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Abstract
Accurate ab initio methods for performing quantum mechanical calculations
have been available for many years, but their speed, complexity and
instability have generally constrained researchers to studying only a few
systems at a time. However, advances in computer speed and ab initio
algorithms have now created fast and robust codes, where large numbers of
calculations can be performed automatically, making it possible to do
high-throughput ab initio computation. High-throughput computations can
be used to efficiently screen and optimize for desired properties in broad
classes of materials, as well as create large databases for data mining
applications that can guide both experiments and further calculations. This
paper discusses some of the challenges associated with preparing, running,
collecting and assessing ab initio results in a high-throughput framework.
An example application is given in the area of crystal structure prediction
for binary alloys. The high-throughput results are in good agreement with
known data, and suggest many possible new compounds not yet seen
experimentally. Data mining techniques are used to find correlations among
structural energies, and the correlations are then used to accelerate
identification of stable crystal structures in new alloys.
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1. Introduction

Over the last 40 years, ab initio methods have become
ubiquitous tools in chemistry, physics and materials science
[1, 2]. Here we define ab initio methods as those
that accurately solve the fundamental quantum mechanical
equations (Schrödinger or Dirac) for the electrons of a system.
The prominence of these methods arises from their ability
to accurately calculate many properties for a wide range
of systems with no need for pre-existing experimental or
empirical knowledge. Developments in computing power
and ab initio techniques have made it possible to perform
orders of magnitude more calculations than in the past, and
there is increasing interest in generating large amounts of
data through what we will call high-throughput ab initio
computation.

The advent of high-throughput ab initio computation
has been made possible by a number of advances. Most
obviously, the increasing speed of computers has led to a
proportional increase in the number of systems that can
be calculated in a fixed time. Simultaneously, modern
ab initio codes have become very robust, allowing many tasks
to be done automatically, with minimal human intervention,
thereby decreasing the amount of human time required for
setting up, checking and possibly fixing each calculation.
This combination of robust methods with ever increasing
computing power makes high-throughput computational
screening possible.

The promise of high-throughput ab initio computation
is analogous to that of high-throughput (combinatorial)
experiments. By studying large numbers of systems, one
can screen combinatorial spaces for new systems with
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desired properties. Atomistic computation-based screening
has been a tool for many years in drug design [3], but
it has not been practical to utilize the full power of
ab initio methods. The introduction of ab initio screening will
allow exploration of many properties that cannot be reliably
calculated without complete quantum mechanical methods
(e.g., electronic structure properties). Ab initio screening will
be particularly important in materials science, where it has
proved very challenging to find acceptably accurate and broad
non-quantum mechanical atomistic models.

Section 2 will discuss some of the challenges that
must be overcome for successful high-throughput ab initio
calculations, and section 3 will discuss using high-throughput
methods for ab initio crystal structure prediction. Section 4
will summarize the results, and provide a discussion of some
key issues and other work in the field.

2. High-throughput ab initio calculation methods

A high-throughput study can be divided into three parts—
preparing the input files and run parameters, running the
calculation and collecting and assessing the results. For high-
throughput methods to be successful, all these steps must be
automated. In most cases, automation consists of the relatively
straightforward process of writing programs to manage what
would otherwise be done by hand—moving files, changing
formats, extracting result values, etc. Most of these tasks can
be performed relatively easily with simple scripts in a UNIX or
LINUX environment. However, there are a few areas where it
can be surprisingly difficult to use automated scripts to match
the scrutiny to which a human would subject the output. The
problem we will discuss in more detail is one in which we
generated a high-throughput ab initio database of structural
parameters and energies for crystal structures in binary alloys
(discussed further in section 3) An example of a particular
calculation might be the determination of the fully relaxed
atomic positions and energy of GaAs in the diamond cubic
or face centred cubic structures. At this point, the database
consists of 176 structures in each of 80 binary alloys.

Preparing input files and run parameters consists of both
setting up initial structures for all the alloys (used as a starting
point to find the parameters of the unit cell that give the lowest
energy), and setting optimal parameters for the ab initio codes.
Because of the large number of crystal structures we wished
to investigate, we needed a method to automatically choose
the initial structures. This was done both by generating likely
crystal structures as superstructures of face and body centred
cubic lattices, and hexagonally closed packed lattices, and
by extracting frequently occurring structure types from the
CRYSTMET structure database [4]. The ability to interface
with an experimental database to get structures that appear
frequently in nature was very important for getting a relevant
database. Initial volumes for each alloy structure were taken
to be the concentration weighted volumes of the alloying
elements, following Vegard’s law [5].

Setting optimal ab initio run parameters is complicated
by the fact that any tuning of the parameters to a specific
alloy and structure has to be automated. As an example,
consider the choice of how many k-points to use in each
calculation. As part of a typical ab initio computation,

electronic wavefunctions are determined at a set of k-points
in the reciprocal space of the crystal. One can think of these
k-points as a grid over which a numerical integration of the
charge density and wavefunctions is performed. The more
k-points used, the higher the numerical accuracy of the result.
When working with just one system, one generally checks
carefully for convergence with number of k-points, attempting
to use enough for accurate results, but no more, since large
k-point meshes slow down the calculations. However, careful
checking cannot be done for all the systems in a high-
throughput application. Instead, testing was done on a small
subset of systems to find the minimum number of k-points
times number of atoms in the unit cell that gave acceptably
well-converged results. This number was then used for all
the remaining calculations, so that approximately the same
k-point sampling density was used for all different sizes of
unit cells of the structures.

Running the calculations for high-throughput applications
requires large amounts of computer power, but the calculations
are usually independent and parallelize almost perfectly. A
simple Linux cluster is therefore an effective computing
environment for high-throughput ab initio. We developed
special software to efficiently use free cycles and balance
loads on our clusters, thereby completing many CPU years of
calculations without disturbing other users of the cluster. At
the heart of high-throughput ab initio are the readily available
codes with robust implementations of ab initio techniques. We
have used the Vienna ab initio simulation package (VASP),
which is one of the fastest, most stable and most complete
packages available for ab initio calculation within the standard
density functional theory approximations [6].

Collecting and assessing results is a very important step,
since large scale automated calculations can easily produce
surprising errors that are difficult to catch. For example,
in optimizing a very large number of crystal structures it
was found that many of them were unstable, and ended
up relaxing to entirely different structure types than that in
which they began. Perhaps the simplest and best known
class of these transformations is the relaxation of an unstable
face centred cubic (fcc) phase into a body centred cubic
(bcc) equivalent along a Bain strain path [7]. This type
of relaxation can occur with different orderings, creating
transformations between different fcc and bcc phases. For
example, in Cd0.5Y0.5, an initially unstable L10 structure
relaxed to the stable experimental ground state B2 structure
during the calculation (see figure 1 for a schematic picture of
this transformation).

In order to track changes in structure type, automated
structure comparison codes were developed which can
compare structures using such characteristics as volume,
coordination shells, bond distances and space group symmetry
(as calculated by the publicly available code PLATON [8]).
Some stable structures that we obtained do not match any of
the 176 structures in our database. These novel types have
been automatically checked against all known structure types
in the CRYSTMET database to see if they are known in any
system, and some have been shown to be entirely new structure
types [9].

In all steps every effort has been made to automate
procedures frequently done by hand, so that calculations can
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Figure 1. A schematic example of the fcc to bcc Bain strain path.
The solid lines represent the conventional fcc cells and the dotted
lines represent the conventional bcc cell. The arrows show how the
L10 fcc structure becomes the B2 bcc structure (both are A1B1
superlattices along [100]).

be run with a minimum of human intervention. For the most
recently assessed data of 176 structures in 80 alloys, we have
performed 32 402 VASP calculations, and consumed a total
of ∼29 CPU years (estimated to be ∼1018 total floating point
operations). Details of the VASP calculations performed for
this database can be found in [10, 11].

3. Application to crystal structure prediction

3.1. The problem of crystal structure prediction

Most materials properties, from band gaps to brittle fracture,
melting temperature to magnetism, depend strongly on the
structure of the materials involved. For this reason, crystal
structure prediction has long been a fundamental problem in
materials science, and identifying structure is still one of the
key steps in many materials development projects. In addition,
the growing interest in high-throughput ab initio methods and
attendant materials screening efforts creates a new need for
crystal structure prediction. Without a detailed knowledge of
a material’s structure, ab initio predictions of properties will
often not be relevant to the real material. High-throughput
calculations of properties are therefore constrained to materials
with already known crystal structures, which greatly limits the
potential of these computational methods to efficiently look for
new materials with improved properties. Structure prediction
is therefore a major challenge in high-throughput ab initio
screening and a prerequisite for rational materials design with
computational methods.

Ab initio methods are probably the best available tool
for general structure prediction, since they can accurately
calculate the relevant energies to determine stable structures.
Unfortunately, there are so many possible structures that
practically one cannot blindly enumerate every relevant
structure for every alloy of interest. The goal of our study
is therefore to combine high-throughput and data mining
approaches to perform rapid, smart searches through the space
of possible structures to find the most stable ones. As a first
step in this process, we have used high-throughput approaches
to construct a database which now contains fully relaxed
electronic structure calculations for 176 structures of 80 binary
alloys. There are a number of valuable things that can be done
with this database. First, direct comparison to experiments can
be used to make an unprecedented assessment of the accuracy

and completeness of both the computational and experimental
results. Furthermore, the database makes it possible to use
data mining methods to establish patterns within the structural
energies, providing guidance to efficiently predict structures
for new alloys for which one does not want to calculate the
energies of all 176 structures.

3.2. Comparing the database to experiment

We have performed comparison between ab initio predicted
and experimental crystal structure types for 80 different alloy
systems. In the experimental comparison, as with many high-
throughput applications, some compromises must be made
to make the large amounts of data tractable. In this case,
the experimental data were taken almost entirely from two
compilations, the Binary Alloy Phase Diagrams books [12]
and the Pauling Files [13] (although more recent references
were included when we were aware of them). The detailed
comparison between the database and experiments is given
in [11], and here we give a summary of the key results.
To illustrate how much can be learned from the computed
database, consider the cases of the Ag–Au and Ag–Pd binary
alloy systems. Experimentally, no compound formation has
been reported, and both systems are disordered (possibly with
some short-range-order) at the high temperatures where they
have been studied [12, 13]. However, calculated energies
show that, for both systems, the elements do in fact have a
significant ordering tendency, and that a rich series of ordered
phases are to be expected if the alloys can be equilibrated at
low temperatures. This can be seen clearly in the energy versus
composition plots in figure 2, where the convex hulls show the
predicted stable structures at zero temperature3.

Restricting consideration to compounds for which both
experimental and computational results were available made
for 236 cases where the computational structural predictions
could be compared with experimental measurements.
In regions of composition that had not been studied
experimentally, or that were experimentally assigned as two-
phase or solid solution regions, we often predicted compounds
that had not been seen by experiments. These cases created
an impressive 96 ab initio predictions of compounds that
might be observed through more detailed and/or effectively
lower-temperature experiments. Ab initio results also
provided predictions for an additional 21 compounds which
were observed experimentally, but not identified reliably.
For example, in the important electrocatalyst Pt–Ru, an
ordered face centred cubic (fcc) phase was recently seen
experimentally at Pt0.5Ru0.5, but the detailed atomic structure
has not been identified [14]. The ab initio calculations suggest
that Pt0.5Ru0.5 forms an fcc superlattice of A2B2 ordering along
the [100] direction, as shown in figure 3.

In 110 cases, the ab initio and experimental results
agreed on the low-temperature compound structure types,
or that there were none (a phase-separating system). The
agreements range from simple cases, such as predicting the
single ordered C15 Ag2Na phase in the Ag–Na system, to
more complex phase diagrams, such as predicting all four

3 In an energy versus composition plot, the convex hull is the set of lines that
connect alloy phases such that all other phases are above the convex hull lines.
The convex hull represents the free energy of the alloy at zero degrees Kelvin.
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Figure 2. Computed energies of the Ag–Au and Ag–Pd alloy systems. The ‘x’ symbols denote energies of metastable structures and the ‘+’
symbols and connecting lines represent the stable convex hull. All results are for zero temperature. These figures are given, with additional
details, in [11].

Figure 3. A2B2 ordering along [100] in a face centred cubic parent
lattice. This is the stable structure suggested for Pt0.5Ru0.5 from the
ab initio database.

known phases in the Al–Sc system [11, 12]. In only nine
cases was there large disagreement between the experimental
measurements and ab initio predictions of stable compounds.
After careful analysis of these discrepancies, in only three
cases were the experimental results complete enough that
one could claim unambiguously that either the calculations
or experiments were significantly in error. These include a
failure to predict the L12 Cd3Nb structure (calculations predict
L12 to be unstable by ∼100 meV atom−1 with respect to phase
separation into Cd and Nb), a failure to predict the B27 PtY
structure (calculations predict B33 to be lower than B27 by
∼60 meV atom−1) and a failure to predict the D88 Pt3Zr5

structure (calculations predict D88 to be ∼26 meV atom−1

above the nearest tie-line) [11, 12]. It should be noted that we
have not explicitly included as errors calculated predictions
of ordered phases in experimental two-phase regions, since it
is difficult to know to what extent thermal effects are causing
the difference between the zero-temperature calculations and
the much higher temperature experiments. However, some
cases are almost certainly problematic, such as Mo–Ti, where
we obtain some calculated formation energies more negative
than –200 meV atom−1, while the experimental phase diagram
shows a miscibility gap. These cases are discussed in
more detail in [11]. Although the failures warrant further
investigation, the fact that there are so few is very encouraging.

These detailed comparisons with experiment demonstrate both
the impressive accuracy of high-throughput ab initio methods,
and their utility in providing a wealth of new predictions for
alloy systems.

3.3. Data mining the database

Data mining methods are becoming increasingly prevalent
in materials science applications [15]. High-throughput
ab initio methods are now generating computed data on a
scale where data mining algorithms can be used to determine
useful patterns. This creates many opportunities for testing
out traditional empirical ideas from materials science, as well
as establishing new relationships that have not been guessed
previously. We have used data mining methods to help in the
structure prediction problem.

A data mining approach to structure prediction is
particularly attractive, since patterns in structure formation
among similar alloys are well known. In fact, many traditional
empirical methods of structure prediction, such as structure
maps [16], can be considered data mining methods. High-
throughput ab initio has now made it possible to extend some of
these crystal structure related data mining approaches beyond
experimentally known data to calculated results.

The crystal structure prediction problem can be thought
of in the following way: given a new alloy and a very large list
of candidate structures, how can one order the search through
the candidates so that the ones more likely to be stable are
calculated first. The idea behind a data mining approach is to
use results on previously calculated alloy systems to extract
patterns that can guide the choice of good new candidate
structures. The details of this method can be found in [10].
The following analysis will be done within the restricted space
of the database we have developed, so that testing against the
full calculations can be performed.

We make use of two data mining approaches to order
the candidate structures for a new alloy. The first is to order
candidate structures based on the frequency with which they
are ground states for the alloys in the database (frequency
ordering). This simply guarantees that very common structure
types are first on the list of candidates to try. A more elaborate
analysis is also employed, which uses partial least squares
(PLS) linear regression [17] to establish correlations among the
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Figure 4. Comparison of the number of calculations required to
reach a given predictive accuracy using random structure selection
(top line) and data mining methods (bottom line).

structural energies within an alloy. These linear relationships
can be used to predict energies for structures that have not
been calculated, and these predicted energies are then used
to order the candidate structures (PLS ordering). An iterative
structure prediction algorithm is used which makes use of
both these methods for ordering candidates, where the more
elaborate PLS approach is used only when enough data have
been collected to make it effective. For a new alloy, not yet
calculated in the database, the structure prediction algorithm
iteratively proposes likely stable structures, which are then
calculated with the ab initio methods. The hope is that the
data mining guided search through the structures will be much
more efficient than just guessing.

The iterative data mining algorithm has been tested on all
the alloys in the database, removing each alloy in succession
and treating it as if it were new. The utility of the data mining
algorithm is assessed by determining how few calculations are
needed to predict correct ground states compared to simply
choosing structures at random. The results are shown in
figure 4, where it can be seen that, for the same average
accuracy of ground state prediction, the data mining algorithm
requires approximately four times fewer ab initio calculations
than randomly guessing structures. Further refinement of the
techniques and enhancement of the database could lead to
significantly greater speed-up. The results demonstrate that
high-throughput ab initio databases can be used in combination
with data mining methods to attack practical problems such as
crystal structure prediction.

4. Summary and conclusions

Advances in ab initio methods and computational speed have
recently made high-throughput ab initio methods a reality. It
is now possible to consider tens of thousands of calculations
to construct large databases for screening compounds. The
key ingredients needed to enable high-throughput ab initio
are robust methods and automating tasks, as described in
section 2.

Examples of high-throughput ab initio computation
are still relatively few, are largely limited to the fastest
and most robust ab initio methods (primarily density
functional theory approaches) and are focused on the most
straightforward properties for calculation (e.g., electronic
structure, energies, bulk moduli). However, a range
of interesting studies is emerging, and we give some
selected examples here. Franceschetti and Zunger developed

specialized high-throughput ab initio methods to predict band
gaps in semiconductors, and combined these with simulated
annealing optimization methods to find the ordered phase with
the largest band gap in Al0.25Ga0.75As [18]. Smithson et al
have performed ab initio calculations of formation energies
on almost 200 different transition metal hydrides (as well as
a smaller number of electronic densities of states) in order to
better understand metal-hydride formation [19]. Johannesson
et al and Bligaard et al have used the very rapid ab initio linear
muffin tin orbital method in the atomic sphere approximation
(LMTO-ASA) in order to predict the stability, bulk moduli and
lattice parameters of a very large set of alloys (they have over
64 000 calculations of different alloy structures). Data mining
methods such as genetic algorithms and Pareto-optimal set
approaches were used to optimize for low compressibility, high
stability and low cost [20, 21]. Some of the same authors have
also used ab initio methods to calculate the impurity surface
segregation energies of 24 3d–5d transition metals, where each
metal can be both the impurity and the host. This created
a database of 552 host and impurity pairs, and allowed the
authors to identify key factors governing surface segregation
energetics [22].

As described in section 3, we have used plane wave
pseudopotential methods to calculate formation energies
and structural parameters for 80 binary alloys in 176
different structures, creating a database with over 14 000
alloy structures. Detailed comparisons to experiments have
been made, proposing structures for a number of previously
unidentified ordered compounds, and allowing perhaps the
most comprehensive assessment to date of the accuracy of
ab initio density functional methods for predicting structural
energies [11]. We have also shown how the database can
be combined with partial least squares data mining methods
to accelerate future ab initio predictions [10, 23]. Widom
and Mihalkovic have also assembled a database of ab initio
structural and energetic information for assorted structures
on over 200 binary, ternary and quaternary alloys (these
data can be conveniently searched and visualized through
a helpful website) [24]. A somewhat different example of
what is made possible by high-throughput ab initio is the
work of van de Walle et al, in constructing the alloy theory
automated toolkit (ATAT) [25]. This toolkit is concerned with
the prediction of alloy thermodynamic properties, but relies
on being able to automatically perform hundreds or more
ab initio calculations to extract energies and force constants.
Such higher level automated tools are an exciting area enabled
by high-throughput ab initio technology.

High-throughput ab initio screening has an enormous
potential to impact design of compounds in materials
science, chemistry and biology. Impact will come in two
forms. The simplest is direct calculation of properties,
such as structural parameters, energetics, elastic and optical
properties, etc. For example, in section 3 we showed how
direct comparison of high-throughput structural energetics to
experiments suggested over a 100 possible new compounds
that had not been identified previously. However, for many
properties of interest, ab initio methods cannot efficiently
or accurately directly calculate the desired information (e.g.,
materials properties such as hardness, melting temperature and
corrosion resistance). In these cases, ab initio methods may be
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able to provide accurate descriptors upon which correlations
to the desired properties can be built. This follows the spirit
of quantitative structure–activity relationships (QSAR) and
quantitative structure–property relationships (QSPR) methods,
which attempt to predict complex properties from atomistic
ones. An elegant example along these lines is the work
of Chalk et al, who built a neural network to predict
compound boiling points from their structures, as calculated
with atomistic methods [26]. Chalk et al used potential models
to determine three-dimensional molecular structures, but the
general approach could easily be used with ab initio methods.
In a similar spirit, Vitos et al used correlations between elastic
constants (which can be calculated ab initio) and hardness
and ductility (which are very difficult to calculate ab initio)
to perform ab initio screening of mechanical properties of
different stainless steels [27].

As large databases of ab initio data are produced,
more data management and mining tools will need to be
developed. For example, in section 3 we demonstrated how
one can use a large database and data mining techniques to
accelerate structure prediction in new alloys. The above-
mentioned approach of correlating atomic scale descriptors
with macroscopic properties will also require data mining
methods. Further work in data mining tools, particularly in
combining ab initio and experimental databases, will greatly
extend the power of the data being developed.

Finally, we have stressed that, for materials design,
high-throughput ab initio methods will require input crystal
structures, and that crystal structure prediction has therefore
become a newly pressing problem. As a beginning step in
solving this problem, we have built a very large structural
energy database, and used it both to directly predict crystal
structures and develop data mining methods of accelerating
structure prediction in the future. We hope that further
development along these lines will produce an efficient general
crystal structure prediction tool, which will enable high-
throughput calculations to explore and discover in many new
materials systems.
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