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Background & Summary
Solute diffusion is the way in which impurities are transported in alloys, and many important material
properties depend critically upon this transport, such as phase transition kinetics1–3. In general solute
diffusion is controlled by the random jumps of point defects within the material. In the case of vacancy
mediated diffusion in dilute solid solution alloys, the impurity diffusion coefficient can be accurately
predicted from the rates of atomic vacancy exchanges around the impurity, and robust formulae have
been developed for major crystal structures4.

Despite the importance of impurity diffusion coefficients, only a small fraction of dilute binary alloy
diffusivities have been experimentally measured5,6. The limited data is due to many experimental
challenges, including a lack of corresponding radioactive tracer, detection limitations for slow diffusers,
and metastability of the host crystal structure, as well as simply the time and cost of exploring the tens
of thousands of possible systems. First-principles theoretical methods overcome these issues, as they are
able to utilize a wide variety of elemental species, sample and quantify high activation barriers, work with
metastable crystal structures, and can be performed relatively cheaply and quickly compared to
experiments when properly automated. A computational approach is also able to provide the diffusion
data in a consistent framework, allowing all diffusivities to be compared on equal footing.

Expanding upon previous theoretical studies of dilute solute diffusion in alloys7–14, we present in this
work the largest consistently calculated ab-initio solute diffusion database to-date. This database
consists of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt hosts.
These diffusion calculations were automated using our high-throughput workflow software, the
MAterials Simulation Toolkit (MAST),15,16 developed at the University of Wisconsin-Madison. MAST is
built upon pymatgen17 and automatically handles input/output processing of ab-initio calculations and
manages job submission to cluster queues. MAST can be used to control complex workflows, and was
used here to manage multifrequency model calculations on a large number of systems.

The paper is organized as follows. We first briefly outline our computational methodology for
generating dilute solute diffusion data and detail our empirical corrections. An overview of the structure
and description of the data will then be presented. Finally we demonstrate the validity of our data with an
analysis of associated DFT errors and comparisons to experimental diffusion measurements.

Methods
Computational methods
We perform all calculations using the Vienna ab-initio Simulation Package (VASP)18–21 version 5.3.3. We
treat exchange–correlation in the Generalized Gradient Approximation (GGA), as parameterized by
Perdew, Burke, and Ernzerhof (PBE)22,23. The projector augmented wave method (PAW)24,25

pseudopotentials were used with a plane wave cutoff of 350 eV for all systems. The constant 350 eV
energy cutoff was used to keep consistency and is higher than the largest ENMAX of elements calculated.
Bulk and defect calculations were done using 4 × 4 × 3 HCP conventional supercells for Mg alloys
containing 96 atoms and 3 × 3 × 3 cubic FCC supercells for Al, Cu, Ni, Pd, and Pt alloys containing 108
atoms. The Brillouin zone was sampled by a 5 × 5 × 5 Gamma centered mesh for the HCP supercells and a
4 × 4 × 4 Monkhorst-Pack k-point mesh for the FCC supercells. Errors in energy are converged to less
than 1 meV/atom with respect to the energy cutoff and k-points; errors in force are relaxed to less than
0.01 eV/Å. All runs that require magnetization were done as spin-polarized calculations; these include all
Ni alloys, and Cr, Mn, Fe, Co, and Ni solutes. The need to run spin-polarized calculations for magnetic
solutes in non-magnetic hosts has previously8,11 been found to be essential for diffusion calculations.
Additional computational method effects such as finite supercell errors and comparison between different
exchange-correlation functionals will be discussed in the validation section.

Migration barriers for atomic jumps were calculated using the climbing image nudged elastic band
(CI-NEB) method with a single intermediate image. For the transitions we consider, which are single
atom jumps to nearest neighbor sites, a single image is sufficient to determine the transition saddle point.
Migration attempt frequencies (υhop) were calculated with the Vineyard26 approach. However, rather than
computing all 3n vibrational modes, we consider only the vibrational modes of the hopping atom (with
all other atoms held fixed) in its initial position (υinitial) and at the saddle point configuration (υsaddle):

νhop ¼

Q3n
1 ν

initial
i

Q3n - 1
1 ν

saddle
i

�

Q3
1 ν

initial
i

Q2
1 ν

saddle
i

:

Dilute solute diffusion models
We calculate solute diffusion coefficients by following the multi-frequency framework developed by
LeClaire27. Figure 1 shows all the atomic jumps we consider for both FCC and HCP hosts. For FCC we
use the five-frequency diffusion model1,4 (Fig. 1a) and for HCP we use the eight-frequency diffusion
model28 (Fig. 1b). These diffusion models assume dilute solute concentrations and therefore do not
include solute-solute interactions. Each jump frequency (ωi), is calculated from DFT migration barriers
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(Ei) and attempt frequencies (υi) in the simple Arrhenius expression

ωi ¼ νi exp
- Ei

kBT

� �

;

where kB is the Boltzmann constant and T is the temperature. In the five-frequency FCC diffusion model,
ω0 is the bulk vacancy hop rate away from any solutes, ω1 is the vacancy-solute rotation hop, ω2 is the
vacancy-solute exchange hop, and ω3 and ω4 are the vacancy-solute dissociation and association hops,
respectively. In the eight-frequency HCP diffusion model, ωa and ω’a are the vacancy-solute rotation
hops from basal orientation to c-axis and vice versa, ωb and ω’b are the vacancy-solute rotation hops
within the basal and c-axis planes, ωc and ω’c are the vacancy-solute dissociation hops from the basal and
c-axis configurations, and ωX and ω’X are the vacancy-solute exchange hops within the basal and c-axis
planes. For the FCC systems, the prefactors for all five frequencies were calculated and included. For the
HCP systems, two prefactors were calculated and used, one for all solute atom transitions (ωX and ω’X)
and one for all solvent atom transitions (ωa, ω’a, ωb, ω’b, ωc, and ω’c).

To improve the predictive capabilities of DFT diffusion, we propose a correction on top of direct DFT
calculated solute diffusivity, by scaling according to how much the DFT host self-diffusivity deviates from
the experimental self-diffusivity. We accomplish this by multiplying the raw DFT diffusivities by a
correcting Arrhenius equation,

Dsolute
corrected ¼ Ashif t exp

- Eshif t

kBT

� �

UDsolute
DFT ;

where the correctional shift parameters, Ashift and Eshift, are determined by fitting the DFT host
self-diffusivity to experimental measured self diffusivity such that,

Dhost
experiment � Ashif t exp

- Eshif t

kBT

� �

UDhost
DFT :

Table 1 reports these correction parameters for all six host elements along with the uncorrected and
corrected diffusion constants and activation barriers. Because the shift parameters were determined from
an Arrhenius fit to all combined experimental data, the corrected diffusion constant and activation
barrier essentially represents the average experimental self-diffusivity. The correct diffusion constant
results from a direct product between Ashift and the uncorrected diffusion constant. The corrected
activation barrier results from a direct summation between Eshift and the uncorrected activation barrier.
All solute diffusivities and diffusion parameters reported henceforth will be values after applying this
corrective procedure. This correction is not essential but improves results compared to experiments and
creates almost no loss of generality for our approach because self-diffusion coefficients are known for
almost all the elements of interest.

Figure 1. Schematic diagram depicting the atomic hops considered in our calculations, for (a) the FCC five-

frequency diffusion model, and (b) the HCP eight-frequency diffusion model.
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Code availability
The MAterials Simulation Toolkit (MAST)15,16 is the code package used for the calculation of these
diffusion coefficients. MAST is an open-source code released with the Massachusetts Institute of
Technology (MIT) license and the latest version is freely accessible at https://pypi.python.org/pypi/
MAST. The input files used in this work can be found with MAST version 1.3.3 at the following Zenodo
link16 http://dx.doi.org/10.5281/zenodo.48656.

Data Records
The full diffusion dataset is publically available at Figshare (Data Citation 1) and at our own interactive
web page (http://diffusiondata.materialshub.org). The data for each host element catalogs the various
properties of the host element, hopping properties of the solute in the host, and extracted solute diffusion
parameters. There is only one set of host element properties, while additional data columns are used for
each additional solute element. The solute diffusion parameters, solute diffusion constant, D0 and solute
diffusion activation energy, Q, can be used in the following Arrhenius diffusion equation to generate the
temperature, T, dependent solute diffusivity:

Dsolute Tð Þ ¼ Dsolute
0 exp

-Qsolute

kBT

� �

:

Graphical representation of the results
In Figure 2 we plot the DFT diffusion activation energies in each of the six host alloys. These diffusion
activation barriers are extracted from our DFT diffusivities in the temperature range between the host
element’s melting temperature and half melting temperature. Quantitative similarities can be seen
between the 3d, 4d, and 5d solutes, with a noticeable dip for the 3d magnetic elements, Cr, Mn, Fe, Co,

Figure 2. Trend in solute diffusion activation barriers in all host alloys, Mg, Al, Cu, Ni, Pd, and Pt from DFT

calculations across the periodic table. The barriers are extracted from the temperature range between the host

element’s melting temperature and half melting temperature. For Mg, only the basal diffusion barrier is plotted;

the trend for the c-axis diffusion barrier is almost the same.
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and Ni. While the hosts Mg, Al, or Cu does not show any magnetization; the presence of some of these
magnetic solutes induces a moment at the transition state of the solute-vacancy exchange. This effect
reduces the energy barrier for those transitions, resulting in the dips seen in Fig. 2.
If these solutes were calculated without spin-polarization, the 3d curves would instead follow the same
trend as the 4d and 5d curves.

An increase in the diffusion activation energy correlates with an increased d-shell filling, peaking near
half d-filling, and then finally decreasing back down as the d-shell completely fills. This smooth change is
only broken by the above-mentioned magnetic 3d solutes. The amount of change in the activation energy
becomes more significant at higher d-shells, with larger barrier changes in 5d as compared with 3d when
moving across the table. Between different d-shells, diffusivities converge and cross over near the Ti/V
groups on the left and near the Ni/Cu groups on the right. These transition points are not surprising as
elements in these periodic groups are quite similar chemically. The resulting effect gives higher activation
energies with higher d-shell within the range between the Ti/V and Ni/Cu groups, and lower activation
energy with higher d-shells outside of this range.

Technical Validation
Validation with experimental diffusion measurements
Figure 3 compares corrected DFT diffusion values to experimentally measured diffusion coefficients for
dozens of dilute solutes in Mg, Al, Cu, and Ni. In these plots, the DFT diffusivity is shown for the same
temperature range as used in the experimental data. Both experimental and DFT values are determined
from Arrhenius fits (Eq. (1)) to the exact measurements and calculations. The experimental and DFT
values for a given system and temperature are then viewed as an (x,y) pair and plotted. We connect these
points with lines since Arrhenius expression trends are perfectly linear on log-log plots. Perfect agreement
would result in a 45° y= x line, right along the diagonal. A line that is shifted by a constant off the central
diagonal represents a multiplicative factor between theory and experiment, i.e., a discrepancy in Dsolute

0 in
Eq. (1). Lines that are not on a 45° slope indicate activation barrier differences between theory and
experiment, i.e., a discrepancy in Qsolute in Eq. (1). More than half of all solutes in Al and almost all

Figure 3. Comparison between DFT solute diffusivities and experimental measurements. Each line represents

a solute in Mg, Al, Cu, or Ni. The DFT diffusivity for each solute is matched up with the experimental

diffusivity within the experimental temperature range. Dotted black lines represent the identity line (1 × ) along

with 10 × and 0.1 × DFT versus experiment.
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solutes in Mg, Cu, and Ni fall within a factor of 10 with respect to the experiment. The largest diffusivity
disagreement is seen for solute diffusion in Al, where DFT over-predicts Tl diffusion by three orders of
magnitude and under-predicts Co and Fe diffusion by four orders of magnitude each. In Mg, the solute
Ag is under-predicted by DFT, while the largest barrier disagreement is found for Fe and Ni. It is clear
that most of the solutes that show large disagreement between theory and experiment are the magnetic
elements, Cr, Mn, Fe, Co, and Ni. The close agreement we find for all solutes in Ni, which were all done
spin-polarized, suggests that this is not an intrinsic failure for all magnetic calculations. We instead
conclude that the issue lies with the configuration of a single solute magnetic moment surrounded by host
atoms with no moments. Either DFT is not able to capture all the effects of this interaction, or some other
diffusive mechanism is activated by this single atom moment.

We quantify the DFT/experimental agreement using three host-dependent metrics: two solute
diffusion barrier RMS errors, for both weighted and unweighted averages, and a solute diffusion
coefficient ratio.

The unweighted diffusion barrier RMS error is calculated as:

ERMS
host ½eV � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 EDFT

i - E
expt
i

� �2
h i

n

v

u

u

t

;

while the weighted diffusion barrier RMS error is computed as:

Ew -RMS
host ½eV � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1

1
T low
i

-

1
T
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i

� �
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i

� �2
� �
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-

1
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i

� �

v

u

u

u

u

u

t

;

where EDFT
i and E

expt
i are the DFT and experimental diffusion barriers for solute i, respectively, while T low

i
and T

high
i form the experimental temperature range in Kelvin for solute i, and n is the number of solutes

compared. This method places lower weights for narrower experimental temperature ranges due to the
intrinsically higher fitting error on the experimental diffusion. ERMS

host and Ew -RMS
host represent the diffusion

activation barrier RMS error in units of eV for a particular host system, unweighted and weighted,
respectively.

The diffusion coefficient ratio metric is the average of the log of ratios of DFT to experimental
D values, which is computed in the following manner:

log 10 Dratio
host

	 


¼

Pn
i¼1 log 10 DDFT

i =D
expt
i

	 

�

�

�

�

n
;

where DDFT
i and D

expt
i are average DFT and experimental diffusion coefficients for solute i, over the

experimental measurement range. Dratio
host represents an average deviation factor between DFT and

experiment for a particular host system. Please note that the number given is not for the log deviation
error, rather it is a direct diffusion ratio factor Dratio

host . From Fig. 3 we find this metric triplet,
(ERMS

host , E
w -RMS
host , Dratio

host ), to be: (0.404 eV, 0.436 eV, 5.44) for Mg-host, (0.294 eV, 0.229 eV, 14.7) for
Al-host, (0.183 eV, 0.134, 3.32) for Cu-host, and (0.130 eV, 0.134 eV 2.30) for Ni-host. Combining all
experimental comparisons for these four hosts, we find our performance metric, (ERMS

host , E
w -RMS
host , Dratio

host ),
to be: (0.264 eV, 0.231 eV, 5.16). Excluding the magnetic solutes from non-magnetic hosts, our
performance metric improves to: (0.225 eV, 0.176 eV, 3.31).

Analysis of associated computational errors
To quantify the limitations of our computational methodology, we compute the errors resulting from
several aspects of our calculation settings. These include finite-size supercell effects, choice of
the exchange-correlation functional, effect of extended solute-vacancy binding, and approximation
of the hopping atom attempt frequency.

DFT calculations are widely used because of their efficiency, reliability and transferability. However,
they are still generally limited to calculations of less than about 1000 atoms, and typically many fewer for
studies involving thousands of calculations. The small periodic supercell sizes can introduce significant
finite size cell effects due to strain and other fictitious image effects, and must be carefully considered. We
estimate the magnitude of this effect by calculating the vacancy formation and migration energy for Mg
with 3 × 3 × 2 (36 atoms), 4 × 4 × 3 (96 atoms), and 6 × 6 × 4 (288 atoms) HCP supercells, and for Pd/Pt
with 2 × 2 × 2 (32 atoms), 3 × 3 × 3 (108 atoms), and 4 × 4 × 4 (256 atoms) FCC supercells. We then fit a
linear relation between these energies versus the inverse of the total number of atoms at each size.
We find that Mg vacancy formation energy is almost independent with respect to system size, while both
Pd and Pt vacancy formation energies decrease with system size. The extrapolated formation energy at
infinite size, corresponding to the y-intercept of the fit, is within 50 meV of that from the size we use for
all future diffusion calculations (4 × 4 × 3 for HCP, and 3 × 3 × 3 for FCC). The extrapolated vacancy
migration energy at infinite size is within 30 meV to that from the size we use. For the smallest Mg
supercell size, 3 × 3 × 2, we find that only two unit cells in the c-axis direction is clearly insufficient, as the
c-axis vacancy migration energy deviates significantly from linear scaling.

www.nature.com/sdata/
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In Kohn-Sham DFT, the exchange-correlation (xc) functional is an approximation to the exact
exchange interaction and electronic correlation between many-body electrons. Approximating the xc
functional is necessary because the exact functional form is unknown. No current xc functional is
accurate for all system properties, and a variety of functionals should be tested for the application
of interest. We test the self-diffusivity of the six host elements against experimental measurements
for four different xc functionals: local density approximation (LDA), Perdue-Wang’91 (PW91),
Perdew-Burke-Ernzerhof (PBE), and PBE solid (PBEsol). All of these are widely used exchange-
correlation functionals in DFT.

Figure 4 shows the self-diffusivity predictions from the four xc functional as well as the experimentally
measured diffusivities for Al, Cu, Ni, Pd, Pt, and Mg. From the data, there is no clear functional which
perform significantly better than others. For Cu, the experimental self-diffusion match closely to PBE
and PW91, while for Pt, the experiments match more closely to LDA and PBEsol. For Al and Pd,
the experimental self-diffusion lies directly in the middle of all four functionals, while for Mg all
four functionals under predicts the experiments.

In Table 2, we show the predictions of the vacancy formation and migration energies from PBE, LDA,
PW91, and PBEsol for Al, Cu, Ni, Pd, Pt, and Mg. Summing up the vacancy formation and migration
energies results in the self-diffusion activation barrier, which are slopes from the lines on Fig. 4.
The average xc error shows that unlike the self-diffusivity comparisons, LDA and PBEsol matches better
to both experimental vacancy formation and migration energies than PBE and PW91. However
deviations are still on the order of several hundreds of meV, with the vacancy formation energy being the
being the dominant error. This, coupled with the self-diffusion deviations from Fig. 4 both suggest that
self-diffusion corrections would still be required no matter which exchange-correlation functional is used.
Since the self-diffusion correction is a direct fit to experimental measurements and with Eshift correcting
for mainly the vacancy formation energy, there is likely little difference in choosing between each of these
xc functionals, and we have chosen to use the PBE xc functional for all our solute diffusion calculations.

Figure 4. Comparison of self-diffusion predictions from different DFT exchange-correlation functionals (PBE,

LDA, PW92, and PBEsol) and the experimentally measured self-diffusion for Al, Cu, Ni, Pd, Pt, and Mg.

The dashed black lines on each plot represent the corrected PBE predictions, which have been fitted to the

experimental diffusion values. The vertical dotted line on each plot indicates the melting point for the

respective host element.
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Within the five-frequency model, ω3 and ω4 represent the dissociation and association hops between a
solute and vacancy, respectively. This diffusion model assumes only first nearest-neighbor (1NN)
interactions between the solute and vacancy, meaning that all energy changes for vacancy movement
away from the 1NN configuration are equivalent, whether it be to the second (2NN), third (3NN), or
fourth (4NN) nearest-neighbor. The assumed complete dissociation beyond 1NN also allows the
difference in energy barrier between ω3 and ω4 to act as the solute-vacancy binding energy within
the diffusion model. However, since the solute-vacancy interactions in real systems do not stop at 1NN,
the magnitude of further neighbor binding and their effect on solute diffusion must be considered.

Figure 5 shows solute-vacancy binding energy at up to sixth nearest-neighbor (6NN) separations within
Al, Cu, and Ni hosts, where these are the energies to bind the solute and vacancy from effectively infinite
separation. We see a large 1NN interaction in all three hosts, followed by mostly less than ±100meV
bindings for all other separations. We calculate the dissociation/association hop as between the 1NN and
the 4NN. Therefore, we use the 4NN solute-vacancy binding energy as a measure of the term we have
ignored. While it is not clear how to include these long-range binding effects rigorously in the full
five-frequency model, we can qualitatively estimate their impact by correcting the energetics of the ω3 and
ω4 hops so that they are consistent with the energy of complete dissociation. There are many ways
to modify the dissociation/association hop barriers to ultimately obtain the correct long distance
solute-vacancy binding. We choose to use the kinetically resolved activation (KRA) barrier
approximation29, which divides the necessary 4NN correction energy in two and applies half to each
of the ω3 and ω4 barriers. The new ω3 and ω4 hops are now reintroduced into the five-frequency model and
all solute diffusivities are calculated again. Surprisingly we find that applying this solute-vacancy binding
correction gives almost no change, and actually slightly worsens our comparison to experiment through the
metric of (ERMS

host , E
w -RMS
host , Dratio

host ). This shows that the effects of further neighbor solute-vacancy interactions
do not have a significant effect on solute diffusivity compared to other sources of error in the systems we
have tested, and we therefore assume it is of negligible importance for all the calculations in the present
database. We note that some studies on BCC alloys have shown a potentially significant influence of these
binding energies on some diffusion phenomena30.

In calculating the attempt frequency prefactor for each jump in our diffusion model, we only
considered the phonon modes of the migrating atom, as this produces a significant timesaving compared

Figure 5. Solute-vacancy binding within Al, Cu, and Ni with respect to neighboring distance. A negative

binding indicates an attractive solute-vacancy interaction, and a positive binding indicates a repulsive

interaction. Each point represents one solute.
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to including more atoms. While these modes capture a significant amount of information about changes
in the attempt frequency, it assumes that the surrounding atomic phonon modes are not affected by the
presence of the solute or vacancy. To assess the impact of the excluded modes, we extend the attempt
frequency calculation to include 4 additional nearest atomic neighbor to the migrating atom. In Fig. 6, we
plot, for several solutes in Al and Cu, the ratio between attempt frequencies calculated from only the

Figure 6. Calculated attempt frequency ratios for Ag, Au, and Cr in Al-host and Ge, Mg, and Nb in Cu-host.

The ratio is between attempt frequencies between calculated using only the phonon vibrational modes of the

migrating atom (υ1-atom) versus using the migrating atom and its four nearest atomic neighbors (υ5-atom). The

attempt frequency for each of the five-frequencies is horizontally separated in the plot.

Uncorrected Corrected

Ashift Eshift [eV] D0 [cm
2/s] Q [eV] D0 [cm

2/s] Q [eV]

Al 12 0.20 0.00542 1.066 0.065 1.266

Cu 80 0.40 0.00353 1.680 0.282 2.080

Ni 500 0.47 0.00429 2.484 2.145 2.954

Pd 20 0.55 0.00360 2.096 0.072 2.646

Pt 20 0.85 0.00310 1.826 0.062 2.676

Mg 240 0.20 0.00568 1.206 1.362 1.406

Table 1. Correctional shifts, Ashift and Eshift, for DFT predicted Ag, Cu, Ni, Pd, Pt, and Mg self-diffusivity
fitted from experimental diffusion The uncorrected and corrected DFT self-diffusion constant, D0, and
activation barrier, Q, are also reported for each host element.

Al Cu Ni Pd Pt Mg Average xc RMSE

Vform Vmig Vform Vmig Vform Vmig Vform Vmig Vform Vmig Vform Vmig Vform Vmig

PBE 0.485 0.581 0.963 0.717 1.645 0.957 1.137 0.959 0.611 1.215 0.798 0.408 0.432 0.110

LDA 0.580 0.603 1.269 0.830 1.587 1.078 1.407 1.127 0.878 1.425 0.802 0.415 0.264 0.082

PW91 0.461 0.538 1.025 0.698 1.333 0.930 1.113 0.916 0.608 1.169 1.196 0.396 0.509 0.138

PBEsol 0.632 0.606 1.249 0.805 1.580 1.059 1.363 1.084 0.840 1.393 0.831 0.413 0.287 0.069

Expt.6 0.67± 0.03 0.61± 0.03 1.28± 0.05 0.70± 0.02 1.79± 0.05 1.04± 0.04 1.70, 1.85 1.03± 0.3 1.35± 0.05 1.43± 0.05 0.58–0.81 0.45–0.6 N/A N/A

Table 2. Predicted vacancy formation Vform (eV) and vacancy migration Vmig (eV) energies for the six
host elements, Al, Cu, Ni, Pd, Pt, and Mg Different DFT exchange-correlation functionals, PBE, LDA, PW91,
and PBEsol, are compared against experimental measurements. The average root mean squared error (RMSE)
for each exchange-correlation functional has also been calculated for both Vform and Vmig separately. The
migration energy for Mg is an average value of the basal and c-axis diffusivities.
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migrating atom (υ1-atom) and from 4 additional atoms (υ5-atom). We see that by using additional phonon
modes from surrounding atoms, the calculated attempt frequencies are generally reduced by a factor of
about two for all frequencies. We see that there are some larger ratios for Mg and Cr, which for Mg may
be because it is a light solute element, and for Cr the effect may be due to the spontaneous magnetic
moment developed during the solute hop, υ2. To the extent that there is a uniform scaling of all attempt
frequencies they will end up largely cancelling in the five-frequency model, leading to only the same
scaling factor on the predicted diffusivity, with no change in the predicted diffusion activation barrier.
Also, if υ0, the attempt frequency for the host self-hop, scales the same way as other hops, the accuracy of
the predicted D values in this work would not be impacted by this shift as the prefactors are scaled by our
DFT/experiment host self-diffusivity fitting correction scheme. For cases where the scaling is not constant
the values appear to differ by at most a factor of 2.5 from the constant scaling of about 2, which will still
lead to relatively small errors of at most about a factor of two. Therefore, we conclude that while
phonon modes from additional neighboring atoms would produce a more accurate attempt frequency
prefactor, it would not significantly improve solute diffusion predictions, particularly when our solute
diffusion correction method is also being used.

Usage Notes
We recommend direct usage of the reported solute diffusion coefficients, D0, and solute diffusion
activation energy, Q, to generate temperature dependent solute diffusivities. Researchers who would like
to instead regenerate the diffusivity data from the reported individual hop barriers and attempt
frequencies should remember to apply the host self-diffusivity correction from Table 1. In other words,
the difference between calculated solute diffusivity and the host self-diffusivity should be the quantity
held in high confidence. We recommend caution when using the calculated diffusivity values of magnetic
solutes, Cr, Mn, Fe, Co, and Ni in non-magnetic host alloys, as they exhibit much larger errors than other
impurities when compared to experimental measurements.
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