (2014). 

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.24.006486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.006486


 

 

Figure 1. Schematic overview of recombinase-mediated 5’ UTR library screening strategy. Naturally 

occurring 5’ UTRs were extracted, analyzed, and used as the training set to generate synthetic 5’ UTRs for 

screening. Oligos encoding the 5’ UTR library were synthesized and cloned into plasmids containing a 

recombinase-recognition site and a GFP reporter. The resulting plasmids were transfected into the HEK 

293T-LP cell line with the corresponding recombinase recognition site, resulting in targeted genomic 

insertion. The cells were sorted into bins based on GFP intensities, and the 5’ UTR sequences of each bin 

were amplified, sequenced, counted, and compared. The 5’ UTR candidates that enhanced GFP expression 

were selected and validated experimentally. Finally, the top-ranked validated 5’ UTRs were combined to 

test for increased gene expression. 
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Figure 2. Design of the 5’ UTR library of naturally occurring and synthetic 5’ UTRs. RNA-seq and 

Ribo-seq datasets of HEK 293T, PC3, and human muscle cells, together with the GTEx database of human 

muscle tissue, were collected. Natural 5’UTRs with high TEs and low TEs in HEK 293T and RD cells, 5’ 

UTRs with various TEs in human muscle cells, and the 5’ UTRs with high mRNA counts in human muscle 

tissues were selected and added to the library. In addition, we designed synthetic 5’ UTRs by: i) collecting 

endogenous 5’ UTR sequences on the target cell type (HEK 293T, PC3 or human muscle cells) from public 

data; ii) extracting sequence features of the 5' UTRs, including those nucleotides surrounding the AUG 

region; iii) training a Random Forest machine learning method for each cell type/tissue (HEK 293T, PC3 

or human muscle cells), to learn a function that maps sequence features to mRNA expression levels and 

TEs; and iv) designing a set of 100 bp synthetic sequences that are predicted to maximize TEs and protein 

expression levels using genetic algorithms.  	
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Figure 3. Strategy for constructing HEK 293T cell lines with a landing pad and screening the 5’ UTR 

library using recombinase-based gene integration. A) Recombinase-based library screening workflow. 

B) Construction of the 5’ UTR library and schematic illustration of recombinase-based gene integration. C) 

We observed high reproducibility for barcode representations between two HEK-LP cell lines 

independently transfected with the library and a recombinase-expression plasmid; cells were sorted into 

three bins based on GFP expression (top 0-2.5%, top 2.5-5%, and top 5-10%). log2 values of normalized 

barcode counts are shown. R is the Pearson correlation coefficient. 	
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Figure 4. Selection and validation of 5’ UTR candidates. A) 5’ UTRs that modulate protein expression 

were ranked by their mean log2 ratios (compared with the control of unsorted cells) of the normalized 

barcode count in the three bins based on GFP expression. 5’ UTRs with a log2 ratio greater than 0.52 (which 

is highlighted as a red dotted line) in all three bins were selected for further validation. B) The GFP gene 

was inserted into the pVAX1 plasmid to make the pVAX1-GFP plasmid, which was used as a control in 

the GFP expression study. 5’ UTR candidates were inserted directly upstream of the Kozak sequence of the 

GFP coding sequence to make the pVAX1-UTR-GFP plasmids. C) Three 5’ UTR candidates that 

significantly enhanced protein expression were chosen for further testing. D, E, F) The effects of the three 

5’ UTRs on GFP (D), VEGF (E), and CCL21 (F) expression in RD cells. Relative protein expression in 

each sample was normalized to that of the pVAX1 plasmid (relative expression = 1 is highlighted as a grey 

dotted line). Error bars indicate SD for three biological replicates. (*p<0.05; **p<0.01; ***p<0.001; 

****p<0.0001 vs pVAX1)	
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Figure 5. Effects of combinatorial 5’ UTRs on GFP expression in various cell lines. A) We constructed 

six distinct 5’ UTR combinations by combining different pairwise permutations of the three validated 5’ 

UTR candidates with a CAACAA linker between them, and then inserted these combinations into the 

pVAX1-GFP plasmid directly upstream of the Kozak sequence. B) GFP expression from the 5’ UTR 

combinations on GFP expression in HEK 293T cells. C) Test of the single and combinatorial 5’ UTRs on 

GFP expression in various cell lines. The relative protein expression was normalized to that from the 

pVAX1-GFP plasmid, set as 1 and highlighted as a grey dotted line. Error bars indicate SD for three 

biological replicates. (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001 vs pVAX1) 
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MATERIALS AND METHODS 
 
 
1. 5’ UTR library design and construction 

 
To select the endogenous sequences, we used publicly available matched RNA-Seq and Ribo-Seq datasets, 

from three different human cell lines/tissues, which included: i) HEK 293T cells, ii) human prostate cancer 

(PC3) cells, and iii) human muscle tissue. The first two were chosen as these are commonly used cell lines, 

whereas the third human muscle tissue as it could be the target tissue of DNA vaccine therapy. We then 

analyzed the RNA-seq and Ribo-seq datasets, and determined their translation efficiency rates and mRNA 

levels. Per-transcript translation efficiency (TE) was defined as Ribo-seq RPKM/RNA-seq RPKM, where 

RPKM represents Reads Per Kilobase of transcript per Million mapped reads. Transcripts with insufficient 

RNA-Seq or Ribo-Seq coverage were discarded. Our final selection of nature-occurring 5’ UTRs  

(Supplementary Table 1) consisted in: i) top 1505 sequences and bottom 937 sequences from transcripts 

with highest and lowest TEs from human embryotic kidney 293 (HEK293) cells, ii) top 1692 and bottom 

756 sequences from transcripts with highest and lowest TEs from human prostate cancer (PC3) cells, iii) 

1831 sequences from transcripts that displayed maximum TEs for muscle tissue, iv) 1693 5’UTR regions 

from transcripts with high mRNA expression levels in muscle tissue, which were extracted from publicly 

available data from the Genotype-Tissue Expression (GTEx) project. 

 

Moreover, we trained and developed a computational model to predict the TE based on its 5’UTR 

characteristics. To establish this model, we first identified which sequence features of 5'UTR regions 

increased gene expression levels and TE. For this aim, we extracted several sequence features, including k-

mer frequency, codon usage, RNA folding energy, 5’UTR length, and number of ORFs. We developed a 

computational model trained on sequence features to predict translation efficiency and mRNA expression 

on different cell conditions. The model was trained data on experimentally determined translation efficiency 

rates and mRNA levels, which were obtained from analyzing publicly available RNA-seq and Ribo-seq 

data of endogenous genes from three human cell types (HEK293 cells, PC3 cells, and human muscle tissue).  

  

The workflow consisted on the following steps: i) Extract the sequences features of the 5'UTRs, including 

those nucleotides surrounding the AUG region, i.e. the whole 5’UTR plus 15 bp of the CDS sequences, for 

each of the expressed transcripts in each cell line or tissue. ii) Train a Random Forest machine learning 

method for each cell type/tissue, to learn a function that maps sequence features to mRNA expression and 

TE. iii) Design a set of 100 bp synthetic sequences that maximize TE and protein expression (where protein 

expression is computed as RNA levels * TE). Given that searching for all 4100 possible 100-bp sequences 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.24.006486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.006486


would be too computationally demanding, we applied a genetic algorithm (GA), which simulates the 

evolution process, to search the optimal sequences by mutating and recombining the endogenous sequences. 

For each GA run, we randomly sampled 100 endogenous 5’UTR sequences as "initial population" prior to 

undergoing evolution and select them or their offspring based on their fitness, which is defined by their 

predicted TE or predicted Protein expression from the previous trained model. iv) From our GA results, we 

keep the top 5 sequences with at least 5 bp differences in each run. v) To validate the accuracy of our model, 

we also selected sequences with small number of mutations from its endogenous origin, but large 

increase/decrease of TE or Protein RNA expression comparing to its endogenous sequence. The first set 

was designed by evolving 1198 5’ UTRs within 2 generations to test the algorithm (Supplementary Table 

2). The second set of 2388 5’ UTRs was designed as follows: from the output of each run, we took the best 

five sequences during the run, requiring them to have at least five mismatches of each other, and also 

requiring that their scores were at least 0.05 better than those of the initial naturally occurring sequences 

within a maximum of 50 generations (Supplementary Table 3). 

 

A 12K oligonucleotide library of 140-mer was synthesized using CustomArray to contain 100 bp variable 

5’end sequences flanked by PCR priming sites. The details of the library are in Supplementary Table 7. 

The library was cloned to the reporter plasmids using conventional restriction enzyme cloning and Gibson 

Assembly.  

 

2. Plasmid construction 

 

The plasmids used in this study were built using restriction enzyme cloning and Gibson assembly. All 

plasmid sequences used in this study are detailed in GenBank format in the single text file ‘‘plasmid 

sequences.docx.’’ 

 

3. The construction of the HEK 293T landing pad cell lines. 

 

HEK 293T cells (ATCC, VA, USA) were grown in polystyrene flasks in Dulbecco’s Modified Eagle’s 

Medium (Life Technologies, CA, USA) supplemented with 10% fetal bovine serum (VWR, PA, USA) and 

1% penicillin/streptomycin (Life Technologies, CA, USA) at 37 °C and 5% CO2. When the cells were 80-

90% confluent, cells were harvested with 0.25% trypsin (Life Technologies, CA) for transfection. To make 

lentivirus containing the landing pad, HEK 293T cells were plated in 6-well plate format. In brief, 12 µL 

of FuGENE HD (Promega, WI, USA) was mixed with 100 µL of Opti-MEM medium Life Technologies, 

CA) and was added to a mixture of the three plasmids: 0.5 µg of lentiviral envelop vector pCMV-VSV-G 
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vector, 0.5 µg of lentiviral packaging vector psPAX2, and 1 µg of lentiviral expression vector for landing 

pad insertion pJC191 (Supplementary Fig. 5). After 20 minutes incubation of FuGENE HD/DNA 

complexes at room temperature, 1.8 million cells were added to each FuGENE HD/DNA complex tube, 

mixed well, and incubated for another 10 min at room temperature before being added to 6-well plates 

containing 1 mL cell culture medium, followed by incubation at 37°C and 5% CO2. The media was 

removed 24 hours after transfection and 2 mL fresh media was added. After another 24 hours transfection, 

supernatant containing newly produced viruses was collected, and filtered through a 0.45 mm syringe filter 

(Pall Corporation, MI, USA) and used for infection. The filtered supernatant was diluted by different 

titrations of viruses using fresh media, and mixed with 8 mg/mL polybrene before added into 6-well plates 

with 1 million cells seeded on each well 24 hours before infection. Cell culture medium was replaced the 

next day after infection and cells were cultured for at least 3 days prior to FACS analysis or sorting using 

BD FACSAria. Single YFP positive cells from the well with less than 10% YFP positive cells (roughly 0.1 

MOI) were sorted into a 96-well plate and were culture in fresh medium for 2 weeks and expanded to 6 

well plates with medium supplemented with 50 µg/mL hygromycin (Life Technologies, CA, USA). Two 

clones with single copy landing pad insertion, HEK-LP3 and HEK-LP9, were selected for as the parental 

landing pad cell lines for library screening.  

 

4. Library transfection, recombinase-based library integration and next-generation sequencing.  

 

The landing pad cells were seeded as 1 million per well on 6-well plated 24 hours before transfection. One 

µg library plasmid JC253L (Supplementary Fig. 6) carrying an attB site and the 5’ UTR library and 1 µg 

BxbI recombinase expressing plasmid pCAG-BxbI were mixed with 6 uL FuGENE HD and added into 

each well. Eight wells of each landing pad cells were used for transfection. To ensure the reproducibility of 

our screening results, we maintained >25-fold coverage of each library member throughout the screening 

pipeline. 4 µg/mL puromycin was added three days post transfection and the cells were cultured for at least 

one more week. The cells were then analyzed using FACS and sorted into three bins based on distinct levels 

of GFP intensity while the unsorted cells were used as control.  

 

For NGS library preparation, the genomic DNA was extracted from each bin and 800 ng were used as the 

template for PCR amplification with barcoded Pi7 primer. Sequencing was performed at the MIT BioMicro 

Center facilities on an Illumina NextSeq machine using 150 bp double-end reads.  

 

5. Lentiviral-based screening of the 5’ UTR library in HEK 293T cells. 
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When HEK 293T cells were 80-90% confluent, cells were harvested with 0.25% trypsin for transfection. 

For each well, 12 µL of FuGENE HD (Promega, WI, USA) was mixed with 100 µL of Opti-MEM medium 

Life Technologies, CA) and was added to a mixture of the three plasmids: 0.5 µg of lentiviral envelop 

vector pCMV-VSV-G vector, 0.5 µg of lentiviral packaging vector psPAX2, and 1 µg of lentiviral 5’UTR 

library plasmid pJC240L (Supplementary Fig. 7). After 20 minutes incubation of FuGENE HD/DNA 

complexes at room temperature, 1.8 million cells were added to each FuGENE HD/DNA complex tube, 

mixed well, and incubated for another 10 min at room temperature before being added to 6-well plates 

containing 1 mL cell culture medium, followed by incubation at 37°C and 5% CO2. The media was 

removed 24 hours after transfection and 2 mL fresh media was added. After another 24 hours transfection, 

supernatant containing newly produced viruses was collected, and filtered through a 0.45 mm syringe filter 

and used for infection.  

 

The filtered supernatant was diluted by different titrations of viruses using fresh media, and mixed with 8 

mg/mL polybrene before added into 6-well plates with 1 million HEK 293T cells seeded on each well 24 

hours before infection. Cell culture medium was replaced the next day after infection and the infection 

efficiency were cultured for at least 3 days prior to FACS analysis using BD LSR II. The infected HEK 

293T cells from the well with less than 10% GFP positive cells (roughly 0.1 MOI) were selected as the 

integration of a single copy of the 5’ UTR was expected in most of the infected cells. To ensure the 

reproducibility of the screening results, we maintained >25-fold coverage of each library member 

throughout the screening pipeline. The infected cells were sorted and further expanded for at least one week. 

The cells were then analyzed using FACS and sorted into three bins based on distinct levels of GFP intensity 

while the unsorted cells were used as control.  

 

For NGS library preparation, the genomic DNA was extracted from each bin and 800 ng were used as the 

template for PCR amplification with barcoded Pi7 primer. Sequencing was performed at the MIT BioMicro 

Center facilities on an Illumina NextSeq machine using 150 bp double-end reads.  

 

6. NGS data pre-processing and analysis. 

 

Fastq files were first inspected for quality control (QC) using FastQC. Fastq files were then filtered and 

trimmed using fastx_clipper of the FASTX-Toolkit. Trimmed fastq files were collapsed using 

fastx_collapser of the FASTX-Toolkit. The collapsed fasta file was used as an input for alignment in 

Bowtie2 with a very sensitive alignment mode and aligned against the library reference. The resulting SAM 

file was filtered for mapped reads using SAMtools, and the reads were then quantified by summing the 
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counts of each unique promoter using an in-house R script. The reads were normalized by dividing all reads 

in the sample by a size factor estimated by DESeq2. Replicability was assessed using Pearson correlation 

values using the cor.test function R. Differentially expressed 5’UTRs were identified using DESeq2. Top-

ranked 5’UTRs, which were ranked based on their log2 fold change relative to the unsorted bin, were 

selected as leads for experimental validation. 

 

7. Measurement of the GFP expression of the plasmids with 5’ UTR candidates in mammalian cells. 

 

HEK 293T cells, human rhabdomyosarcoma (RD) cells, human breast adenocarcinoma (MCF-7) Cells, and 

mouse C3H muscle myoblast (C2C12) cells were obtained from the American Type Culture Collection. 

HEK-293T, RD, MCF-7 and C2C12 cells were cultured in DMEM supplemented with 10% fetal bovine 

serum, and 1% Pen/Strep at 37ºC with 5% CO2. When the cells were 80-90% confluent, cells were 

harvested with 0.25% trypsin for transfection.  

 

For HEK 293T cells, 50,000 cells per well on 96 well plates were plated 24 hours before the transfection 

and 50 ng of plasmid with different 5’ UTRs or introns (Supplementary Tables 8 and 9) and 50 ng pEF1α-

BFP was mixed with 0.3 uL FuGENE HD used in each well; For RD cells, 10,000 cells per well on 96 well 

plates were plated 24 hours before transfection and 50 ng of plasmid with pJC271 (Supplementary Fig. 8) 

or plasmids with different 5’ UTRs and 50 ng pEF1α-BFP was mixed with 0.5 uL FuGENE HD used in 

each well; For MCF-7 cells, 20,000 cells per well on 96 well plates were plated 24 hours before transfection 

and 50 ng of plasmid with different 5’ UTRs and 50 ng pEF1α-BFP was mixed with 0.5 uL FuGENE HD 

used in each well; For C2C12 cells, 10,000 cells per well on 96 well plates were plated 24 hours before 

transfection and 50 ng of plasmid with different 5’ UTRs and 50 ng pEF1α-BFP was mixed with 0.3 uL 

Lipofectamine 2000 (Life Technologies, CA, USA) used in each well. After one or two days, the GFP and 

BFP intensity were measured using BD LSR II. 

 

8. ELISA measurement of therapeutic protein production.  

 

To determine productions of therapeutic proteins with 5’ UTR candidates, we constructed plasmids 

encoding secretory human vascular endothelial growth factor (hVEGF) or C-C Motif Chemokine Ligand 

21 (hCCL21), downstream of different 5’ UTR candidates, respectively. HEK 293T cells were transfected 

with 100 ng of plasmid in 24-well plates at 100,000 cells per well and cultured for 24 hours with l mL 

complete culture medium. After washing cells once with PBS, complete culture medium was replaced with 

0.5 mL plain DMEM supplemented with 1% Pen/Strep. Cells were incubated at 37ºC with 5% CO2 for 
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additional 24 hours. Supernatants were then collected, spun down at 350 g, and stored at -80ºC. The amount 

of each human protein in the supernatant was quantified by enzyme-linked immunosorbent assay (ELISA). 

Concisely, hVEGF concentration was determined by human VEGF ELISA Kit (KHG0111, Thermo Fisher 

Scientific), following the manufacturer’s instructions; hCCL21 concentration was determined by human 

CCL21/6Ckine DuoSet ELISA (DY366, R&D systems), following the manufacturer’s instructions. Data 

are presented as pg/ml per 100,000 cells per 24 hours.   

  

9. Statistical Analysis 

 

All quantitative data are presented as mean ± standard deviation (SD). Statistical differences between 

groups were analyzed by ordinary one-way ANOVA with 95% confidence interval. Statistical significance 

was set at p≦0.05. Dunnett test was performed to correct for multiple comparisons in ANOVA post-hoc 

analysis. All statistical analyses were performed with GraphPad Prism 7.0 (GraphPad Software, La Jolla, 

CA, USA) statistics software. 
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Supplementary Figure 1. The generation and characterization of the synthetic 5’UTRs. A) Principal 

component (PC) analysis of different type of sequence designs. The PCs were derived from all extracted 

features from the union set of UTR sequences. The scatter plot shows the first PC on the x-axis and the 

second PC on the y-axis. All naturally occurring human UTR sequences (orange), selected 8415 naturally 

occurring UTR sequences (green), 3586 synthetic UTR sequences. B) The fitness change of 

each generation during the GA. Upper panel is based on the Ribo-seq level prediction model, and the 2nd 

panel is based on the translation efficiency prediction model. C) The upper row shows the predicted 

translational efficiency (TE) distribution of selected natural UTRs (yellow) and synthetic UTRs (red) across 

three tested cell types (HEK, Muscle, PC3).  The lower row shows Ribo-seq level distribution of selected 

natural UTRs (yellow) and synthetic UTRs (red) across three tested cell types (HEK, Muscle, PC3). 
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Supplementary Figure 2. The relative GFP intensities of the 13 candidate 5’ UTRs in HEK 293T cells. 

Relative protein expression was normalized to that of the pVAX1-GFP plasmid, set as 1 and highlighted as 

a grey dotted line. Blue solid bars represent paired experimental groups. Error bars indicate SD for three 

biological replicates. (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001)	
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Supplementary Figure 3. The relative GFP intensities of the plasmids with different introns in HEK 

293T (A) and RD (B) cells. Relative protein expression was normalized to that of the pVAX1-GFP plasmid, 

set as 1 and highlighted as a grey dotted line. Error bars indicate SD for three biological replicates. (*p<0.05; 

**p<0.01; ***p<0.001; ****p<0.0001 vs pVAX1)	
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Supplementary Figure 4. The comparison of the fluorescence intensity between the combinatorial 

artificial UTRs. Relative protein expression was normalized to that of the pVAX1-GFP plasmid, set as 1 

and highlighted as a grey dotted line. Error bars indicate SD for three biological replicates. (*p<0.05; 

**p<0.01; ***p<0.001; ****p<0.0001 vs pVAX1)	
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Supplementary Figure 5. Plasmid map of pJC191(BxbI landing pad) 
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Supplementary Figure 6. Plasmid map of pJC253L (Recombinase library) 
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Supplementary Figure 7. Plasmid map of pJC240L (Lentiviral library) 
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Supplementary Figure 8. Plasmid map of pJC271 (pVAX1-GFP) 
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Supplementary Tables 
 
 
Supplementary Table 1. The sequences and characteristics of the selected naturally occurring 5’ UTRs 

with flanking regions. (Attached as a separate excel file.) 

 

Supplementary Table 2. The sequences and characteristics of the selected synthetic 5’ UTRs with flanking 

regions. (Attached as a separate excel file.) 

 

Supplementary Table 3. The sequences and characteristics of the selected synthetic 5’ UTRs as a testing 

group with flanking regions. (Attached as a separate excel file.) 

 

Supplementary Table 4. The NGS data analysis results of the 5’ UTRs for the Bin 0-2.5%.  (Attached as 

a separate excel file.) 

 

Supplementary Table 5. The NGS data analysis results of the 5’ UTRs for the Bin 2.5-5%. (Attached as 

a separate excel file.) 

 

Supplementary Table 6. The NGS data analysis results of the 5’ UTRs for the Bin 5-10%. (Attached as a 

separate excel file.) 

 

Supplementary Table 7. The sequences of the ssDNA oligos used in this study. (Attached as a separate 

excel file.) 

 

Supplementary Table 8. The sequences of the thirteen 5’ UTR to validate.  

 

Supplementary Table 9. The sequences of the four introns tested in this study. 
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Supplementary Table 8. The sequences of the thirteen 5’ UTR to validate. UTR 10023 was 
named after as NeoUTR1, UTR 11674 was named after as NeoUTR2, UTR 9765 was named 

after as NeoUTR3. 

UTR IDs Sequences 

1127 
GCATTCCAACCTTCCAGCCTGCGACCTGCGGAGAAAAAAAATTACTTATTTTCTTGCC
CCATACATACCTTGAGGCGAGCAAAAAAATTAAATTTTAACC 

2719 
CCACGGCTACTGCGTCCACGTGGCGGTGGCGTGGGGACTCCCTGAAAGCAGAGCGGC
AGGGCGCCCGGAAGTCGTGAGTCGAGTCTTCCCGGGCTAATCC 

2871 
GCCGGTGGCGGCAGGATACAGCGGCTTCTGCGCGACTTATAAGAGCTCCTTGTGCGGC
GCCATTTTAAGCCTCTCGGTCTGTGGCAGCAGCGTTGGCCCG 

2938 
CCTGCTGAAGGGGCCCGACTGGATCCTGGGCGAGATCAAGACATCGGGTTTGAGGGG
CCGTGGAGGCGCTGGCTTCCCCACTGGCCTCAAGTGGAGCTTC 

4428 
CTACAGAAACGAAAGAAAAAGTCTGTATAAGCCAAAGGTGTTCGGGAAGAAAATAAC
CCCATTGCCTTGAGTTTGTAGGTGCCACTACTACTCTGGAAAA 

4690 
ACCGGAAAGAGGGTGGCTGAGGTGGGGGAGGAGCCCAAAAGGCATTGTGGGAGTAC
AGCTCTTTCCTTTCCGTCTGGCGGCAGCCATCAGGTAAGCCAAG 

6328 
CTGCCCGACAAAATACATCAGAATTTCTCTTTAAGAACAATATCGGATCGATTAAAAA
ATATATATATCGGATCAAATTGGGGGTACTTCAATACCTTGC 

9765 
CTTGTCTCGCTCCGGGGAACGCTCGGAAACTCCCGGCCGCCGCCACCCGCGTCTGTTC
TGTTACACAAGGGAAGAAAAGCCGCTGCCGCACTCCGAGTGT 

10023 
CATTCTGTGGTCTGATCATCCTGTGGTTTCGTCGCCGCCATCCTCGTCGCGACACGCTG
TTTTCGGTTCTCGGCCCGACGAGCCATCGCCATCCTACAGC 

10726 
ACCAACAACCAACAACAACATCCACACCAACAACAACGCTGAAAGTGGTGTTTGCTTT
CTCCACCAGAAGGGCACACTTTCATCTAATTTGGGGTATCGC 

11356 
CACCAGCTCCTCCACTCTCACACCCAGGATTCACAACCCAGGAGTCTAGACCCCCAGC
CCCTCCACACTCCCACCCAGGAACAACCCGGATAGGTCGGAC 

11500 
GCACCACACCCGCTGCAACCAGCCCCTAGACCACTCACACACTGCACAGGGACCAGC
AACAACAACAAGACTCTCACAGAGAGTCAGCCGGCCTTCATAG 

11674 
CACTCGCGCTGCCATCACTCTTCCGCCGTCTTCGCCGCCATCCTCGGCGCGACTCGCTT
CTTTCGGTTCTACCAGGTAGAGTCCGCCGCCATCCTCCACC 
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Supplementary Table 9. The sequences of the four introns tested in this study. 

Intron 

Names 
Sequences 

Chimeric 
GTAAGTATCAAGGTTACAAGACAGGTTTAAGGAGGCCAATAGAAACTGGGCTTGTCGA
GACAGAGAAGATTCTTGCGTTTCTGATAGGCACCTATTGGTCTTACTGACATCCACTTTG
CCTTTCTCTCCACAG 

 Beta-
globin 

GTGAGTCTATGGGACCCTTGATGTTTTCTTTCCCCTTCTTTTCTATGGTTAAGTTCATGTC
ATAGGAAGGGGAGAAGTAACAGGGTACACATATTGACCAAATCAGGGTAATTTTGCAT
TTGTAATTTTAAAAAATGCTTTCTTCTTTTAATATACTTTTTTGTTTATCTTATTTCTAATA
CTTTCCCTAATCTCTTTCTTTCAGGGCAATAATGATACAATGTATCATGCCTCTTTGCACC
ATTCTAAAGAATAACAGTGATAATTTCTGGGTTAAGGCAATAGCAATATTTCTGCATAT
AAATATTTCTGCATATAAATTGTAACTGATGTAAGAGGTTTCATATTGCTAATAGCAGCT
ACAATCCAGCTACCATTCTGCTTTTATTTTATGGTTGGGATAAGGCTGGATTATTCTGAG
TCCAAGCTAGGCCCTTTTGCTAATCATGTTCATACCTCTTATCTTCCTCCCACAG 

TM 

CGTTTAGTGAACCGTCAGATCCTCACTCTCTTCCGCATCGCTGTCTGCGAGGGCCAGCTG
TTGGGCTCGCGGTTGAGGACAAACTCTTCGCGGTCTTTCCAGTACTCTTGGATCGGAAA
CCCGTCGGCCTCCGAACGGTACTCCGCCACCGAGGGACCTGAGCGAGTCCGCATCGACC
GGATCGGAAAACCTCTCGAGAAAGGCGTCTAACCAGTCACAGTCGCAAGGTAGGCTGA
GCACCGTGGCGGGCGGCAGCGGGTGGCGGTCGGGGTTGTTTCTGGCGGAGGTGCTGCTG
ATGATGTAATTAAAGTAGGCGGTCTTGAGACGGCGGATGGTCGAGGTGAGGTGTGGCA
GGCTTGAGATCCAGCTGTTGGGGTGAGTACTCCCTCTCAAAAGCGGGCATTACTTCTGC
GCTAAGATTGTCAGTTTCCAAAAACGAGGAGGATTTGATATTCACCTGGCCCGATCTGG
CCATACACTTGAGTGACAATGACATCCACTTTGCCTTTCTCTCCACAGGTGTCCACTCCC
AGGTCCAA 

Intron A 

GTAAGTACCGCCTATAGACTCTATAGGCACACCCCTTTGGCTCTTATGCATGCTATACTG
TTTTTGGCTTGGGGCCTATACACCCCCGCTTCCTTATGCTATAGGTGATGGTATAGCTTA
GCCTATAGGTGTGGGTTATTGACCATTATTGACCACTCCCCTATTGGTGACGATACTTTC
CATTACTAATCCATAACATGGCTCTTTGCCACAACTATCTCTATTGGCTATATGCCAATA
CTCTGTCCTTCAGAGACTGACACGGACTCTGTATTTTTACAGGATGGGGTCCCATTTATT
ATTTACAAATTCACATATACAACAACGCCGTCCCCCGTGCCCGCAGTTTTTATTAAACAT
AGCGTGGGATCTCCACGCGAATCTCGGGTACGTGTTCCGGACATGGGCTCTTCTCCGGT
AGCGGCGGAGCTTCCACATCCGAGCCCTGGTCCCATGCCTCCAGCGGCTCATGGTCGCT
CGGCAGCTCCTTGCTCCTAACAGTGGAGGCCAGACTTAGGCACAGCACAATGCCCACCA
CCACCAGTGTGCCGCACAAGGCCGTGGCGGTAGGGTATGTGTCTGAAAATGAGCGTGG
AGATTGGGCTCGCACGGCTGACGCAGATGGAAGACTTAAGGCAGCGGCAGAAGAAGAT
GCAGGCAGCTGAGTTGTTGTATTCTGATAAGAGTCAGAGGTAACTCCCGTTGCGGTGCT
GTTAACGGTGGAGGGCAGTGTAGTCTGAGCAGTACTCGTTGCTGCCGCGCGCGCCACCA
GACATAATAGCTGACAGACTAACAGACTGTTCCTTTCCATGGGTCTTTTCTGCAG 
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SUPPLEMENTARY CODES 

 

1. Extract sequences of 5’UTRs and CDSs (Save as “extractSequence_5utr_cds.R) 

library(parallel) 
library(doMC) 
registerDoMC(cores=30) 
library("BSgenome.Hsapiens.UCSC.hg19")  
genome<-BSgenome.Hsapiens.UCSC.hg19  
library(GenomicFeatures) 
geneCacheFn="~/compbio/share_data/genomes/hg19db_GencodeV17.sqlite" 
 
txdb <- loadDb(geneCacheFn) 
cds<-unlist(cdsBy(txdb, by="tx", use.names=TRUE)) 
fiveUTRs<-unlist(fiveUTRsByTranscript(txdb,use.names=TRUE))     
 
length(fiveUTRs) 
###filter very short 5UTR ### 
#filter=unlist(mclapply(fiveUTRs,function(x) width(ranges(x))>15)) 
#fiveUTRs=fiveUTRs[filter] 
#length(fiveUTRs) 
 
#get the first cds 
match.cds=nearest(fiveUTRs,cds,select="all") 
library(foreach) 
topN=length(match.cds) 
bed12format=foreach(k=1:topN,.combine=rbind)%dopar%{ 
i=match.cds[k]@queryHits 
j=match.cds[k]@subjectHits 
tx.id1=names(fiveUTRs[i]) 
tx.id2=names(cds[j]) 
 
#make sure they are the same transcript 
if(tx.id1!=tx.id2){ 
return(NULL) 
} 
 
strand=as.character(strand(fiveUTRs[i])) 
 
utr.r=ranges(fiveUTRs[i]) 
cds.r=ranges(cds[j]) 
##take first 15bp of CDS based on strand## 
##order bed12 exon list based on strand ## 
if(width(utr.r)+width(cds.r)<30){ 
 return(NULL) 
} 
 
chr=as.character(seqnames(fiveUTRs[i])) 
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start=min(start(utr.r), start(cds.r)) 
end=max(end(utr.r),end(cds.r)) 
 
firstNbase=15 
if(strand=="+"){ 
 width(cds.r)=firstNbase 
 blocksize.str=sprintf("%d,%d",width(utr.r) ,width(cds.r)  ) 
 blockstart.str=sprintf("%d,%d",utr.r@start-start, cds.r@start-start ) 
}else{ 
 start(cds.r)=start(cds.r)+width(cds.r)-firstNbase 
 blocksize.str=sprintf("%d,%d",width(cds.r),width(utr.r)) 
 blockstart.str=sprintf("%d,%d",cds.r@start-start , utr.r@start-start) 
} 
 
 
#name=sprintf("%s__%d_%d",tx.id1,start,end) 
c(chr,start,end,tx.id1,1,strand,start,end,"0,0,0",2,blocksize.str, blockstart.str  ) 
 
} 
 
 
write.table(bed12format,"output/5utr_1stcds.bed12",sep="\t",col.names=F,quote=F,row.names=F) 
 
cmd="fastaFromBed -fi ~/compbio/share_data/genomes/hg19.fa -bed output/5utr_1stcds.bed12  -name -s 
-split -fo output/gencode_v17_5utr_15bpcds.fa" 
system(cmd) 
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2. Preliminarily extract the features (Saved as “FeatureCommons.py”) 

####extract feature for latter prediction use 
###RNA folding 
###Condon 
### k-mer 
### motif 
import sys,os 
from Bio import SeqIO 
import Bio.SeqUtils.CodonUsage 
import subprocess 
from multiprocessing import Pool 
import gzip 
from Bio.Seq import Seq 
 
cds_length=15 ##assumption last portion of sequence is cds 
 
 
 
def codonFreq(seq): 
 codon_str=seq.translate().tostring()  
 tot=len(codon_str) 
 feature_map=dict() 
 for a in codon_str: 
  a="codon_"+a 
  if a not in feature_map: 
   feature_map[a]=0 
  feature_map[a]+=1.0/tot 
 feature_map['uAUG']=codon_str.count("M") #number of start codon 
 feature_map['uORF']=codon_str.count("*") #number of stop codon 
 return feature_map 
 
def singleNucleotide_composition(seq): 
 dna_str=seq.tostring().upper() 
 N_count=dict()  #add one pseudo count 
 N_count['C']=1 
 N_count['G']=1 
 N_count['A']=1 
 N_count['T']=1 
 for a in dna_str: 
  if a not in N_count: 
   N_count[a]=0 
  N_count[a]+=1 
 feature_map=dict() 
 feature_map["CGperc"]=float(N_count['C']+N_count['G'])/len(dna_str) 
 feature_map['CGratio']=abs(float(N_count['C'])/N_count['G']-1) 
 feature_map['ATratio']=abs(float(N_count['A'])/N_count['T']-1) 
 feature_map['utrlen_m80']=abs(len(dna_str)-80-cds_length)  
 return feature_map 
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def RNAfold_energy(sequence, *args): 
 rnaf = subprocess.Popen(["RNAfold","--noPS"] + list(args), 
                         stdin=subprocess.PIPE, 
                         stdout=subprocess.PIPE, 
                         stderr=subprocess.PIPE, 
                         # Universal Newlines effectively allows string IO. 
                         universal_newlines=True) 
 rnafold_output, folderr = rnaf.communicate(sequence) 
        output_lines = rnafold_output.strip().splitlines() 
        sequence = output_lines[0] 
        structure = output_lines[1].split(None,1)[0].strip() 
        energy = float(output_lines[1].rsplit("(",1)[1].strip("()").strip()) 
 return energy 
 
def RNAfold_energy_Gquad(sequence, *args): 
        rnaf = subprocess.Popen(["RNAfold","--noPS"] + list(args), 
                                stdin=subprocess.PIPE, 
                                stdout=subprocess.PIPE, 
                                stderr=subprocess.PIPE, 
                                # Universal Newlines effectively allows string IO. 
                                universal_newlines=True) 
        rnafold_output, folderr = rnaf.communicate(sequence) 
        output_lines = rnafold_output.strip().splitlines() 
        sequence = output_lines[0] 
        structure = output_lines[1].split(None,1)[0].strip() 
        energy = float(output_lines[1].rsplit("(",1)[1].strip("()").strip()) 
        return energy 
 
 
def foldenergy_feature(seq): 
 dna_str=seq.tostring() 
 feature_map=dict() 
 feature_map['energy_5cap']=RNAfold_energy(dna_str[:100]) 
 feature_map['energy_whole']=RNAfold_energy(dna_str) 
 feature_map['energy_last30bp']=RNAfold_energy(dna_str[(len(dna_str)-30):len(dna_str)]) 
 feature_map['energy_Gquad_5utr']=RNAfold_energy_Gquad(dna_str[:(len(dna_str)-15)]) 
 feature_map['energy_Gquad_5cap']=RNAfold_energy_Gquad(dna_str[:50]) 
 feature_map['energy_Gquad_last50bp']=RNAfold_energy_Gquad(dna_str[(len(dna_str)-
50):len(dna_str)])  
 return feature_map 
 
def Kmer_feature(seq,klen=6): 
 feature_map=dict() 
 seq=seq.upper() 
 for k in range(1,klen+1): 
  for st in range(len(seq)-klen): 
   kmer=seq[st:(st+k)] 
   featname="kmer_"+kmer.tostring() 
   if featname not in feature_map: 
    feature_map[featname]=0 
   feature_map[featname]+=1.0/(len(seq)-k+1) 
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 return feature_map 
 
def oss(cmd): 
 print(cmd) 
 os.system(cmd) 
 
 
##seq is seq object from bio.python 
def Seq2Feature(seq): 
 ##codon 
 ret=codonFreq(seq).items() 
 ##DNA CG composition 
 ret+=singleNucleotide_composition(seq).items() 
 ##RNA folding 
 ret+=foldenergy_feature(seq).items() 
 ret+=Kmer_feature(seq).items() 
 return ret 
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3. Extract the features (Saved as “FeatureExtraction_final.py”) 

####extract feature for latter prediction use 
###RNA folding 
###Condon 
### k-mer 
### motif 
import sys,os 
from Bio import SeqIO 
import Bio.SeqUtils.CodonUsage 
import subprocess 
from multiprocessing import Pool 
import gzip 
from FeatureCommons import * 
 
cds_length=15 ##assumption last portion of sequence is cds 
 
#inputFasta="output/test.fa" 
inputFasta=sys.argv[1] 
 
###take the longest length for the same transcript id 
tx_seq=dict() 
for seq_record in SeqIO.parse(inputFasta, "fasta"): 
 tx=seq_record.id 
 seq=seq_record.seq 
 if len(seq)<30: #skip when it too short 
  continue 
 if "ATG" not in seq: 
  continue 
 if tx not in tx_seq or len(seq)>len(tx_seq[tx]): 
  tx_seq[tx]=seq 
  
 
###output the non-redundancy fasta 
outputFasta=inputFasta+".filter.fa" 
outf=open(outputFasta,"w") 
txIDlist=list() 
seqList=list() 
for tx in tx_seq: 
 outf.write(">"+tx+"\n") 
 outf.write(tx_seq[tx].tostring()+"\n") 
 txIDlist.append(tx) 
 seqList.append(tx_seq[tx]) 
outf.close() 
 
 
 
 
pool = Pool(25) 
featList=pool.map(Seq2Feature,seqList) 
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##output feature matrix, tx.id, feature.id, feature.value, id is 0-based 
outf2=gzip.open(inputFasta+".sparseFeature.txt.gz",'wb') 
feat2ID=dict() 
featid=-1 
for i in range(len(txIDlist)): 
 txid=i 
 for featItem in featList[i]: 
  featname=featItem[0] 
  featVal=featItem[1]   
  if featname not in feat2ID: 
   featid+=1 
   feat2ID[featname]=featid 
   fid=featid 
  else: 
   fid=feat2ID[featname] 
  outstr=str(i)+"\t"+str(fid)+"\t"+str(featVal) 
  outf2.write(outstr+"\n") 
 
outf2.close() 
 
##mapping id to human understandable name 
outf3=open(inputFasta+".sparseFeature.rowname",'w') 
for i in range(len(txIDlist)): 
 outf3.write(str(i)+"\t"+txIDlist[i]+"\n") 
 
outf3.close() 
 
outf4=open(inputFasta+".sparseFeature.colname",'w') 
sorted_items=sorted(feat2ID.items(), key=lambda x: x[1]) 
for a in sorted_items: 
 print a 
 featname=a[0] 
 fid=a[1] 
 outf4.write(str(fid)+"\t"+featname+"\n") 
outf4.close() 
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5. Build the models using random forest (Save as “buildModel_final.R”) 

 

library(methods) 
library(Matrix) 
library(foreach) 
library(doMC) 
library(Metrics) 
registerDoMC(cores=30) 
prefix="output/gencode_v17_5utr_15bpcds.fa" 
feat.df=read.table(sprintf("%s.sparseFeature.txt.gz",prefix)) 
feat.mat=sparseMatrix(i=feat.df[,1],j=feat.df[,2],x=feat.df[,3],index1=F) 
rownames(feat.mat)=read.table(sprintf("%s.sparseFeature.rowname",prefix),row.names=1)[,1] 
colnames(feat.mat)=read.table(sprintf("%s.sparseFeature.colname",prefix),row.names=1)[1:ncol(feat.mat)
,1] ##because last few Feature(kmer) may not occurs in the data, so need to trim 
 
cell=".HEK_Andrev2015" ##HEK cell 
#cell=".pc3" 
#cell=""  ## muscle   
 
#TE.df=read.table("data/df_counts_and_len.TE_sorted.with_annot.txt",row.names=1,header=T) 
 
TE.df=read.table(sprintf("data/df_counts_and_len.TE_sorted%s.with_annot.txt",cell),row.names=1,heade
r=T) 
 
if(cell==""){ 
mRNA.RPKM.filter=TE.df[,'rpkm_rnaseq']>5 
ribo.RPKM.filter=TE.df[,'rpkm_riboseq']>0.1 
}else{ 
mRNA.RPKM.filter=TE.df[,'rpkm_rnaseq']>50 
ribo.RPKM.filter=TE.df[,'rpkm_riboseq']>5 
} 
nomiss=complete.cases(TE.df) 
TE.df=TE.df[rownames(TE.df) %in% rownames(feat.mat) & mRNA.RPKM.filter & nomiss,] 
 
sel.row=match(row.names(TE.df),rownames(feat.mat)) 
 
selfeat.mat=feat.mat[sel.row,] 
te=TE.df[,'te'] 
ribo=TE.df[,'rpkm_riboseq'] 
rnaseq=TE.df[,'rpkm_rnaseq'] 
 
print(sprintf("Number of training samples: %d",length(te))) 
library(e1071) 
library(glmnet) 
library(class) 
library(randomForest) 
library(rpart) 
library(caret) 
 
 
predictive_performance<-function(y){ 
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model=2  ##random forest seems the best 
#model=1 ## glmnet 
test.id.list=createFolds(y,k=10) 
 
featRange=1:ncol(selfeat.mat) #31 
 
########Cross validation to evaluate different algorithm performance ########## 
performances=foreach(i=1:length(test.id.list))%dopar%{ 
test.id=unlist(test.id.list[i]) 
train.x=selfeat.mat[-test.id,featRange] 
train.y=y[-test.id] 
test.x=selfeat.mat[test.id,featRange] 
test.y=y[test.id] 
 
nfolds=5 
if(model==1){ 
#########glmnet############## 
##train a model 
fit=cv.glmnet(train.x,train.y,nfolds=nfolds,parallel=T,alpha=0) 
pred.y=predict(fit$glmnet.fit,newx=test.x,s=fit$lambda.min) 
} 
if(model==2){ 
#########random forest####### 
fit=randomForest(as.matrix(train.x), train.y) 
pred.y=predict(fit,test.x) 
} 
if(model==3){ 
#######regression tree####### 
df=data.frame(y=train.y,as.matrix(train.x)) 
fit=prune(rpart(y ~ .,df),cp=0.01) 
pred.y=predict(fit,newdata=data.frame(y=NA,as.matrix(test.x))) 
} 
if(model==4){ 
fit=svm(train.x,train.y)  
pred.y=predict(fit,test.x) 
} 
 
##evaluate 
#cor(pred.y,test.y,method="spearman") 
cor(pred.y,test.y) 
} 
print(mean(na.omit(unlist(performances)))) 
print(length(y)) 
} 
 
 
 
### build full model and save ### 
###model translation efficiency 
print("building TE model.....") 
y=log(te) 
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predictive_performance(y) 
 
full.model.te=randomForest(as.matrix(selfeat.mat),log(te),importance=T)  
print("Top features for predicting Translation Efficiency") 
featScore=importance(full.model.te, type=1) 
featScore[order(-featScore)[1:10],] 
featScore=importance(full.model.te, type=2) 
featScore[order(-featScore)[1:10],] 
 
###model gene expression 
print("building RNA expression model.....") 
 
y=log(rnaseq) 
predictive_performance(y) 
 
full.model.rna=randomForest(as.matrix(selfeat.mat),log(rnaseq),importance=T) 
print("Top features for predicting mRNA expression") 
featScore=importance(full.model.rna, type=1) 
featScore[order(-featScore)[1:10],] 
featScore=importance(full.model.rna, type=2) 
featScore[order(-featScore)[1:10],] 
 
modelFn=sprintf("%s%s.big.model",prefix,cell) 
save(full.model.te,full.model.rna,file=modelFn) 
print(sprintf("save model to file : %s",modelFn)) 
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5. Select the starting sequences for synthetic 5’ UTRs generation (Save as 

“select_diverseDesginSequence.R”) 

 

similarThresh=160 #higher mean more similar 
bestN=5 
first3IterTop=1 
first3IterBottom=1 
library("seqinr") 
library(Biostrings) 
library(foreach) 
library(doMC) 
registerDoMC(cores=30) 
 
Args<-commandArgs()[grep("^--",commandArgs(),invert=T)] 
inputFn="output/final/raw/gencode_v17_5utr_15bpcds.fa.muscle.claudia_seq.galog.18870" 
inputFn=Args[2] 
 
options(stringsAsFactors = FALSE) 
 
df=read.table(inputFn) 
colnames(df)<-c("iter",'seq','score') 
 
###prune the similar sequence 
nearestSeq<-function(seq1,topSeqlist){ 
 if(is.null(topSeqlist)){ 
  return(0) 
 } 
 scores=foreach(ts=topSeqlist)%do%{ 
  pairwiseAlignment(seq1, ts,scoreOnly=T) 
 } 
 which.max(unlist(scores)) 
} 
 
 
 
prune2<-function(seq1,topSeqlist){ 
        if(is.null(topSeqlist)){ 
                return(100) 
        } 
        scores=foreach(ts=topSeqlist)%do%{ 
               # pairwiseAlignment(seq1, ts,scoreOnly=T,type="overlap") 
         unlist(adist(seq1,ts)) 
 }   
        min(unlist(scores)) 
} 
 
 
 
#####best N sequences must be better than the best endogenous sequence 
selectBestNSequences<-function(){ 
topSeqlist=NULL 
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topSelID=NULL 
bestInitScore=max(df[df[,'iter']==1,'score']) 
df2=df[order(-df[,'score']),] 
df2=df2[df2$score>bestInitScore,] 
for(i in 1:nrow(df2)){ 
seq1=df2[i,'seq'] 
 
if(length(topSeqlist)>=bestN){ 
        break 
} 
 
if(prune2(seq1,topSeqlist)>5){ 
topSeqlist=c(topSeqlist,seq1) 
topSelID=c(topSelID,i) 
print(length(topSeqlist)) 
} 
 
} 
 
df2[unlist(topSelID),] 
} 
 
###bestN### 
bestN.seqs=selectBestNSequences() 
 
selectSimilarButBigChange<-function() 
{ 
df1=df[df[,'iter']==1,] ##initial sequences 
filter=df1[,'score']>-10 
df1=df1[filter,] 
df2=df[df[,'iter']==2|df[,'iter']==3,] 
filter=df2[,'score']>-10 
df2=df2[filter,] 
 
scoreDlist=foreach(i=1:nrow(df2),.combine=rbind) %dopar%{ 
seq1=df2[i,'seq'] 
bestj=nearestSeq(seq1,df1[,'seq']) 
scoreDiff=df2[i,'score']-df1[bestj,'score'] 
c(scoreDiff,bestj) 
} 
besti.top=which.max(scoreDlist[,1]) 
besti.bottom=which.min(scoreDlist[,1]) 
rbind(unlist(c(df2[besti.top,],sprintf("Up|%s|%f",df1[scoreDlist[besti.top,2],'seq'],df1[scoreDlist[besti.top,
2],'score'] ))), 
unlist(c(df2[besti.bottom,],sprintf("Down|%s|%f",df1[scoreDlist[besti.bottom,2],'seq'],df1[scoreDlist[best
i.bottom,2],'score'] )))) 
} 
 
##similar but big change SBC 
SBClist=selectSimilarButBigChange() 
colnames(SBClist)[4]="description" 
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bestInitScore=max(df[df[,'iter']==1,'score']) 
 
output.df=data.frame(bestN.seqs,description=rep(sprintf("bestTop|%f",bestInitScore),nrow(bestN.seqs))) 
output.df=rbind(output.df,SBClist) 
 
write.table(output.df,file=sprintf("output/final/sel/%s",basename(inputFn)),quote=F,col.names=F,sep="\t"
,row.names=F) 
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6. The design process of synthetic 5’UTRs based on TEs (Saved as “evolutionDesign_TE.R”) 

 
 
###use bigger training data  
###smaller pop size, and fewer generations 
###run more rounds 
 
 
library(GA) 
library(randomForest) 
library(methods) 
library(Matrix) 
library(foreach) 
library(doMC) 
library(Metrics) 
library(seqinr) 
options(stringsAsFactors = FALSE) 
 
registerDoMC(cores=30) 
 
prefix="output/gencode_v17_5utr_15bpcds.fa" 
 
cell=".HEK_Andrev2015" ##HEK cell 
cell=".pc3" 
#cell=""  ## muscle  
 
Args<-commandArgs()[grep("^--",commandArgs(),invert=T)] 
cell2=Args[2] 
if(cell2=="muscle"){ 
cell="" 
}else{ 
cell=paste(".",cell2,sep="") 
} 
 
TE.df=read.table(sprintf("data/df_counts_and_len.TE_sorted%s.with_annot.txt",cell),row.names=1,heade
r=T) 
if(cell==""){ 
mRNA.RPKM.filter=TE.df[,'rpkm_rnaseq']>5 
ribo.RPKM.filter=TE.df[,'rpkm_riboseq']>0.1 
}else{ 
mRNA.RPKM.filter=TE.df[,'rpkm_rnaseq']>50 
ribo.RPKM.filter=TE.df[,'rpkm_riboseq']>5 
} 
 
 
nomiss=complete.cases(TE.df) 
TE.df=TE.df[ mRNA.RPKM.filter & nomiss,] 
 
 
 
design_utr_len=100 
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if(cell!=""){ 
cell=paste(cell,".big",sep="") 
} 
print(cell) 
print(load(sprintf("%s%s.model",prefix,cell))) 
 
ACGT=1:4 
names(ACGT)=c("A","C","G","T") 
 
###Kozak-EGFP GCCACC + 15bp cds 
GFPcds="GCCACCATGGTGAGCAAGGGC" 
flank1='TAAACTTAAGCTTGGTACCG' 
featureExtraction<-function(seq){ 
cmd=sprintf("python  -W ignore 
FeatureExtraction_singleInput.py %s.sparseFeature.colname %s",prefix,paste(flank1,seq,GFPcds,sep="")
) 
data <- (read.table(pipe(cmd),sep=" ",header=F,comment.char="")) 
return(unlist(data[1,])) 
} 
 
 
predict_TE<-function(featVec){ 
predict(full.model.te,featVec) 
} 
 
 
 
 
##ACGT => 1234 
DNA2intVec<-function(seq){ 
unlist(lapply(unlist(strsplit(toupper(seq),"")),function(x) ACGT[x])) 
} 
 
##1234 => ACGT 
intVec2DNA<-function(vec){ 
paste(unlist(lapply(vec,function(x) names(ACGT)[x])),collapse="") 
} 
 
######generate initial by high TE 5utr##### 
fiveUTR_Population<-function(object){ 
popSize=object@popSize 
cdslen=20 
##use Claudia generated sequence as initial pool 
raw.seqlist=read.table(file ="output/final_endogenous.txt")[,1] 
 
len.list=unlist(lapply(raw.seqlist,function(x) nchar(x)-cdslen)) 
prob.list=len.list/sum(len.list)  ##give high chance to the longer UTR sequence 
population.seq=sample(raw.seqlist, size=popSize, replace = T, prob = prob.list) 
population=foreach(seq = population.seq,.combine=rbind)%do%{ 
seq=substr(seq,1,nchar(seq)-cdslen) 
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seq=gsub("N","",seq,ignore.case=T) 
seq_design=substr(seq,21,nchar(seq)) 
DNA2intVec(seq_design) 
} 
 return(as.matrix(population)) 
} 
 
 
Endogenous_maxFitness<-function(){ 
 raw.seqlist=read.table(file ="output/final_endogenous.txt")[,1] 
 TE.list=foreach(seq=raw.seqlist)%dopar%{ 
 cmd=sprintf("python  -W ignore 
FeatureExtraction_singleInput.py %s.sparseFeature.colname %s",prefix,seq) 
 data <- (read.table(pipe(cmd),sep=" ",header=F,comment.char="")) 
 featVec=unlist(data[1,]) 
        predict_TE(featVec) 
 } 
 max(unlist(TE.list)) 
} 
 
fitness<-function(intVec){ 
 utr.seq=intVec2DNA(intVec) 
 featVec=featureExtraction(utr.seq) 
 ###avoid ATG in the UTR sequences 
 if(grepl("ATG",utr.seq)||grepl("AT$", utr.seq)){   
  return(-10) 
 }  
 predict_TE(featVec) 
} 
 
 
gaMutation_ACGT<-function(object, parent ){ 
    mutate <- parent <- as.vector(object@population[parent, ]) 
    n <- length(parent) 
    j <- sample(1:n, size = 1) 
    alphabet=1:4 
    mutate[j] <- sample(alphabet[-mutate[j]],1) 
    return(mutate) 
} 
 
randkey=sample(1:100000, 1) 
 
gaMonitor_writelog<-function(object, digits = getOption("digits")){ 
logFile=sprintf("output/final/raw/%s.%s.final.galog.%d",basename(prefix),cell2,randkey) 
  fitness <- na.exclude(object@fitness) 
    cat(paste("Iter =", object@iter, " | Mean =", format(mean(fitness), 
        digits = digits), " | Best =", format(max(fitness), digits = digits), 
        "\n")) 
###write log file ### 
##iter, seq, fitness 
sink(logFile,append=T) 
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for(i in 1:nrow(object@population)){ 
 seq=intVec2DNA(object@population[i,]) 
 TE=object@fitness[i] 
 cat(paste(object@iter,seq,TE,"\n")) 
} 
sink() 
} 
 
GA<-ga(type = "binary", fitness = fitness,nBits=design_utr_len ,min = 1, max = 4,maxiter=50, 
popSize=100,population=fiveUTR_Population,parallel=T,monitor=gaMonitor_writelog,mutation=gaMut
ation_ACGT,seed=randkey ) 
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7. The design process of synthetic 5’UTRs based on ribosome abundances (Saved as 

“evolutionDesign_Ribo.R”) 

 
###use bigger training data  
###smaller pop size, and fewer generations 
###run more rounds 
 
 
library(GA) 
library(randomForest) 
library(methods) 
library(Matrix) 
library(foreach) 
library(doMC) 
library(Metrics) 
library(seqinr) 
options(stringsAsFactors = FALSE) 
 
registerDoMC(cores=30) 
 
prefix="output/gencode_v17_5utr_15bpcds.fa" 
 
cell=".HEK_Andrev2015" ##HEK cell 
cell=".pc3" 
#cell=""  ## muscle  
 
Args<-commandArgs()[grep("^--",commandArgs(),invert=T)] 
cell2=Args[2] 
if(cell2=="muscle"){ 
cell="" 
}else{ 
cell=paste(".",cell2,sep="") 
} 
 
TE.df=read.table(sprintf("data/df_counts_and_len.TE_sorted%s.with_annot.txt",cell),row.names=1,heade
r=T) 
if(cell==""){ 
mRNA.RPKM.filter=TE.df[,'rpkm_rnaseq']>5 
ribo.RPKM.filter=TE.df[,'rpkm_riboseq']>0.1 
}else{ 
mRNA.RPKM.filter=TE.df[,'rpkm_rnaseq']>50 
ribo.RPKM.filter=TE.df[,'rpkm_riboseq']>5 
} 
 
 
nomiss=complete.cases(TE.df) 
TE.df=TE.df[ mRNA.RPKM.filter & nomiss,] 
 
 
 
design_utr_len=100 
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if(cell!=""){ 
cell=paste(cell,".big",sep="") 
} 
print(cell) 
print(load(sprintf("%s%s.model",prefix,cell))) 
 
ACGT=1:4 
names(ACGT)=c("A","C","G","T") 
 
###Kozak-EGFP GCCACC + 15bp cds 
GFPcds="GCCACCATGGTGAGCAAGGGC" 
flank1='TAAACTTAAGCTTGGTACCG' 
 
featureExtraction<-function(seq){ 
cmd=sprintf("python  -W ignore 
FeatureExtraction_singleInput.py %s.sparseFeature.colname %s",prefix,paste(flank1,seq,GFPcds,sep="")
) 
data <- (read.table(pipe(cmd),sep=" ",header=F,comment.char="")) 
return(unlist(data[1,])) 
} 
 
##should be produce logRibo level 
predict_TE<-function(featVec){ 
predict(full.model.te,featVec)+predict(full.model.rna,featVec) 
} 
 
 
 
 
##ACGT => 1234 
DNA2intVec<-function(seq){ 
unlist(lapply(unlist(strsplit(toupper(seq),"")),function(x) ACGT[x])) 
} 
 
##1234 => ACGT 
intVec2DNA<-function(vec){ 
paste(unlist(lapply(vec,function(x) names(ACGT)[x])),collapse="") 
} 
 
 
######generate initial by high TE 5utr##### 
fiveUTR_Population<-function(object){ 
popSize=object@popSize 
cdslen=20 
##use Claudia generated sequence as initial pool 
raw.seqlist=read.table(file ="output/final_endogenous.txt")[,1] 
 
len.list=unlist(lapply(raw.seqlist,function(x) nchar(x)-cdslen)) 
prob.list=len.list/sum(len.list)  ##give high chance to the longer UTR sequence 
population.seq=sample(raw.seqlist, size=popSize, replace = T, prob = prob.list) 
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population=foreach(seq = population.seq,.combine=rbind)%do%{ 
seq=substr(seq,1,nchar(seq)-cdslen) 
seq=gsub("N","",seq,ignore.case=T) 
seq_design=substr(seq,21,nchar(seq)) 
DNA2intVec(seq_design) 
} 
 return(as.matrix(population)) 
} 
 
 
 
 
Endogenous_maxFitness<-function(){ 
 raw.seqlist=read.table(file ="output/final_endogenous.txt")[,1] 
 TE.list=foreach(seq=raw.seqlist)%dopar%{ 
 cmd=sprintf("python  -W ignore 
FeatureExtraction_singleInput.py %s.sparseFeature.colname %s",prefix,seq) 
 data <- (read.table(pipe(cmd),sep=" ",header=F,comment.char="")) 
 featVec=unlist(data[1,]) 
        predict_TE(featVec) 
 } 
 max(unlist(TE.list)) 
} 
 
fitness<-function(intVec){ 
 utr.seq=intVec2DNA(intVec) 
 featVec=featureExtraction(utr.seq) 
 ###avoid ATG in the UTR sequences 
 if(grepl("ATG",utr.seq)||grepl("AT$", utr.seq)){   
  return(-10) 
 }  
 predict_TE(featVec) 
} 
 
 
gaMutation_ACGT<-function(object, parent ){ 
    mutate <- parent <- as.vector(object@population[parent, ]) 
    n <- length(parent) 
    j <- sample(1:n, size = 1) 
    alphabet=1:4 
    mutate[j] <- sample(alphabet[-mutate[j]],1) 
    return(mutate) 
} 
 
randkey=sample(1:100000, 1) 
 
gaMonitor_writelog<-function(object, digits = getOption("digits")){ 
logFile=sprintf("output/final/raw/%s.%s.final.gaRibo.%d",basename(prefix),cell2,randkey) 
  fitness <- na.exclude(object@fitness) 
    cat(paste("Iter =", object@iter, " | Mean =", format(mean(fitness), 
        digits = digits), " | Best =", format(max(fitness), digits = digits), 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.24.006486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.006486


        "\n")) 
###write log file ### 
##iter, seq, fitness 
sink(logFile,append=T) 
for(i in 1:nrow(object@population)){ 
 seq=intVec2DNA(object@population[i,]) 
 TE=object@fitness[i] 
 cat(paste(object@iter,seq,TE,"\n")) 
} 
sink() 
} 
 
GA<-ga(type = "binary", fitness = fitness,nBits=design_utr_len ,min = 1, max = 4,maxiter=50, 
popSize=100,population=fiveUTR_Population,parallel=T,monitor=gaMonitor_writelog,mutation=gaMut
ation_ACGT,seed=randkey ) 
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8. Compile and format the synthetic 5’ UTR library (Saved as “finalFormat_3k_synthetic_seqs.py”) 

 

import os,sys 
import glob 
import math 
 
 
allFiles=glob.glob("output/final/sel/*") 
 
 
model_ostr_score=dict() 
visited=set() 
#gencode_v17_5utr_15bpcds.fa.pc3.galog.62355 
#gencode_v17_5utr_15bpcds.fa.pc3.claudia_seq.gaRibo.13167# 
Nprinted=0 
print "seq score model generation info" 
for fn in allFiles: 
 label=os.path.basename(fn).replace("gencode_v17_5utr_15bpcds.fa.","").replace(".claudia_seq","
").replace(".gaRibo","_Ribo").replace(".galog","_TE").replace(".final","").split(".")[0] 
 for line in open(fn): 
  comps=line.strip().split() 
  seq="TAAACTTAAGCTTGGTACCG"+comps[1]+"GCCACCATGGTGAGCAAGGG" 
  if seq in visited: 
   continue 
  visited.add(seq) 
  score=comps[2] 
  if score=="NA": 
   continue 
  itera=comps[0] 
  info=comps[3] 
  outstr=seq+"\t"+score+"\t"+label+"\t"+itera+"\t"+info 
  if info.startswith("best"): 
   initBestScore=float(info.split("|")[1]) 
   if float(score)<initBestScore+0.05: 
    continue 
   if label not in model_ostr_score: 
    model_ostr_score[label]=dict() 
   model_ostr_score[label][outstr]=float(score) 
  else: 
   print outstr 
   Nprinted+=1 
Ntotal=3585 
import operator 
perModelNum=int(math.ceil(float(Ntotal-Nprinted)/len(model_ostr_score))) 
 
for model in model_ostr_score: 
 x=model_ostr_score[model] 
 sorted_x = sorted(x.items(), key=operator.itemgetter(1),reverse=True) 
 for i in range(perModelNum): 
  print sorted_x[i][0] 
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