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High-throughput 5′ UTR engineering for enhanced
protein production in non-viral gene therapies
Jicong Cao 1,2,3,4,9, Eva Maria Novoa4,5,6,7,9, Zhizhuo Zhang4,5,6,9, William C. W. Chen1,2,3, Dianbo Liu1,4,5,

Gigi C. G. Choi1,2,3,8, Alan S. L. Wong1,2,3,8, Claudia Wehrspaun1,2,3, Manolis Kellis 4,5,6✉ &

Timothy K. Lu 1,2,3,4,6✉

Despite significant clinical progress in cell and gene therapies, maximizing protein expression

in order to enhance potency remains a major technical challenge. Here, we develop a high-

throughput strategy to design, screen, and optimize 5′ UTRs that enhance protein expression

from a strong human cytomegalovirus (CMV) promoter. We first identify naturally occurring

5′ UTRs with high translation efficiencies and use this information with in silico genetic

algorithms to generate synthetic 5′ UTRs. A total of ~12,000 5′ UTRs are then screened using

a recombinase-mediated integration strategy that greatly enhances the sensitivity of high-

throughput screens by eliminating copy number and position effects that limit lentiviral

approaches. Using this approach, we identify three synthetic 5′ UTRs that outperform

commonly used non-viral gene therapy plasmids in expressing protein payloads. In summary,

we demonstrate that high-throughput screening of 5′ UTR libraries with recombinase-

mediated integration can identify genetic elements that enhance protein expression, which

should have numerous applications for engineered cell and gene therapies.
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I
n recent years, gene therapies that enable the exogenous
production of proteins to replace defective genes have started
to have a transformative clinical impact1–3. Gene therapies can

be delivered into patients through viral vectors or non-viral
vectors. One of the major challenges facing current gene therapy
approaches is maximizing potency, since increasing the amount
of exogenously expressed protein can reduce dose requirements
and thus manufacturing costs, while improving human clinical
results4. Multiple strategies are being employed to improve
potency, such as enhancing cellular transduction efficiency by
using more efficient viral vectors or non-viral transduction
reagents, or by improving the gene expression construct itself. For
example, recombinant adeno-associated virus (rAAV) is one of
the major modalities used in gene therapy due to its infectivity
and ability to achieve long-term gene expression in vivo5,6.
However, 1016–1017 genome copies (GCs) of rAAVs are being
used in clinical trials, which requires the use of 100–10,000-L
scale bioreactors to produce exceptionally large amounts of
cGMP-grade viruses and is expensive4,7. Furthermore, a recent
non-human primate study showed that the administration of
high-dose intravenous rAAVs can lead to severe liver and neu-
ronal toxicity8. Thus, there is a significant unmet need to improve
protein production from viral gene therapies to enlarge the
therapeutic window and reduce costs.

In addition, enhancing gene expression for non-viral DNA
therapy remains a significant challenge. Non-viral gene therapy
delivers DNA into cells to produce therapeutic proteins or vac-
cine antigens in vivo, with several potential advantages over viral
gene therapies9–11. First, non-viral DNA therapy is potentially
less immunogenic than viral particles since it uses chemical
delivery strategies12–14. Second, the ability to deliver large
amounts of DNA cargo via non-viral routes is greater than with
viral vectors, where packaging limits place significant restrictions.
Third, plasmids are relatively inexpensive to produce at the
research and industrial scale and are more stable than viruses15,16.
The efficiency of in vivo DNA delivery has improved significantly
as a result of recent advancements in liposome chemistry and
nanoparticles, but is still not as efficient as viruses in many
cases17–19. Thus, repeat dosing or increased dose levels have been
attempted, but these strategies can incur greater costs and risk of
side effects and can sacrifice patient convenience.

In addition to optimizing delivery efficiencies, protein expres-
sion from gene therapies can be enhanced by optimizing the
nucleic acid payload being delivered. Gene expression cassettes
consist of multiple elements: promoter (which may include an
enhancer), 5′ untranslated region (5′ UTR), protein-coding
region, 3′ UTR, and polyadenylation (PolyA) signal20. Previous
work has involved promoter engineering to enhance transcription
or to enable cell-type specific gene expression21,22. However,
fewer efforts to modulate translation through UTR engineering
have been described.

Here, we focus on optimizing the 5′ UTR to improve protein
production in a non-viral gene therapy context. The rational
design of 5′ UTRs to enhance protein expression remains chal-
lenging, even though regulatory elements and 5′ UTR sequences
that regulate gene expression in certain scenarios have been
identified23–27. The design of 5′ UTRs has been held back by
limited knowledge of the relationships between 5′ UTR sequences
and associated levels of protein expression. For example, Sample
et al.27 screened a library of 50-bp random 5′ UTRs including the
Kozak sequence in the randomized region, and found that 5′

UTRs that include strong Kozak sequences lead to higher ribo-
some recruitment. However, plasmids commonly used for non-
viral gene therapy, such as pVAX1, already contain strong Kozak
sequences. Thus, we were not interested in exploring the region
that comprised the Kozak sequence as a diversity region but,

rather, whether variability in the 5′ UTR region preceding a
strong Kozak sequence could lead to the identification of 5′ UTRs
that would enhance protein expression levels.

In this study, we develop a platform to systematically screen
and engineer 5′ UTRs that can enhance protein expression in
mammalian cells (Fig. 1). We first identify naturally occurring
5′ UTRs with different translational activities in multiple human
cell types. We then apply a genetic algorithm to obtain synthetic
5′ UTRs, which were generated by evolving strong endogenous
human 5′ UTRs in silico. To enable high-throughput testing of
12,000 distinct 5′ UTRs, we develop a recombinase-based library
screening strategy to eliminate copy number artefacts and posi-
tional effects, which introduce significant noise in traditional
lentiviral-based library screening approaches28,29. Through this
approach, we identify three synthetic 5′ UTRs that significantly
outperformed both naturally occurring 5′ UTRs, as well as a
plasmid (pVAX1) that is commonly used for non-viral gene
therapy30. Finally, we show that the three synthetic 5′ UTRs
enhance protein expression across a variety of cell types and that

Fig. 1 Schematic overview of recombinase-mediated 5′ UTR library

screening strategy. Naturally occurring 5′ UTRs were extracted, analyzed,

and used as the training set to generate synthetic 5′ UTRs for screening.

Oligos encoding the 5′ UTR library were synthesized and cloned into

plasmids containing a recombinase-recognition site and a GFP reporter. The

resulting plasmids were transfected into the HEK 293T-LP cell line with the

corresponding recombinase recognition site, resulting in targeted genomic

insertion. The cells were sorted into bins based on GFP intensities, and the

5′ UTR sequences of each bin were amplified, sequenced, counted, and

compared. The 5′ UTR candidates that enhanced GFP expression were

selected and validated experimentally. Finally, the top-ranked validated 5′

UTRs were combined to test for increased gene expression.
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these synthetic 5′ UTRs can be combined to improve protein
expression levels, thus highlighting the potential of this approach
for gene therapy applications.

Results
5′ UTR model training and library design by genetic algo-
rithms. Protein production comprises two major steps: in the first
step, DNA is transcribed into mRNA; and in the second step,
mRNA is translated into protein. While transcription and
translation are coupled in prokaryotic cells, these two steps are
uncoupled in eukaryotic cells. Consequently, eukaryotic protein
expression levels are highly dependent on mRNA levels, which
are governed by the transcription machinery, but also on the
translation efficiency (TE) of the transcripts, which is governed by
the translation machinery31,32. In this context, given an identical
transcription rate for two transcripts, the differences in the final
amount of protein can be modulated by features found in the 5′

UTR regions, which are involved in the recruitment of
ribosomes33. The TE of a gene, i.e., the rate of mRNA translation
into protein, can be calculated as the ratio of the ribosomal
footprints (RPF) observed on a given mRNA of interest, which
can be measured using Ribo-seq34, to the relative abundance of
that mRNA transcript in the cell, which can be measured using
RNA-seq.

We first investigated the TEs of naturally occurring 5′ UTRs
(Fig. 2). To this end, we gathered publicly available Ribo-seq and
RNA-seq data from human muscle tissue35, as well as from two
human cell lines, human embryonic kidney (HEK) 293T36 and
human prostate cancer cell line PC337. A 5′ UTR length of 100 bp
was chosen and fixed for training algorithms and engineering 5′

UTRs, which is compatible with the limits of current

commercially available ssDNA template biosynthesis. For 5′

UTR sequences that were longer than 100 bp, sequences were
extracted from the 5′ end and 3’ end to construct two 100-bp long
5′ UTRs; those shorter than 100 bp were filled up with repeats of a
CAA motif that does not have known secondary structure38 to
create two sequence versions, one having a shift of one nucleotide
relative to the other (see “Methods”). AUGs were removed by
randomly mutating one of the three nucleotides to avoid
generating undesired upstream open reading frames (Supple-
mentary Data 1).

Next, we computationally generated synthetic sequences by
mutating and evolving endogenous 5′ UTRs in silico. We trained
and developed a computational model to predict TE based on 5′

UTR characteristics (Fig. 2). Specifically, we extracted sequence
features of 5′ UTR regions that could be associated with gene
expression levels and TE, which included k-mer frequency, RNA
folding energy, 5′ UTR length, and number of ORFs (Supple-
mentary Fig. 1). A random forest regression model was then
trained on sequence features to predict TE and mRNA expression
(Supplementary Fig. 2). The model was trained on experimentally
determined TE rates and mRNA levels, which were obtained from
analyzing publicly available RNA-seq and Ribo-seq data of
endogenous genes from the three human cell types noted above:
HEK 293T cells, PC3 cells, and human muscle tissue39. We also
found that random forest regression showed the highest
prediction among four different models, including random forest,
glmnet, Rpart, and SVM (Supplementary Figs. 3–5). Given that
searching for all 4100 possible 100-bp sequences would be too
computationally demanding, we applied a genetic algorithm40,
which simulates the evolution process, to search for “optimal”
sequences by mutating and recombining the endogenous
sequences (see Methods). We created 2388 synthetic 5′ UTRs

Fig. 2 Design of the 5′ UTR library of naturally occurring and synthetic 5′ UTRs. RNA-seq and Ribo-seq datasets of HEK 293T, PC3, and human muscle

cells, together with the GTEx database of human muscle tissue, were collected. Natural 5′ UTRs with high TEs and low TEs in HEK 293T and RD cells, 5′

UTRs with various TEs in human muscle cells, and the 5′ UTRs with high mRNA counts in human muscle tissues were selected and added to the library. In

addition, we designed synthetic 5′ UTRs by: (i) collecting endogenous 5′ UTR sequences on the target cell type (HEK 293T, PC3 or human muscle cells)

from public data; (ii) extracting sequence features of the 5′ UTRs, including those nucleotides surrounding the AUG region; (iii) training a Random Forest

machine learning method for each cell type/tissue (HEK 293T, PC3 or human muscle cells), to learn a function that maps sequence features to mRNA

expression levels and TEs; and (iv) designing a set of 100 bp synthetic sequences that are predicted to maximize TEs and protein expression levels using

genetic algorithms.
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that were predicted to have high TEs (Supplementary Data 2), in
addition to a testing set designed by evolving 1198 5′ UTRs with a
range of TEs within 2 evolutionary generations (Supplementary
Data 3). Overall, a total of 3586 synthetic sequences and 8414
naturally occurring sequences were used to build the ~12,000
100-bp 5′ UTR library for this study.

Recombinase-mediated library screening to minimize copy
number and position effects. Lentiviral-based library screening
is the most commonly used method for high-throughput genetic
screening41–43. In this method, diversified genetic elements are
cloned into a lentiviral carrier plasmid and transfected into a
virus-producing cell line with packaging and envelope plasmids
to produce a lentiviral library, which is then used to infect the
cells of interest. A multiplicity of infection (MOI) of ~0.1–0.3 is
widely used to ensure that most of infected cells receive only one
copy of the element of interest. However, even at 0.1 MOI, 10% of
the cells receive two or more copies. Moreover, lentiviruses insert
randomly into the cellular genome, resulting in significant var-
iations in gene expression44,45. As a result, a significant amount of
noise due to copy number variations in cells and positional effects
can obscure accurate phenotypic assessment of genetic constructs
in lentiviral screens.

To address this issue, we designed a recombinase-based gene
integration strategy to screen the 5′ UTR library; this strategy
ensures single-copy integration within each cell at a defined
“landing-pad” location (Fig. 3a). We used the serine recombinase
Bxb1 to integrate a plasmid containing the Bxb1 attB site into the
Bxb1 attP site on the genome, which results in destruction of the
attP site to prevent additional insertions46–49.

We first constructed HEK 293T cell lines with a landing pad
by lentiviral infection. In these cell lines, the landing pad
comprised a constitutive promoter, a mutant BxbI attP site
with enhanced integration efficiency50, and a yellow fluorescent
protein (YFP)47 as a reporter for the integration of the landing
pad. Nine cell clones with insertion of the landing pad were
identified and expanded. We chose to use two different cell
lines with different YFP expression levels during our screens to
reduce the impact of genomic location on the screening
phenotype. The 5′ UTR library was cloned upstream of the GFP
reporter on the payload plasmid, which also encoded a BxB1
attB site and a red fluorescent protein (RFP) and puromycin
duo selection marker (Fig. 3b). In this system, successful
integration activates the expression of RFP and puromycin and
inhibits YFP expression. We integrated the 5′ UTR library into
the two different landing pad cell lines with >25-fold more cells
than the size of the library (>300k integrated cells). The
transfected cells were grown for 3 days, then subjected to
puromycin selection for 1 week.

To identify 5′ UTRs with increased protein expression, we used
FACS to sort the cell library into four bins based on GFP
expression levels: top 2.5%, 2.5–5%, 5–10%, and 0–100%
(unsorted). We then extracted genomic DNAs from cells in each
bin and optimized PCR conditions for unbiased amplicon
amplification41. The amplicons were then barcoded and
sequenced using Illumina NextSeq. We calculated the relative
abundance of each 5′ UTR sequence in each of the three top bins
(2.5%, 2.5–5%, and 5–10%) and normalized them to the counts in
the control bin (0–100%). Log2 ratios were used to represent the
enrichment of each 5′ UTR in each bin.

Fig. 3 Strategy for constructing HEK 293T cell lines with a landing pad and screening the 5′ UTR library using recombinase-based gene integration.

a Recombinase-based library screening workflow. b Construction of the 5′ UTR library and schematic illustration of recombinase-based gene integration.

c We observed high reproducibility for barcode representations between two HEK-LP cell lines independently transfected with the library and a

recombinase-expression plasmid; cells were sorted into three bins based on GFP expression (top 0–2.5%, top 2.5–5%, and top 5–10%). log2 values of

normalized barcode counts are shown. R is the Pearson correlation coefficient.
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Our results showed that this recombinase-based library
screening approach achieved Pearson correlation values greater
than 0.93 between results obtained from the two landing pad cell
lines in all three bins, thus demonstrating the high reproducibility
of the screening process (Fig. 3c). This level of reproducibility
exceeded that of traditional lentiviral-based library screening,
which had correlation values equal to 0.49, 0.49, and 0.54 for each
of the three bins, respectively. Overall, our results clearly show
that recombinase-based integration can significantly improve the
reproducibility of high-throughput screening.

Validation of the 5′ UTR hits in HEK 293T cells. To select
candidates for further experimental validation, we ranked the

5′ UTRs based on their relative expression levels in top expressing
bins (2.5%, 2.5–5%, and 5–10%), relative to the unsorted bin.
Specifically, differentially enriched 5′ UTRs in the top-expressing
bins were determined using DESeq251, which takes into account
variability across biological replicates to identify differentially
expressed candidates. Top candidates were defined as 5′ UTRs
that showed at least 50% increased expression level in all
three top-expressing bins (fold change greater than 50%) with
significant adjusted p-values in all three bins (p-adj < 0.05)
(Supplementary Data 4–6), relative to control (Fig. 4a). Using
these criteria, thirteen 5′ UTRs with enriched expression in all
three bins were used for further validation. Interestingly, six
of these thirteen 5′ UTRs were synthetic 5′ UTRs, implying a
300% enrichment towards synthetic sequences predicted to have

Fig. 4 Selection and validation of 5′ UTR candidates. a 5′ UTRs that modulate protein expression were ranked by their mean log2 ratios (compared with

the control of unsorted cells) of the normalized barcode count in the three bins based on GFP expression. 5′ UTRs with a log2 ratio greater than 0.52 (which

is highlighted as a red dotted line) in all three bins were selected for further validation. b The GFP gene was inserted into the pVAX1 plasmid to make the

pVAX1-GFP plasmid, which was used as a control in the GFP expression study. 5′ UTR candidates were inserted directly upstream of the Kozak sequence of

the GFP coding sequence to make the pVAX1-UTR-GFP plasmids. c Three 5′ UTR candidates that significantly enhanced protein expression were chosen for

further testing. The p-values for NeoUTR1, NeoUTR2, NeoUTR3 vs pVAX1 are <0.0001, <0.0001, and <0.0001. d The effects of the three 5′ UTRs on GFP

expression in RD cells. The p-values for NeoUTR1, NeoUTR2, NeoUTR3 vs pVAX1 are 0.0001, <0.0001 and 0.0010. e The effects of the three 5′ UTRs on

VEGF expression in RD cells. The p-values for NeoUTR1, NeoUTR2, NeoUTR3 vs pVAX1 are 0.8838, 0.0146 and 0.0675. f The effects of the three 5′ UTRs

on CCL21 expression in RD cells. The p-values for NeoUTR1, NeoUTR2, NeoUTR3 vs pVAX1 are 0.0183, 0.0412, and 0.0002. Relative protein expression in

each sample was normalized to that of the pVAX1 plasmid (relative expression (%)= 100 is highlighted as a gray dotted line). Source data are provided as a

Source data file. Statistical differences between groups were analyzed by ordinary one-way ANOVA with 95% confidence interval. Data are presented as

mean values ± SD for three biological replicates (c, d) or four biological replicates (e, f). (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 vs pVAX1).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24436-7 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4138 | https://doi.org/10.1038/s41467-021-24436-7 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


high TEs (six out of 2388) compared to the pool of natural 5′

UTRs included in the screening (seven out of 8414).
We then tested the selected 5′ UTR candidates in the pVAX1

non-viral gene therapy plasmid30. pVAX1 has a human CMV
promoter for high-level protein expression, a multiple cloning site
for foreign gene insertion, and a bovine growth hormone (bGH)
PolyA signal for transcriptional termination. We synthesized and
inserted the thirteen candidate 5′ UTRs (100 bp long) along with
a green fluorescent protein (GFP) reporter (with Kozak sequence;
pVAX1-UTR-GFP) downstream of the CMV promoter in the
pVAX1 plasmid. As a control, we used only the GFP reporter
(with Kozak sequence; pVAX1-GFP) (Fig. 4b). We co-transfected
HEK 293T cells with the engineered 5′ UTR-containing plasmids
and the control plasmid along with a blue fluorescent protein
(BFP) expression plasmid. This allowed us to normalize GFP
expression to transfection efficiency, as determined by BFP levels.
Six out of the thirteen tested plasmids showed higher GFP
expression than the commercial protein expression plasmid
pVAX1 in HEK 293T cells (Supplementary Fig. 6), and all
thirteen plasmids showed higher GFP expression than the median
of the library. These results not only validated the effectiveness of
the screening but also demonstrated that our approach can
successfully identify 5′ UTRs that outperform at least one plasmid
that is widely used and optimized for gene therapy.

Synthetic 5′ UTRs enhance protein expression levels in non-
viral DNA therapies. From the six experimentally validated 5′

UTRs that increased GFP production in HEK 293T cells (Sup-
plementary Fig. 6), we chose the top three 5′ UTRs candidates for
additional testing in human muscle cells, since DNA-encoded
therapeutics are often delivered into human muscle to trigger the
expression of vaccines or therapeutics52,53 (Fig. 4c), Notably, all
three 5′ UTRs (NeoUTR1, NeoUTR2, and NeoUTR3), which
increased protein abundance of GFP by 37% to 58% in HEK
293T, were designed by our genetic algorithms. We used human
rhabdomyosarcoma (RD) cells as a model for human muscle
cells, finding that all three 5′ UTRs enhanced GFP expression in
RD cells by 34% (Fig. 4d). We also compared the synthetic 5′

UTRs with commonly used introns and with 5′ UTRs that have
been used to enhance gene expression under the CMV promoter
in previous studies: (i) a chimeric intron from the pmax
Cloning plasmid (https://bioscience.lonza.com/lonza_bs/US/en/
Transfection/p/000000000000191671/pmaxCloning-Vector), (ii)
intron 2 of the human beta-globin gene54, (iii) a tripartite leader
sequence of human adenovirus mRNA linked with a major late
promoter enhancer (TM)55, and (iv) the first intron of the human
CMV immediate early gene (Intron A)56. Compared to these
sequences, our synthetic 5′ UTRs more strongly enhanced gene
expression in HEK 293T and RD cells (Supplementary Fig. 7).

To demonstrate the potential therapeutic utility of these UTRs,
we expressed two different therapeutic proteins with these 5′

UTRs: vascular endothelial growth factor (VEGF), which
stimulates the formation of blood vessels57; and C–C motif
chemokine ligand 21 (CCL21), which can recruit immune cells
for immunotherapy58. Two out of the three 5′ UTRs increased
VEGF expression compared to the commercial plasmid, and one
of these, NeoUTR2, increased VEGF production by 42% relative
to pVAX1 (p= 0.01) (Fig. 4e). All three 5′ UTRs increased CCL21
expression by greater than 100% relative to pVAX1 (p= 0.02,
0.04, 0.0002, respectively), and NeoUTR3 showed an impressive
increase of 452% (Fig. 4f). In summary, we identified three 5′

UTR thru in silico design and high-throughput screening that
significantly increase protein expression levels for fluorescent
protein reporters (by up to 58%) and therapeutic proteins (by up
to 452%) from non-viral gene therapy vectors.

Combinatorial synthetic 5′ UTRs can further enhance protein
expression. Considering our promising results using synthetic 5′

UTRs, we sought to investigate whether combinations of these 5′

UTRs might further enhance GFP expression levels (Fig. 5a). Using
our three NeoUTR leads as building blocks, we constructed six
combinatorial 5′ UTRs (CoNeoUTRs) by joining two of the NuUTRs
with a 6-nt linker (CAACAA). These were labeled as CoNeoUTR2-3
(NeoUTR2-NeoUTR3), CoNuUTR1-3 (NeoUTR1-NeoUTR3), Co
NeoUTR3-2 (NeoUTR3-NeoUTR2), CoNeoUTR1-2 (NeoUTR1-
NeoUTR2), CoNeoUTR3-1 (NeoUTR3-NeoUTR1), and CoNeo
UTR2-1 (NeoUTR2-NeoUTR1). We inserted each combinatorial 5′

UTR upstream of the GFP coding sequence, co-transfected HEK
293T cells with the resulting plasmids and the BFP expression
plasmid, and then measured GFP and BFP fluorescence (Fig. 5b). We
observed that the strength of the 5′ UTR combinations was positively
correlated with the strengths of the two individual 5′ UTRs (Sup-
plementary Fig. 8) Moreover, we observed that for the CoNeoUTRs
constructed with two different NeoUTRs, the strength was higher if
the stronger NeoUTR was placed at the 3′ end: CoNeoUTR1-2 >
CoNeoUTR2-1, CoNeoUTR1-3 >CoNeoUTR3-1, and CoNeo
UTR2-3 >CoNeoUTR3-2.

Finally, we tested how the artificial 5′ UTR elements modulate
gene expression in different cell types. In addition to HEK 293T,
we chose human and mouse muscle cell lines RD and C2C12,
respectively, because muscle is a common targeted tissue for
vaccines and neutralizing antibody gene therapies59,60. We also
selected human breast cancer cell line MCF-7 to test its potential
applicability in cancerous cell lines for cancer gene therapies61.
We found that all three 100-bp artificial 5′ UTRs (NeoUTR1,
NeoUTR2, and NeoUTR3) enhanced protein expression in the
three cell types and HEK 293T cells; however, the relative
strengths of the 5′ UTRs were different in different cell types
(Fig. 5c). Overall, 78% of all conditions tested, the synthetic 5′

UTRs were statistically stronger than pVAX1 (the p-values are
labeled in Fig. 5c) across the four cell types. Thus, these results
show that the 5′ UTR sequences and their combinatorial
counterparts identified in this study can significantly enhance
protein expression across a variety of mammalian cell types,
further validating the applicability of our approach.

In summary, synthetic 5′ UTRs can enhance protein produc-
tion across multiple cell types and can be combined together to
further modulate protein levels.

Discussion
In this study, we developed a robust strategy for the systematic
discovery and engineering of 5′ UTRs for enhanced protein
expression. We trained a computational model using gene
expression information on naturally occurring 5′ UTRs and
evolved a synthetic 5′ UTR library. We developed a recombinase-
based high-throughput screening platform to overcome the sig-
nificant heterogeneity that limits the accuracy of lentiviral-based
screens. The serine recombinase BxbI integrates one copy of
tagged genetic elements at a specific location in the host genome,
eliminating the copy number and position effects that are seen in
conventional lentiviral-based library screening. We observed high
reproducibility of this recombinase-based library screening
strategy for 5′ UTR engineering, allowing us to identify three
synthetic 5′ UTR candidates that increase protein production
across multiple cell types. This strategy allowed us to identify
synthetic 5′ UTRs that outperformed the commonly used pVAX1
vector and four commonly used introns in terms of their ability to
increase protein production as non-viral gene delivery vectors.

Previous work has demonstrated that machine learning
methods can be employed to predict 5′ UTR translation efficiency
in mammalian cells and yeast24–27. Here, we extended the use of
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machine learning from prediction to the de novo design of 5′

UTRs that would potentially enhance protein expression in
human cells, which imposes a key challenge in gene therapy and
drug manufacturing. Compared with elucidating mechanisms for
validated 5′ UTRs, such as the key role of Kozak sequences27 or
harpins near the 5′ cap62,63, our work instead focus on identifying
5′ UTRs that are stronger than that on the commercially and
clinically used gene therapy vectors and the commonly used
introns and other 5′ UTRs. Future work could include investi-
gations into the underlying mechanisms that enhance gene
expression from these 5′ UTRs to provide insights for further
improvements.

Lentiviral-based library screening is often a common choice for
massive parallel reporter assays. Here, we observed that lentiviral-
based 5′ UTR screenings yielded poor reproducibility across
biological replicates (Fig. 3c). To overcome this limitation, we
constructed a recombinase-based library screening platform,
which we find eliminates the copy number and position effects in

conventional lentiviral-based screening, and is virtually applicable
for screening of any genetic element of interest. Our library of
12,000 5′ UTRs was originally synthesized in the form of an array
of 100-bp long DNA oligonucleotides and subsequently cloned
into vectors (Fig. 1). However, we should note that naturally
occurring 5′ UTRs in mammalian species are often longer than
100 bp, Future work exploring 5′ UTR diversity might benefit
from improved DNA synthesis technologies that will make it
possible to expand the length of the diversity region that is tested
in the screening. In this regard, here we found that individual
synthetic 5′ UTRs can be combined to enhance protein expres-
sion. In the future, these regions could be combined with trans-
lation initiation site (TIS) sequences64 that might potentially
outperform the commonly used Kozak sequences for gene
therapy.

Although the synthetic 5′ UTRs we validated in this study were
strong across multiple contexts, their relative performance did
vary depending on cell type. To optimize gene therapy for specific

Fig. 5 Effects of combinatorial 5′ UTRs on GFP expression in various cell lines. aWe constructed six distinct 5′ UTR combinations by combining different

pairwise permutations of the three validated 5′ UTR candidates with a CAACAA linker between them, and then inserted these combinations into the

pVAX1-GFP plasmid directly upstream of the Kozak sequence. b GFP expression from the 5′ UTR combinations on GFP expression in HEK 293T cells.

Statistical differences between groups were analyzed by ordinary one-way ANOVA with 95% confidence interval. The relative protein expression was

normalized to that from the pVAX1-GFP plasmid, set as 100 (%) and highlighted as a gray dotted line. Data are presented as mean values ± SD for three

biological replicates. The p-values for CoNeoUTR2-1, CoNeoUTR3-1, CoNeoUTR1-2, CoNeoUTR3-2, CoNeoUTR1-3, and CoNeoUTR2-3 vs pVAX1 are

0.0025, <0.0001, <0.0001, <0.0001, <0.0001, and <0.0001. c Test of the single and combinatorial 5′ UTRs on GFP expression in various cell lines. Source

data are provided as a Source data file. Statistical differences between groups were analyzed by two-way ANOVA with 95% confidence interval. Dunnett

test was performed to correct for multiple comparisons in ANOVA post-hoc analysis. The relative protein expression was normalized to that from the

pVAX1-GFP plasmid, set as 100 (%) and highlighted as a gray dotted line. Data are presented as mean values ± SD for three biological replicates. In HEK

293T cell lines, the p-values for NeoUTR1, NeoUTR2, NeoUTR3, CoNeoUTR2-1, CoNeoUTR3-1, CoNeoUTR1-2, CoNeoUTR3-2, CoNeoUTR1-3, and

CoNeoUTR2-3 vs pVAX1 are <0.0001, <0.0001, <0.0001, 0.0002, <0.0001, <0.0001, <0.0001, <0.0001, and <0.0001. In RD cell lines, the p-values for

NeoUTR1, NeoUTR2, NeoUTR3, CoNeoUTR2-1, CoNeoUTR3-1, CoNeoUTR1-2, CoNeoUTR3-2, CoNeoUTR1-3, and CoNeoUTR2-3 vs pVAX1 are <0.0001,

<0.0001, 0.0055, 0.5989, 0.0836, 0.1336, <0.0001, 0.0549, and <0.0001. In MCF cell lines, the p-values for NeoUTR1, NeoUTR2, NeoUTR3,

CoNeoUTR2-1, CoNeoUTR3-1, CoNeoUTR1-2, CoNeoUTR3-2, CoNeoUTR1-3, and CoNeoUTR2-3 vs pVAX1 are 0.0042, <0.0001, <0.0001, 0.3513, 0.9132,

<0.0001, <0.0001, 0.0002, and <0.0001. In C2C12 cell lines, the p-values for NeoUTR1, NeoUTR2, NeoUTR3, CoNeoUTR2-1, CoNeoUTR3-1, CoNeoUTR1-

2, CoNeoUTR3-2, CoNeoUTR1-3, and CoNeoUTR2-3 vs pVAX1 are <0.0001, 0.0042, 0.0306, 0.9997, 0.0089, <0.0001, <0.0001, <0.0001, and <0.0001.

(*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 vs pVAX1).
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types of cells, it could be useful to repeat the strategy employed
here but focused on the cells of interest. In addition, future work
should test whether these synthetic 5′ UTRs work in other con-
texts, including AAV and lentiviral vectors, and with additional
payloads. Finally, optimized 5′ UTRs need to be ultimately vali-
dated in vivo for clinical translation, and translational efficiencies
across multiple model systems beyond human cells may need to
be taken into account to ensure translatability.

Methods
5′ UTR library design and construction. To select the endogenous sequences, we
used publicly available matched RNA-Seq and Ribo-Seq datasets, from three
human cell lines/tissues: (i) human embryonic kidney 293T (HEK 293T cells),
(ii) human prostate cancer (PC3) cells, and (iii) human muscle tissue. The first two
were chosen as these are commonly used cell lines, whereas the third (human
muscle tissue) was used because it could be the target tissue of DNA vaccine
therapy. We then analyzed the RNA-seq and Ribo-seq datasets and determined
their translation efficiency rates and mRNA levels. Per-transcript translation effi-
ciency (TE) was defined as Ribo-seq RPKM/RNA-seq RPKM, where RPKM
represents Reads Per Kilobase of transcript per Million mapped reads. Transcripts
with insufficient RNA-Seq or Ribo-Seq coverage were discarded. Our final selection
of natural 5′ UTRs (Supplementary Data 1) consisted of: (i) top 1505 sequences
and bottom 937 sequences from transcripts with highest and lowest TEs from HEK
293T cells, (ii) top 1692 and bottom 756 sequences from transcripts with highest
and lowest TEs from PC3 cells, (iii) 1831 sequences from transcripts that displayed
maximum TEs for muscle tissue, and (iv) 1693 5′ UTR regions from transcripts
with high mRNA expression levels in muscle tissue, which were extracted from
publicly available data from the Genotype-Tissue Expression (GTEx) project.

We trained and developed a computational model to predict the TE based on its
5′ UTR characteristics. To establish this model, we first identified which sequence
features of 5′ UTRs increased gene expression levels and TE. For this aim, we
extracted several sequence features, including k-mer frequency, RNA folding
energy, 5′ UTR length, and number of ORFs (The features with highest feature
importance are listed in Supplementary Fig. 1). We developed a computational
model trained on sequence features to predict TE and mRNA expression under
various cell conditions. The model used trained data on experimentally determined
translation efficiency rates and mRNA levels, which were obtained from analyzing
publicly available RNA-seq and Ribo-seq data of endogenous genes from three
human cell types (HEK 293T cells, PC3 cells, and human muscle tissue). We used
the randomforest R package with default parameters, both to build and to evaluate
the model. Data were subdivided for training/testing: 80% of the data was used for
training the model and 20% for testing. This process was repeated 5 times for 5
randomly selected non-overlapping test sets (i.e., 5-fold cross validation). The final
evaluation metric was the Spearman correlation between predicted translation
efficiency and actual translation efficiency (RPKM RiboSeq/RPKM RNAseq).

The workflow consisted of the following steps: (i) extract the sequences features
of the 5′ UTRs, including those nucleotides surrounding the AUG region, i.e., the
whole 5′ UTR plus 15 bp of the CDS sequences, for each of the expressed
transcripts in each cell line or tissue. (ii) Train a Random Forest machine learning
method for each cell type/tissue, to learn a function that maps sequence features to
mRNA expression and TE. (iii) Design a set of 100 bp synthetic sequences that
maximize TE and protein expression (where protein expression is computed as
RNA levels * TE). A genetic algorithm (GA) was applied to search the 100-bp
sequence space. For each GA run, we randomly sampled 100 endogenous 5′ UTR
sequences as an “initial population” prior to undergoing evolution and selected
them or their offspring based on their fitness, which is defined by their predicted
TE or predicted protein expression from the previous trained model. (iv) From our
GA results, we kept the top 5 sequences with at least 5 bp differences in each run.
(v) To validate the accuracy of our model, we also selected sequences with a small
number of mutations from the sequence’s endogenous origin, but large increase/
decrease of TE or Protein RNA expression compared to that of the endogenous
sequence. The first set was designed by evolving 1198 5′ UTRs within 2 generations
to test the algorithm (Supplementary Data 2). The second set of 2388 5′ UTRs was
designed as follows: from the output of each run, we took the best five sequences
during the run, requiring them to have at least five mismatches of each other, and
also requiring that their scores were at least 0.05 better than those of the initial
naturally occurring sequences within a maximum of 50 generations
(Supplementary Data 3).

A 12 K oligonucleotide library of 140-mer was synthesized using CustomArray
to contain 100 bp variable 5′ end sequences flanked by PCR priming sites. The
ssDNA of each 140 bp consisted of two 20-bp homologous regions at two ends and
100 bp representing the 5′ UTR (from the 5′ UTR library). The details of the library
are in Supplementary Data 4. The library was cloned to the reporter plasmids using
conventional restriction enzyme cloning and Gibson Assembly.

Plasmid construction. The plasmids used in this study were built using restriction
enzyme cloning and Gibson assembly. The primers used in this study are in

Supplementary Table 1. The plasmid maps are available in FigShare (https://doi.
org/10.6084/m9.figshare.14624472.v1).

The construction of the HEK 293T landing pad cell lines. HEK 293T cells
(ATCC, VA, USA) were grown in polystyrene flasks in Dulbecco’s Modified Eagle’s
Medium (Life Technologies, CA, USA) supplemented with 10% fetal bovine serum
(VWR, PA, USA) and 1% penicillin/streptomycin (Life Technologies, CA, USA) at
37 °C and 5% CO2. When the cells were 80–90% confluent, cells were harvested
with 0.25% trypsin (Life Technologies, CA) for transfection. To make lentivirus
containing the landing pad, HEK 293T cells were plated in 6-well plate format. In
brief, 12 µL of FuGENE HD (Promega, WI, USA) was mixed with 100 µL of Opti-
MEM medium Life Technologies, CA) and was added to a mixture of the three
plasmids: 0.5 µg of lentiviral envelop vector pCMV-VSV-G vector, 0.5 µg of len-
tiviral packaging vector psPAX2, and 1 µg of lentiviral expression vector for
landing pad insertion pJC191 (Supplementary Fig. 9). After 20 min incubation of
FuGENE HD/DNA complexes at room temperature, 1.8 million cells were added
to each FuGENE HD/DNA complex tube, mixed well, and incubated for another
10 min at room temperature before being added to 6-well plates containing 1 mL
cell culture medium, followed by incubation at 37 °C and 5% CO2. The media was
removed 24 h after transfection and 2 mL fresh media was added. After another
24 h transfection, supernatant containing newly produced viruses was collected,
and filtered through a 0.45 mm syringe filter (Pall Corporation, MI, USA) and used
for infection. The filtered supernatant was diluted by different titrations of viruses
using fresh media, and mixed with 8 mg/mL polybrene before added into 6-well
plates with 1 million cells seeded on each well 24 h before infection. Cell culture
medium was replaced the next day after infection and cells were cultured for at
least 3 days prior to FACS analysis or sorting using BD FACSAria. Single YFP
positive cells from the well with less than 10% YFP positive cells (roughly 0.1 MOI)
were sorted into a 96-well plate and were cultured in fresh medium for 2 weeks and
expanded to 6-well plates with medium supplemented with 50 µg/mL hygromycin
(Life Technologies, CA, USA). Two clones with single copy landing pad insertion,
HEK-LP3, and HEK-LP9, were selected as the parental landing pad cell lines for
library screening.

Library transfection, recombinase-based library integration, and next-

generation sequencing. The landing pad cells were seeded as 1 million per well on
6-well plates 24 h before transfection. One µg library plasmid pJC253L (Supple-
mentary Fig. 10) carrying an attB site and the 5′ UTR library and 1 µg BxbI
recombinase expressing plasmid pCAG-BxbI were mixed with 6 µL FuGENE HD
and added into each well. Eight wells of each landing pad cells were used for
transfection. To ensure the reproducibility of our screening results, we maintained
>25-fold coverage of each library member throughout the screening pipeline. 4 µg/
mL puromycin was added three days post-transfection, and the cells were cultured
for at least one more week. The cells were then analyzed using FACS and sorted
into three bins based on distinct levels of GFP intensity while the unsorted cells
were used as control. We chose three sorting brackets of top 0–2.5%, 2.5–5%, and
5–10%, instead of only one bracket of 0–10%, to reduce the false positive candi-
dates. Only the candidates that were significantly over-represented in all three bins,
relative to background (0–100% bin), were selected as candidates for further
validation.

For NGS library preparation, the genomic DNA was extracted from each bin
and 800 ng were used as the template for PCR amplification with barcoded Pi7
primer. Sequencing was performed at the MIT BioMicro Center facilities on an
Illumina NextSeq machine using 150 bp double-end reads.

Lentiviral-based screening of the 5′ UTR library in HEK 293T cells. When HEK
293T cells were 80–90% confluent, cells were harvested with 0.25% trypsin for
transfection. For each well, 12 µL of FuGENE HD (Promega, WI, USA) was mixed
with 100 µL of Opti-MEM medium Life Technologies, CA) and added to a mixture
of the three plasmids: 0.5 µg of lentiviral envelop vector pCMV-VSV-G vector,
0.5 µg of lentiviral packaging vector psPAX2, and 1 µg of lentiviral 5′ UTR library
plasmid pJC240L (Supplementary Fig. 11). After 20 min incubation of FuGENE
HD/DNA complexes at room temperature, 1.8 million cells were added to each
FuGENE HD/DNA complex tube, mixed well, and incubated for another 10 min at
room temperature before being added to 6-well plates containing 1 mL cell culture
medium, followed by incubation at 37 °C and 5% CO2. The media was removed
24 h after transfection and 2 mL fresh media was added. After another 24 h
transfection, supernatant containing newly produced viruses was collected, filtered
through a 0.45 mm syringe filter, and used for infection.

The filtered supernatant was diluted by titration of viruses using fresh media,
and mixed with 8 mg/mL polybrene before added into 6-well plates with 1 million
HEK 293T cells seeded on each well 24 h before infection. Cell culture medium was
replaced the next day after infection and the infection efficiency was calculated for
at least 3 days prior to FACS analysis using BD LSR II. The infected HEK
293T cells from the well with less than 10% GFP positive cells (roughly 0.1 MOI)
were selected, as the integration of a single copy of the 5′ UTR was expected in
most of the infected cells. To ensure the reproducibility of the screening results, we
maintained >25-fold coverage of each library member throughout the screening
pipeline. The infected cells were sorted and further expanded for at least one week.
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The cells were then analyzed using FACS and sorted into three bins based on
distinct levels of GFP intensity while the unsorted cells were used as control.

For NGS library preparation, the genomic DNA was extracted from each bin
and 800 ng were used as the template for PCR amplification with barcoded Pi7
primer. Sequencing was performed at the MIT BioMicro Center facilities on an
Illumina NextSeq machine using 150 bp double-end reads.

NGS data pre-processing and analysis. Fastq files were first inspected for quality
control (QC) using FastQC. Fastq files were then filtered and trimmed using fas-
tx_clipper of the FASTX-Toolkit. Trimmed fastq files were collapsed using fas-
tx_collapser of the FASTX-Toolkit. The collapsed fasta file was used as an input for
alignment in Bowtie2 with a very sensitive alignment mode and aligned against the
library reference. The resulting SAM file was filtered for mapped reads using
SAMtools, and the reads were then quantified by summing the counts of each
unique promoter using an in-house R script. The reads were normalized by
dividing all reads in the sample by a size factor estimated by DESeq2. Replicability
was assessed using Pearson correlation values using the cor.test function R. Dif-
ferentially expressed 5′UTRs were identified using DESeq2. Top-ranked 5′ UTRs,
which were ranked based on their log2 fold change relative to the unsorted bin,
were selected as leads for experimental validation.

Measurement of the GFP expression of the plasmids with 5′ UTR candidates

in mammalian cells. HEK 293T cells, human rhabdomyosarcoma (RD) cells,
human breast adenocarcinoma (MCF-7) cells, and mouse C3H muscle myoblast
(C2C12) cells were obtained from the American Type Culture Collection. HEK-
293T, RD, MCF-7, and C2C12 cells were cultured in DMEM supplemented with
10% fetal bovine serum and 1% Pen/Strep at 37 °C with 5% CO2. When the cells
were 80–90% confluent, cells were harvested with 0.25% trypsin for transfection.

For HEK 293T cells, 50,000 cells per well on 96-well plates were plated 24 h
before the transfection and 50 ng of plasmid with different 5′ UTRs or introns
(Supplementary Tables 2 and 3) and 50 ng pEF1α-BFP was mixed with 0.3 µL
FuGENE HD used in each well; for RD cells, 10,000 cells per well on 96-well plates
were plated 24 h before transfection and 50 ng of plasmid with pJC271
(Supplementary Figs. 12 and 13) or plasmids with different 5′ UTRs and 50 ng
pEF1α-BFP was mixed with 0.5 µL FuGENE HD used in each well; for MCF-7 cells,
20,000 cells per well on 96-well plates were plated 24 h before transfection and
50 ng of plasmid with different 5′ UTRs and 50 ng pEF1α-BFP was mixed with
0.5 µL FuGENE HD used in each well; for C2C12 cells, 10,000 cells per well on 96-
well plates were plated 24 h before transfection and 50 ng of plasmid with different
5′ UTRs and 50 ng pEF1α-BFP was mixed with 0.3 uL Lipofectamine 2000 (Life
Technologies, CA, USA) used in each well. After one or two days, the GFP and BFP
intensity were measured using BD LSR II (Supplementary Fig. 14).

ELISA measurement of therapeutic protein production. To determine produc-
tion of therapeutic proteins with 5′ UTR candidates, we constructed plasmids
encoding secretory human vascular endothelial growth factor (hVEGF) or C–C
Motif Chemokine Ligand 21 (hCCL21), downstream of different 5′ UTR candi-
dates, respectively. HEK 293T cells were transfected with 100 ng of plasmid in 24-
well plates at 100,000 cells per well and cultured for 24 h with l mL complete
culture medium. After washing cells once with PBS, complete culture medium was
replaced with 0.5 mL plain DMEM supplemented with 1% Pen/Strep. Cells were
incubated at 37 °C with 5% CO2 for an additional 24 h. Supernatants were then
collected, spun down at 350 × g, and stored at −80 °C. The amount of each human
protein in the supernatant was quantified by enzyme-linked immunosorbent assay
(ELISA). Concisely, hVEGF concentration was determined by human VEGF ELISA
Kit (KHG0111, Thermo Fisher Scientific), following the manufacturer’s instruc-
tions; hCCL21 concentration was determined by human CCL21/6Ckine DuoSet
ELISA (DY366, R&D systems), following the manufacturer’s instructions. Data are
presented as pg/ml per 100,000 cells per 24 h.

Statistical analysis. All quantitative data are presented as mean ± standard
deviation (SD). The statistical analyses were performed with GraphPad Prism 7.0
(GraphPad Software, La Jolla, CA, USA) statistics software.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
Data supporting this study are presented in the main text and Supplementary

information, and are available from the corresponding authors upon request. The

plasmid maps are available in FigShare (https://doi.org/10.6084/m9.figshare.14624472.

v1). Raw FASTQ data has been deposited in the Gene Expression Omnibus, under the

accession code GSE176581. Ribosome profiling data used in this work corresponds to

GSE55195 (HEK293T), GSE35469 (PC3), and GSE56148 (muscle). This work used

public RNAseq data from the GTEx database (https://gtexportal.org/). The processed

data (extracted 5′ UTR features) used for model training has been made publicly

available in GitHub (https://github.com/zzz2010/5UTR_Optimizer). Source data are

provided with this paper.

Code availability
All code used to analyze, design, evolve, and select optimized 5′ UTR sequences for

enhanced protein expression is publicly available in GitHub (https://github.com/zzz2010/

5UTR_Optimizer). A stable release of the 5UTR_Optimizer code (version 1.0) is

available at Zenodo (https://doi.org/10.5281/zenodo.4782661).
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