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High-throughput allele-specific expression across 250
environmental conditions

Gregory A. Moyerbrailean,1,4 Allison L. Richards,1,4Daniel Kurtz,1,4 Cynthia A. Kalita,1,4

Gordon O. Davis,1 Chris T. Harvey,1 Adnan Alazizi,1 Donovan Watza,1 Yoram Sorokin,2

NancyHauff,2XiangZhou,3XiaoquanWen,3RogerPique-Regi,1,2andFrancescaLuca1,2

1Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA; 2Department of Obstetrics

and Gynecology, Wayne State University, Detroit, Michigan 48201, USA; 3Department of Biostatistics, University of Michigan,

Ann Arbor, Michigan 48109, USA

Gene-by-environment (GxE) interactions determine common disease risk factors and biomedically relevant complex traits.

However, quantifying how the environment modulates genetic effects on human quantitative phenotypes presents unique

challenges. Environmental covariates are complex and difficult to measure and control at the organismal level, as found in

GWAS and epidemiological studies. An alternative approach focuses on the cellular environment using in vitro treatments

as a proxy for the organismal environment. These cellular environments simplify the organism-level environmental expo-

sures to provide a tractable influence on subcellular phenotypes, such as gene expression. Expression quantitative trait loci

(eQTL) mapping studies identified GxE interactions in response to drug treatment and pathogen exposure. However, eQTL

mapping approaches are infeasible for large-scale analysis of multiple cellular environments. Recently, allele-specific expres-

sion (ASE) analysis emerged as a powerful tool to identify GxE interactions in gene expression patterns by exploiting

naturally occurring environmental exposures. Here we characterized genetic effects on the transcriptional response to

50 treatments in five cell types. We discovered 1455 genes with ASE (FDR < 10%) and 215 genes with GxE interactions.

We demonstrated a major role for GxE interactions in complex traits. Genes with a transcriptional response to environmen-

tal perturbations showed sevenfold higher odds of being found in GWAS. Additionally, 105 genes that indicated GxE

interactions (49%) were identified by GWAS as associated with complex traits. Examples include GIPR–caffeine interaction

and obesity and include LAMP3–selenium interaction and Parkinson disease. Our results demonstrate that comprehensive

catalogs of GxE interactions are indispensable to thoroughly annotate genes and bridge epidemiological and genome-

wide association studies.

[Supplemental material is available for this article.]

For complex traits, a mismatch between genotype and environ-

ment can cause a higher disease risk. However, it is generally

difficult to determine the relevant environmental factors to mea-

sure in order to study gene-by-environment (GxE) interactions.

Consequently, some of the genetic effect sizes measured in

GWAS may be underestimated when the relevant environmental

factors are not controlled. Molecular phenotypes measured in

tightly controlled cellular environments provide a more tractable

setting in which we can study GxE interactions simplifying both

complex phenotypes and environments (Fig. 1A). The cellular

environment is determined by the complex of stimuli (e.g., hor-

monal and metabolic) to which a cell is exposed, can be defined

as an agent that can potentially change the state of the cell, and

is measurable at the molecular level. Examples include, agents

secreted by nearby cells, hormones and metabolites secreted by

other organs, pollutants, drugs, or micronutrients absorbed by

the organisms. For example, physical or emotional environmental

stressors alter blood glucocorticoid levels, which induce signifi-

cant cellular changes in global gene expression patterns mediated

through glucocorticoid receptor (GR) activation (Grundberg et al.

2011; Luca et al. 2013). Response expression quantitative trait

loci (reQTL) mapping studies found that SNPs associated with

specific immune traits are enriched for infection reQTL and for ex-

pression quantitative trait loci (eQTL) identified only in infected

cells (Barreiro et al. 2012; Fairfax et al. 2014; Lee et al. 2014).

However, eQTL mapping requires a large number of samples,

thus limiting the number of cellular environments that can be an-

alyzed in parallel. While associationmapping compares genotypic

effects across individuals that have different genetic backgrounds,

allele-specific expression (ASE) approaches compare allelic effects

within individuals, thereby controlling for genetic background

and cellular environment. Currently, ASE approaches represent

the most effective assay to quantify cis-regulatory variants within

adefined cellular environment and to control for trans-actingmod-

ifiers of gene expression, such as genotype at other loci (Kasowski

et al. 2010; McDaniell et al. 2010; Pastinen 2010; Skelly et al.

2011; Cowper-Sal·lari et al. 2012; Reddy et al. 2012; McVicker

et al. 2013; Buil et al. 2014; Hasin-Brumshtein et al. 2014;

Kukurba et al. 2014; Knowles et al. 2015; Kumasaka et al. 2016).

Herewe developed a high-throughput in vitro system to char-

acterize the response to tightly controlled environmental expo-

sures. We then used ASE analysis to identify GxE interactions in
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individual samples at heterozygous sites. We focused on 50 treat-

ments (Supplemental Table S1) in five cell types (250 conditions)

across 15 individuals (three samples per cell type), including paired

vehicle-controls. These treatments represent the cellular counter-

parts of a range of organismal exposures (Supplemental Table

S1). We broadly grouped the treatments into six categories: steroid

hormones, peptide hormones, metal ions, dietary components,

common drugs, and environmental contaminants. For each

treatment, we used the metabolically active form detected in the

bloodstream at the highest physiological concentration reported

by the Mayo Clinic (http://www.mayomedicallaboratories.com)

or the CDC (http://www.cdc.gov/biomonitoring/), as available.

Our goal is to identify GxE interactions across these conditions

and characterize their roles in complex traits.

Results

High-throughput characterization of transcriptional responses

Literature reports on transcriptional responses for many treat-

ments across cell types are often contradictory or nonexistent.

To characterize transcriptional responses to 50 environmental

Figure 1. Overview of gene expression response. (A) Schematic of experimental design and rationale. Our approach uses specific treatment conditions as
tightly controlled proxy for the organism environment andmeasuresmolecular phenotypes, such as gene expression, to infer genetic andmolecularmech-
anisms for complex traits. (B) Heatmap of differential gene expression. Shown for each cell type (columns) and treatment (rows) combination are the num-
ber of differentially expressed genes (10% FDR and |log2FC| > 0.25). The shade of red indicates the number of differentially expressed genes from an initial
screening step (see Supplemental Texts 5 and 8.1). Cellular environments with a strong response were further sequenced to a higher depth (>58 M reads,
113Mon average), and the number of differentially expressed genes is indicated by the text. Environmentsmarkedwith an asterisk were chosen to confirm
that treatments with a small response from the shallow sequencing data similarly have a small response when deep sequenced. Colors next to treatment
names represent treatments chosen for deep sequencing. Gray indicates treatments that were not deep sequenced. (C) Global coexpression network in-
ferred using weighted gene correlation network analysis (WGCNA) on 14,535 genes. Each dot represents a gene. Eachmodule is assigned a color based on
the treatment with the highest eigengene t-value. Note that colors representing treatments are consistently used across all the figures.
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perturbations (Supplemental Table S1) in five cell types (250

conditions), we utilized a high-throughput two-step RNA-seq

approach (Supplemental Fig. S2; Moyerbrailean et al. 2015). In

step one, we used shallow RNA-seq (8.2 million reads/sample

on average) (Supplemental Table S2) and DESeq2 (Love et al.

2014) to coarsely characterize global changes in gene expression

(Supplemental Fig. S3; Supplemental Table S3). We considered

only treatment-by-cell-type combinations with more than 80

differentially expressed (DE) genes detected at 10% FDR and

corresponding to |log2FC| > 0.25. We found eight treatments that

induced gene expression changes across all cell types, such as dex-

amethasone and vitamin A, while other treatments had a cell-

type–specific effect, such as vitamin B6 in peripheral bloodmono-

nuclear cells (PBMCs) (Fig. 1B). Of the 50 treatments, 16 did

not induce significant changes in gene expression in any cell

type. We excluded a few outlier response conditions (see Supple-

mentalMethods 8.2). By using these criteria, we selected 89 condi-

tions (35 treatments across five cell types and three individuals)

corresponding to 297 RNA-seq libraries and resequenced them

to 130 M reads per sample on average (Supplemental Table S4)

in step two.

Treatment-specific gene coexpression network

In step two, we used deep sequencing data and weighted gene cor-

relation network analysis (WGCNA) (Langfelder and Horvath

2008) to infer the global gene coexpression network across all sam-

ples and environments (Fig. 1C). This network comprised 87mod-

ules, which grouped genes with similar expression patterns that

may be coregulated in a concerted way. The largest module con-

tained 1456 genes, and the median module size was 42 genes.

We assigned a representative treatment to each module based on

the most significant treatment effect size on gene expression

(Supplemental Fig. S11), and this allowed us to identify clusters

of genes that represent treatment-specific responses. For example,

two modules were each associated with treatment conditions

in opposite directions: module 30 (vitamin D in HUVECs and

PBMCs) and module 22 (caffeine and aspirin in smooth muscle

cells [SMCs]) (Supplemental Figs. S12, S13). These results suggest

that analysis of transcriptional responses to a large number of

treatments in parallel can identify gene regulatory networks

that mediate divergent effects that depend on specific cell type

or treatment conditions.

Analysis of ASE

We used QuASAR (quantitative allele-specific analysis of reads) to

identify genes with evidence of ASE. QuASAR (Harvey et al. 2015)

identifies heterozygous genotypes and uses a beta binomial dis-

tribution to infer ASE in RNA-seq data. In the 89 treatment condi-

tions, we identified 11,305 instances of ASE (10% FDR) (Fig. 2),

corresponding to 1455 unique ASE genes. In an individual sample,

0.92% of expressed genes with heterozygous SNPs are ASE genes,

on average.

The ASE analysis was performed on all expressed genes and

was not limited to DE genes as some genes may not change total

expression level. When we consider all ASE genes in our data

set, 92% were also identified with eQTL in the Genotype-

Tissue Expression (GTEx) Project. Thus, similar to other ASE stud-

ies (Buil et al. 2014), we were able to capture genes with regulatory

variants that were previously identified at baseline. Additionally,

many of the genes identified in GTEx with eQTL may have

unknown latent environmental components modulating their

expression.

Analysis of GxE interactions

Next, we characterized GxE interactions on gene expression by

analyzing ASE differences between treatment and control.

Reliably estimating ASE effect sizes required a significant amount

of reads for detecting condition-specific ASE (cASE) (see Fig. 3A;

Supplemental Fig. S15). However, some genes had very low

expression levels in the control condition and high expression

with ASE following treatment, suggesting that expression of these

genes would be induced by a specific treatment. For these cases,

ASE in the control condition cannot be defined accurately. We de-

noted this phenomenon as induced ASE (iASE) (see Fig. 3B), which

Figure 2. Heatmap of allele-specific expression (ASE). For each individual (row) and treatment (column) we list the number of SNPs displaying ASE (as
determined in QuASAR [quantitative allele-specific analysis of reads] at 10% FDR). The shade of red represents the fraction of ASE SNPs to the number of
heterozygous SNPs tested (% ASE SNPs) in a given sample and condition. The dotted line on the density plot indicates the average % ASE SNPs across all
individual samples and conditions.
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indicated cases when the ASE was only observed in genes induced

by the treatment. Studies that only consider baseline eQTL or ASE

may fail to characterize or may mischaracterize genes with iASE

if the relevant environmental stimulus is present as latent expo-

sure. We identified 75 iASE SNPs (10% FDR) corresponding to 60

unique genes (Fig. 3C). The genetic effect in these iASE SNPs is

slightly stronger than that of baseline ASE (Supplemental Fig. S17).

When we can reliably measure ASE in both treatment and

control conditions for the same SNP and individual, we can con-

trast the amount of ASE between the conditions to determine

cASE. ASE across cell types was never contrasted because the

samples correspond to different individuals. Here we used two ap-

proaches to identify cASE (see Fig. 3D): (1) a qualitative “on/off” ap-

proach using ameta-analysis framework, and (2) a new quantitative

approach to detect ASE changes even when ASE is present in both

conditions.

For the qualitative analysis of cASE, we used meta-analysis

of subgroup heterogeneity (MeSH) (Wen and Stephens 2014),

a Bayesian meta-analysis approach that has been previously

used in eQTL studies to contrast effect sizes across conditions

(Maranville et al. 2011) and tissues (Flutre et al. 2013). Here, for

each SNP, individual, and treatment/control experiment pair, we

assume four different mutually exclusive models: (1) no ASE in ei-

ther condition, (2) ASE in both conditions, (3) ASE in treatment

only, or (4) ASE in control only. Configurations 3 and 4 represent

cASE, while configuration 2 represents shared ASE accommodat-

ing for random effects in the genetic effect size. This results in a

stringent test for cASE.

For each of the QuASAR treatment/control measurement

pairs, MeSH calculated a Bayes factor (BF) for each configuration.

We observed that the majority of genes had ASE shared between

the treatment and control conditions (Fig. 3D). We identified

75 SNPs with cASE (difference in the BFtreatment or BFcontrol and

the BFshared > 30) corresponding to 71 unique genes. We observed

a larger proportionof treatment-only cASE comparedwith control-

only cASE (59 vs. 16) (Figs. 3D, 4). These proportions are consistent

Figure 3. Gene–environment interactions. (A,B) Two types of gene–environment interactions: conditional ASE (A) and induced ASE (B). Treatment con-
ditions are in red and control conditions in blue, with the shade (dark/light) representing the allele (reference/alternate). In this example of cASE, there is an
imbalance of expression between the two alleles in the treatment condition, while the control shows balanced expression. iASE is defined by an imbalance
of expression between the two alleles in the treatment condition and by expression below detectable levels (dotted line) in the control condition. (C) Plot of
all iASE SNPs detected. Each iASE SNP is represented as two points (representing treatment and control expression) connected by a line (representing the
fold-change between conditions). SNPs are plotted based on the expression (TPM [tags per million]) of each allele, with the higher expressed allele in the
treatment on the y-axis and the lower allele on the x-axis. Points are colored by treatment (controls are black and gray), and the dotted lines represent
constant expression levels 0.1, 1, and 10. For ease of display, expression of SNPs <0.01 have been set to 0.01. (D) Scatter plot of the Z-scores in the paired
treatment and control samples for all SNPs tested for cASE. Colored points indicate those displaying cASE: Red is SNPs identified by meta-analysis of sub-
group heterogeneity (MeSH) as having cASE in the treatment, blue is SNPs identified byMeSH as having cASE in the control, and green is SNPs identified by
ΔAST (differential allele-specific test) that were not identified by MeSH. (E) QQ-plot of P-values for cASE identified with the ΔAST method for treatment
versus control (green line) and Control 1 versus Control 2 (gray line). (F) Venn diagrams showing the number of cASE SNPs identified by two methods:
MeSH and ΔAST at different empirically estimated FDR thresholds.
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with observations from eQTL studies contrasting individual treat-

ments and tissues (Maranville et al. 2011; Fairfax et al. 2012; Flutre

et al. 2013; Mangravite et al. 2013).

MeSH detects qualitative interactions and strictly requires

ASE only in one condition analyzed, either treatment or control,

while showing no ASE in the alternate condition. However, these

extreme on/off ASE cases are rare. Other cASE models may exist.

For example, a prior report identified eQTL with genetic effects

in opposite directions in the treatment and control conditions

in stimulated monocytes (Fairfax et al. 2014). Additionally, the

majority of GxE interactions can arise in cases where the genetic

effects differ significantly between treatment and control condi-

tions, but they are nonzero in both conditions.

To capture cASE genes that may have ASE in both conditions

but of a significantly different magnitude, we developed an alter-

nate approach named ΔAST (differential allele-specific test). The

goal was to quantitatively detect GxE interactions. For each hetero-

zygous site, we compared the QuASAR-derived ASE estimates fol-

lowing treatment to those observed in the matched control for

each individual. We calculated a P-value for the difference in ASE

between the two conditions (Fig. 3E).

A key component of our experimental approach is the inclu-

sion of two sets of vehicle controls in each experimental batch,

which empirically estimates the true underlying FDR for identify-

ing cASE, equivalent to permutation-based approaches used in

eQTL studies (see Supplemental Methods 10.3). By use of ΔAST,

we identified 67 cASE SNPs corresponding to an FDR of 10%, 38

of these cASE SNPswere also identified byMeSH.Whenwe relaxed

the FDR threshold (25%), we found a total of 178 cASE SNPs corre-

sponding to 160 genes. Of these genes, 65 were identified with

both methods (Figs. 3D–F, 4).

Features of GxE interactions

When we considered all cASE SNPs, we observed a significant pos-

itive correlation between the gene expression log2 (fold change) af-

ter treatment and differences in the genetic effect in treatment and

control samples (Fig. 5A). This result could be a consequence of in-

creased power to detect ASE with more highly expressed genes.

However, we observed a negative correlation between gene expres-

sion levels and the difference in the genetic effect in the treatment

and the control samples (Fig. 5B). This finding suggests that if a

gene has sufficiently high expression to test for ASE in both condi-

tions, stronger cASE occurs at geneswith stronger positive respons-

es to treatment.

To determine if we can validate some of the few previously

known reQTL with cASE, we compiled a list of 134 genes reported

to have GxE effects from prior reQTL and ASE studies. Of these

genes, 83 were heterozygous and could be tested for cASE in

our data (Maranville et al. 2011, 2013; Idaghdour et al. 2012;

Franco et al. 2013; Mangravite et al. 2013; Çalisķan et al. 2015;

Knowles et al. 2015). Sixty-three out of 83 genes were identified

as cASE genes in our analysis (P < 0.05) (Supplemental Table

S13). For example, gene IRF5 has a rhinovirus-reQTL (Çalisķan

et al. 2015) and showed cASE in response to two treatments:

phthalate (P = 0.04) and vitamin B5 (P = 0.04). Additionally,

IRF5 is also linked to autoimmune responsivity through its asso-

ciation to lupus (Sigurdsson et al. 2005; Graham et al. 2006,

2007). Interestingly, phthalates may play a role in lupus etiology

since they induce anti-DNA antibodies (Lim and Ghosh 2005),

while vitamin B5 deficiency is found in lupus patients (Leung

2004).

Figure 4. Forest plot of all cASE SNPs. Each row shows the ASE b̂ for
paired treatment (red) and control (blue) conditions. Defined as in
Figure 2, colored squares indicate the treatment (left) and cell type (right)
in which cASE was identified, along with the gene name and SNP rsID.
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Wenext wanted to determine the difference in the number of

cASE SNPs across cellular environments (Fig. 5C,D; Supplemental

Fig. S18).We found that acetylcholine, selenium, and caffeine had

significantly higher numbers of cASE SNPs compared with the

mean number of cASE SNPs per treatment, while acrylamide and

BP-3 had significantly fewer (binomial, P < 0.05). In addition, we

found that environmental contaminants and common chemicals

have a significantly lower proportion of cASE SNPs (P < 0.003).

To assess the extent of GxE interactions on gene regulation

in different cellular environments, we developed an index that

aggregates all cASE tests for each condition and cell type and

determines how much the environment can globally perturb

ASE. To achieve this, we can compare the correlation of the

standardized effect size between treatment and control (as shown

in Fig. 3D) across all SNPs tested for a given cell type and condition.

We denote this genome-wide measurement as environmental

displacement of genetic effect (EDGE) index (for more details,

see Methods). Specifically, the EDGE index is the ratio between

the pair-wise correlation observed between the two control

sets and the correlation observed between the treatment and

control conditions. The EDGE index is one for the control condi-

tions (Supplemental Fig. S19A) and will have higher values for

treatments that can affect ASE for a large number of genes

(Supplemental Fig. S19B). We find significant differences in the

EDGE index across many treatments (Supplemental Fig. S20). As

expected, we found a high correlation between the proportion

of cASE SNPs and the EDGE index (Spearman ρ = 0.717, P = 3.8 ×

10−6) (Supplemental Fig. S19C).

GxE interactions and complex traits

We then used the GxE interactions we identified in vitro to

characterize putative molecular mechanisms for risk or protective

environmental factors for complex traits (Fig. 6A). We found that

22% of DE genes overlap with those identified in GWAS analyses

(Welter et al. 2014) compared with 4% of nondifferentially ex-

pressed genes expressed in our samples (Fig. 6B). This overlap cor-

responds to a sevenfold enrichment (P < 2.2 × 10−16). These results

suggest that genes responsive to our treatments are more likely in-

volved in organismal traits.

To investigate the role of GxE interactions in complex traits

directly, we analyzed genes containing iASE or cASE. Forty-nine

percent of genes (105 out of 215) that contain either iASE or

cASE were identified by GWAS as associated with various complex

traits; this corresponds to a 3.5-fold enrichment (P < 2.2 × 10−16)

comparedwithDE genes without iASE or cASE. Importantly, genes

Figure 5. Features of cASE SNPs. (A,B) Scatter plot comparing the absolute difference in ASE b̂ between treatment and control (y-axis) and the average
log2 (expression; A) or log2 (fold change; B) between treatment and control samples for cASE SNPs. The green line indicates the trendline from a linear
model fit on the points. (C,D) Percentage of cASE SNPs identified in each treatment category (C) or treatment (D). For each group, plotted is the percentage
of cASE SNPs identified, relative to the number of SNPs tested for that group. The dotted black line represents the average percentage of cASE SNPs across all
groups. Groups with an asterisk are significantly enriched or depleted (binomial P-value <0.05) relative to the average. The colors in C represent the relative
proportion of cASE SNPs for each treatment in a treatment category.
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with iASE or cASE also have a 1.4-fold increased relevance

for complex traits (P = 0.025) compared with ASE genes and a

3.2-fold enrichment (P < 4.3 × 10−15) compared with genes with

eQTL identified at baseline (eGenes from GTEx). Note that by

design much of our detected ASE may have an environmental

component, but we may lack the power to claim cASE/iASE.

These results suggest that GxE interactions represent an important

mechanism for inter-individual variation in complex traits.

We find similar results when we analyze per SNP heritability

for 18 complex traits using genome-wide efficient mixed model

association (GEMMA) (Zhou and Stephens 2012; Zhou 2016).

Similar to the LD-score regression method that partitions

Figure 6. Integration with GWAS. (A) Hypothetical model detailing the use of GxE interactions to characterize putative molecular mechanisms for risk or
protective environmental factors for complex traits. In the treatment environment, a regulatory region is either active or inactive depending on the hap-
lotype, therefore resulting in different levels of gene expression. In the control environment, the regulatory region is inactive regardless of haplotype. Risk
and protective haplotypes are identified in GWAS. (B) Enrichment analysis of GWAS genes. Reported genes from the GWAS catalog (version 1.0.1) were
compared to different gene sets analyzed in this study: (1) genes that were not differentially expressed in any condition, (2) genes that were differentially
expressed in any condition, (3) genes previously associated with an eQTL in GTEx (eGenes) (The GTEx Consortium 2015), (4) genes containing ASE in any
condition, and (5) genes containing either iASE or cASE. The percentage of genes in these data sets that were found in the GWAS catalog is indicated by a
darker shade. Genes that can be perturbed by our environments are highlighted in purple and indicate a GxE mechanism for the GWAS association. Odds
ratios and enrichment P-values were calculated using a Fisher’s exact test and are shown on the right for each pair of gene categories contrasted.
(C) Genome-wide efficient mixed model association (GEMMA) per SNP heritability estimates relative to the genomic average for cASE (SNPs in genic re-
gions with cASE or iASE), ASE (SNPs in genic regions with ASE), other genic (SNPs in genic regions), and intergenic (SNPs <100 kb from any gene). Only
significant enrichment values are reported, with a darker tone of purple indicating a higher enrichment odds ratio relative to the genome average.
(D) Forest plots of four cASE SNPs in genes associated with a GWAS trait. For each SNP, shown is the ASE b̂ for each treatment in which the SNP was tested.
The 95% CI bars are colored for each treatment as in Figure 2.
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heritability estimates across SNPs functional categories (Gusev

et al. 2014), we contrasted SNPs in genes with cASE/iASE, genes

with ASE, genes without ASE, and inter-genic regions. The per

SNP heritability for each of these categories is then compared

with the genome average. A higher value of per SNP heritability

for one of these categories indicates a higher number of causal

SNPs, higher effect sizes, or both in that category. We found that

the per SNP heritability estimate for SNPs in genes with ASE is

11.1 times higher than the genome average for high-density lipo-

protein (HDL). For 13 of the 18 traits analyzed, per SNP heritability

estimates for SNPs in genes with cASE, iASE, or ASE were signifi-

cantly higher than the genome average. For seven of these, the

cASE and iASE category estimates were even higher than any other

partition (Fig. 6C), thus indicating that GxE interaction for these

traits are particularly relevant. The highest values for cASE and

iASE were observed for blood total cholesterol level (TC; 9.7-

fold), triglicerides (TG; 7.9-fold), and mean corpuscular hemoglo-

bin levels (MCH; 8.6-fold). Overall, these results suggest an impor-

tant role for GxE interaction in a large number of traits.

When we isolated genes with iASE, we found 28 genes asso-

ciated with a phenotype in the GWAS catalog (Supplemental

Table S18). Additional investigation into these genes may yield

insights not only on the GxE role in specific traits but also on

the underlying molecular mechanisms. For example, previous re-

ports show that caffeine prevents and treats obesity presumably

through mitotic clonal expansion effects (Li et al. 2015; Kim

et al. 2016; Ohara et al. 2016). Our work suggests that caffeine ac-

tivates the GIPR pathway, which regulates insulin production.

GIPR is linked to obesity and several obesity-related traits, includ-

ing body mass index and type 2 diabetes (Saxena et al. 2010;

Speliotes et al. 2010; Fox et al. 2012; Okada et al. 2012; Wen

et al. 2012, 2014; Berndt et al. 2013;Mahajan et al. 2014).We iden-

tified a SNP, rs5390, in GIPR that demonstrates iASE following caf-

feine treatment. Specifically, we found higherGIPR expression and

ASE favoring the rs5390 reference allele following caffeine treat-

ment and low expression in controls. The rs5390 reference allele

is located on the same haplotype as the nonrisk allele for body

mass index in the individual sample used here (Wen et al. 2012,

2014; Okada et al. 2012). These results suggest that caffeine may

reduce obesity through its effect on gene expression and ASE

in GIPR.

Among the genes with cASE, 79 are associated with complex

traits in the GWAS catalog (Supplemental Table S18). Figure 6D

shows four examples of cASE genes associated with complex traits.

These include cASE in SAMM50 in response to copper, in ERAP1

in response to selenium treatment, in GOSR2 following treatment

with mono-n-butyl phthalate, and in LAMP3 in response to sele-

nium. This last example may explain the influence of selenium

on Parkinson’s disease (PD). Previous studies found reduced sele-

nium levels in PD patients (Shahar et al. 2010). In addition, sele-

nium reduces bradykinesia, a well-described symptom of PD, in

rats (Ellwanger et al. 2015), suggesting that higher selenium levels

would be beneficial for PD patients. A GWAS hit for PD (Do et al.

2011; International Parkinson Disease Genomics Consortium

2011) was an eQTL for LAMP3, where the reference/PD-risk allele

led to increased expression of LAMP3 (The GTEx Consortium

2015). In our data, cASE at rs16833703 in LAMP3 preferentially ex-

pressed the alternative allele at this SNP, located on the same hap-

lotype as the nonrisk allele at the GWAS SNP. These data suggest

that selenium is beneficial for PD patients through its influence

on allelic expression in LAMP3. Overall, these cASE examples

illustrate genes associated with complex traits, with a plausible

biological association with the treatment (for details on the other

three genes, see the Supplemental Material).

Discussion

Wepresented a scalable high-throughput approach to characterize

the effect of environmental and genetic perturbation on gene

expression levels. In this study, we tightly controlled environ-

mental exposure using in vitro treatments in different cell types

and analyzed the transcriptional response for hundreds of con-

ditions that were previously uncharacterized. These results will

be highly valuable to many researchers interested in changes to

specific genes or pathways following various treatments and

cell types. Among the DE genes, we found that 22% have been

associated with complex traits in GWAS. These results strongly

suggest a key environmental component for many complex

traits and should assist the design of future studies. For example,

this resource can help in selecting relevant environmental vari-

ables that should be considered in animal models for human

complex traits, in patient studies, and in reanalyzing GWAS data

when the relevant exposure variable was collected as part of the

study.

One of the main advantages of our approach is that it can be

used to detect GxE interaction in a single individual for many

treatments and cell types using ASE analysis. Compared to model

organisms and transgenic models, studying GxE interaction in

humans poses significant challenges. In clinical trials, a limited

number of exposures can be tested, while in large-scale epi-

demiological studies many exposures convolve together. In this

study, we have analyzed three individuals per cell type in order

to explore a large number of environmental conditions that would

not be practical for a reQTL study design.While some GxE interac-

tions may be detected in a conventional baseline eQTL study, this

would only occur if all or a subset of the samples was exposed to a

relevant environment. However, in eQTL studies, the specific ex-

posure would likely remain uncharacterized as a latent variable

that may be unknown or difficult to model. Though we do not

require many individuals, our approach is limited by the require-

ment of having two heterozygous variants: at the causal regu-

latory variant and at the variant for which ASE is measured. A

small fraction of the ASE we detected may actually correspond to

low-frequency variants that are sampled in three individuals, but

the majority will correspond to common variants. The require-

ment that at least one of the three individuals is a double hetero-

zygote means that we are missing instances of GxE interaction,

especially those at low allele frequencies. Nonetheless, the 215

instances of GxE described here represent a lower bound to the

amount of GxE signal that can be identified by applying our ap-

proach to additional treatment panels, cell types, and/or larger

sample sizes.

Our catalog of GxE interactions, and future ones expanding

on the one generated here, will be a necessary resource to thor-

oughly annotate genes and create a bridge between epidemiologi-

cal and genome-wide association studies. Here we showed that

49% of genes with GxE interactions are GWAS genes. Although

limited by our false-negative rate, we compiled the most compre-

hensive list to date of GxE and relevant environmental conditions

that can aide in the interpretation of specific GWAS findings.

We provided some examples of candidate GxE mechanisms for

complex traits and released our results as a browsable web-re-

source. Mining of our results by other researchers has the potential

to inform new GWAS findings and identify latent variables in
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GWAS that are important risk/protective factors for human com-

plex traits and diseases.

In future research, we anticipate that the approach we devel-

opedwill potentially aid in precisionmedicine to tailormedication

exposures using patient cells for improved patient outcomes.

Indeed, when considering potential translation of these findings

to clinical practice, in vitro measurements of ASE for a large panel

of cell types, extracted and derived from single-patient stem cells,

are a promising solution to studying rare disease variants and indi-

vidualized outcomes of combinatorial interactions of common

genetic variants.

Methods

Cell culture and treatments

Experiments were conducted using the following cell types: lym-
phoblastoid cell lines (LCLs), PBMCs, human umbilical vein endo-

thelial cells (HUVECs), human SMCs, and melanocytes. LCLs
(GM18507, GM18508, and GM19239) were purchased from

Coriell Cell Repository, cultured, and treated as describedprevious-
ly (Moyerbrailean et al. 2015). PBMCswere derived fromwhole hu-
man blood purchased from Research Blood Components. Blood

specimens were obtained from three individual donors. Primary
HUVECs and SMCs were isolated from human umbilical cord tis-
sue collected shortly following birth. Additionally, cryopreserved

HUVECs (CC-2517-0000315288) and SMCs (CC-2579-7F3794)
were purchased from Lonza. For additional details on HUVEC

and SMCpreparation, see SupplementalMethods 1. Primarymela-
nocytes (NHEM) isolated from neonatal foreskin were purchased
from Lonza (CC-2504 lot no. 252410 and 5F0885J) and from

Promocell (C-12400 lot no. 3052103.1). Details on cell culturing
are provided in the Supplemental Methods 2. Supplemental

Table S1 shows the concentrations used for each treatment.
For each treatment panel and cell type, cells derived from
three individuals were treated at the same time on a 96-well plate.

A schematic of the study design is provided in Supplemental
Figure S1.

RNA-seq library preparation and sequencing

We used a two-step approach to gene expression analysis that we
recently developed (Moyerbrailean et al. 2015). A 96-library pool-
ing and shallow sequencing strategy (<10 M reads per library)

(Supplemental Table S2) were used to minimize the amount
of resources used in the first step. For the second step, we repooled

a selection of the initial libraries (Fig. 1B; Supplemental Methods
8.1) to achieve a more uniform allocation of sequencing reads
across samples (130 M reads/sample on average) (Supplemental

Table S4). Pools of 96 samples from step 1 were sequenced
on two lanes of an Illumina HiSeq2500 in fast mode to obtain

50-bp paired-end reads at the University of Chicago and at the
Michigan State University Genomics Cores or were sequenced on
one lane of the Illumina NextSeq500 for 75 cycles of paired-end

in HO mode in the Luca/Pique-Regi laboratory. Step 2 resequenc-
ing was performed on the NextSeq500 in the Luca/Pique-Regi
laboratory. The number of reads collected for each sample in

step 1 and step 2 is reported in Supplemental Tables S2 and S4,
respectively.

Sequence alignment and post-processing

RNA-seq data for step 1 was processed as described previously
(Moyerbrailean 2015). For step 2, reads were aligned to the

hg19 human reference genome using STAR (https://github.com/

alexdobin/STAR/releases, version STAR_2.4.0h1) (Dobin et al.

2013) and the Ensembl reference transcriptome (version 75).
Details are provided in Supplemental Methods 7.1. We did not re-
align the reads to GRCh38 because hg19 is the version of the refer-

ence human genome used in the release of the 1000 Genomes
Project that we used for pileup. The 1000 Genomes Project data

were not available in GRCh38 coordinates until October 26,
2016. Realigning the reads should not affect the conclusions as
any problematic region of the genome is excluded from any anal-

ysis as detailed in the Supplemental Material. To correct
for potential alignment biases, we used the WASP suite of tools

for allele-specific read mapping (https://github.com/bmvdgeijn/
WASP, downloaded 09/15/15) (Van de Geijn et al. 2015). Note
that we do not use the WASP combined haplotype test (CHT)

as we tested each SNP separately using QuASAR (Harvey et al.
2015). Retained read counts per sample after filtering can be found

in Supplemental Table S4.

Differential gene expression

To identify DE genes, we used the method implemented in the

software DESeq2 (R version 3.2.1, DESeq2 version 1.8.1) (Love
et al. 2014). DE genes were determined as genes with at least one

transcript having a Benjamini-Hochberg controlled FDR (BH-
FDR) (Benjamini and Hochberg 1995) of 10% and an absolute
log2 (fold-change) >0.25. The same procedure was used for step 1

and step 2. A summary of differential expression for both steps
can be found in Supplemental Tables S3 and S5, and a full set

of differential expression results from step 2 can be found in
Supplemental Table S6.

Network analysis with WGCNA

For network analysis, we used gene expression data normalized as
described in SupplementalMethods 8.4.We combined all the data

across cell types, treatments, and individuals, resulting in a matrix
with 14,527 rows (genes) and 297 columns (samples). We then
usedWGCNA (Langfelder andHorvath 2008), version 1.47, imple-

mented in R to build an unsigned network. A soft thresholding
power of six was chosen, and the network was built using the au-

tomated block-wisemodules pipeline using Pearson correlations, a
signed topological overlap matrix, and a minimummodule size of
10. Modules were cut from the network dendrogram with the

dynamic hybrid tree cut method, and the module eigengene was
calculated as the first principal component of each module’s ex-
pressionmatrix. A measure of module membership was calculated

for each gene by correlating the gene’s expression profile with its
module’s eigengene. More details on the network module analysis

are in Supplemental Methods 8.6.

Joint genotyping and ASE inference

To create a core set of SNPs for ASE analysis, we started with all the

SNPs from the phase 3 release of the 1000 Genomes Project
Consortium (www.1000Genomes.org, v5b.20130502, download-

ed on 08/24/15) (The 1000 Genomes Project Consortium 2015)
and first removed SNPs with low minor allele frequency (MAF
<5%). We also removed SNPs within the regions of anno-

tated copy number variation and ENCODE blacklisted regions
(Degner et al. 2012), leaving a total of 7,340,521 SNPs in the core

set. Counts of reads covering each allele at selected SNPs (Supple-
mental Methods 9.1) were obtained by “piling up” aligned reads
for each sample over SNPs using samtools mpileup (Li et al.

2009) and the hg19 human reference genome. All sample pileups
for a given individual across all treatment conditions and the

two treatment plates were processed together (not merged) using
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Genome Research 1635
www.genome.org

 Cold Spring Harbor Laboratory Press on January 12, 2017 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.209759.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.209759.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.209759.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.209759.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.209759.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.209759.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.209759.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.209759.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.209759.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.209759.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.209759.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.209759.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.209759.116/-/DC1
https://github.com/alexdobin/STAR/releases
https://github.com/alexdobin/STAR/releases
https://github.com/alexdobin/STAR/releases
https://github.com/alexdobin/STAR/releases
https://github.com/alexdobin/STAR/releases
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.209759.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.209759.116/-/DC1
https://github.com/bmvdgeijn/WASP
https://github.com/bmvdgeijn/WASP
https://github.com/bmvdgeijn/WASP
https://github.com/bmvdgeijn/WASP
https://github.com/bmvdgeijn/WASP
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.209759.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.209759.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.209759.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.209759.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.209759.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.209759.116/-/DC1
http://www.1000Genomes.org
http://www.1000Genomes.org
http://www.1000Genomes.org
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.209759.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.209759.116/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


theQuASAR package (Harvey et al. 2015) for joint genotyping. ASE

inference was performed for each sample separately. Heterozygous
SNPswith a read coverage greater than 40were tested for ASE using
QuASAR (Harvey et al. 2015). A summary of the amount of ASE de-

tected in each sample is in Supplemental Figure S10 and Supple-
mental Table S9. A full list of SNPs tested can be found in

Supplemental Table S10.

Identification of induced ASE

To identify genes with iASE, we selected SNPs that were well cov-

ered in the treatment (i.e., more than 40 reads) and had ASE
(10% FDR) but had little to no expression in the matched control.

We used a coverage threshold in the control of 10 × (DC/DT), where
DC andDT represent the sequencing depth of the control and treat-
ment libraries, respectively, in TPM (see Supplemental Methods

9.3). This equates to a ratio of 40 reads to 10 (expression in the con-
trol is fourfold lower than the minimum required for a gene to be

considered expressed in the ASE analysis) while accounting for
sequencing depth differences. Finally, we required the SNP-based
log2 (fold change) (Supplemental Methods 9.3) to be >log2(5).

Meta-analysis of subgroup heterogeneity

We used MeSH to model potentially heterogeneous cASE effects

across multiple subgroups contained within the data. The input
to MeSH is a pair of ASE observations derived from QuASAR
summarized by the parameter β measuring the allelic imbalance

and a standard error of the parameter. To look specifically at con-
ditional ASE, a BF for cASE is calculated as BFtreatment− BFshared
(treatment-only cASE) and BFcontrol− BFshared (control-only

cASE). All the cASE BFs are then used to rank and select the obser-
vations with strongest evidence for cASE.

ΔAST: a novel method to measure cASE

Differential Z-scores (ZΔ) were calculated from QuASAR β parame-
ters using the following formula. For each SNP,

ZD =
bT − bC
�����������

se2T + se2C

√ , (1)

where βT and seT represent the estimates for the ASE parameter
and its standard error for the treatment condition, and βC and

seC represent the corresponding estimates for the control condi-
tion. The ZΔ scores were then normalized by the standard devia-
tion across ZΔ scores corresponding to control versus control

(CO1 vs. CO2). Finally, P-values (PΔ) are calculated from the ZΔ

scores as PΔ = 2 × pnorm(−|z|). Under the null, ZΔ are asymptotical-
ly normally distributed, and Figure 3C shows that when contrast-

ing the two sets of controls the PΔ-values are almost uniformly
distributed as expected. To further correct for this small deviation,

we used the control versus control P-values to empirically estimate
the FDR (see Supplemental Methods 10.3). The list of significant
cASE SNPs is in Supplemental Table S11.

Analysis of EDGE

Within each treatment and cell line subgroup, we examined the

Pearson’s correlation of the treatment standardized effect size
(ASE ZT = βT/seT) to the matched control one (ASE ZC = βC/seC)
across all SNPs tested (see Supplemental Fig. S19). This correlation

measures the consistency of the genetic effect between the treat-
ment and control, and therefore, a lower correlation indicates

a higher perturbation or displacement of the genetic effects. We

define this as the EDGE index, which is formally defined as

EDGEs,t =
Pearson(Zs,CO1,Zs,CO2)

Pearson(Zs,t ,Zs,c)
, (2)

where Pearson(Zs,t, Zs,c) is the sample Pearson correlation coeffi-
cient between treatment t and control c ASE Z-scores across all ob-

served SNPs in cell type s. Equivalently, Pearson(Zs,CO1, Zs,CO2) is
the Pearson correlation coefficient between the two control sets

ASE Z-scores across all observed SNPs in cell type s. The EDGE in-
dex values for each cell type and condition can be found in
Supplemental Figure S20 and Supplemental Table S14.

Analysis of heritability enrichment using GEMMA

To run GEMMA (Zhou and Stephens 2012; Zhou 2016), we parti-

tioned SNPs genome wide to create a category file. Each SNP was
assigned to one of the following categories: cASE (genic regions
with conditional ASE) or iASE (genic regions with induced ASE),

ASE (genic regions with ASE), other genic (genic regions that do
not fall into any of the categories above), and intergenic (>100

kb from any gene). We then used GEMMA to compute the SNP
correlations among different categories from a reference panel
(502 individuals of European ancestry from the 1000 Genomes

Project). This was followed by summing the Z2 statistics from the
GWAS meta-analysis within the categories. Finally, we computed
the proportion of variance and the fold enrichment of heritability

explained by each category. A table of the results can be found in
Supplemental Table S17.

Data access

The RNA sequencing data from this study have been submitted to
the database of Genotypes and Phenotypes (dbGaP, https://www.

ncbi.nlm.nih.gov/gap) under the accession number phs001176.
v1.p1. Additional browsing tools for exploring the data in this pro-
ject are available at http://genome.grid.wayne.edu/gxebrowser.
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