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Abstract—Ultra-reliable low-latency communication (URLLC),
a major 5G New-Radio use case, is the key enabler for applica-
tions with strict reliability and latency requirements. These appli-
cations necessitate the use of short-length and high-rate channel
codes. Guessing Random Additive Noise Decoding (GRAND)
is a recently proposed Maximum Likelihood (ML) decoding
technique for these short-length and high-rate codes. Rather than
decoding the received vector, GRAND tries to infer the noise
that corrupted the transmitted codeword during transmission
through the communication channel. As a result, GRAND can
decode any code, structured or unstructured. GRAND has hard-
input as well as soft-input variants. Among these variants,
Ordered Reliability Bits GRAND (ORBGRAND) is a soft-input
variant that outperforms hard-input GRAND and is suitable
for parallel hardware implementation. This work reports the
first hardware architecture for ORBGRAND, which achieves an
average throughput of up to 42.5 Gbps for a code length of 128
at a target FER of 10−7. Furthermore, the proposed hardware
can be used to decode any code as long as the length and rate
constraints are met. In comparison to the GRANDAB, a hard-
input variant of GRAND, the proposed architecture enhances
decoding performance by at least 2 dB. When compared to the
state-of-the-art fast dynamic successive cancellation flip decoder
(Fast-DSCF) using a 5G polar code (128, 105), the proposed
ORBGRAND VLSI implementation has 49× higher average
throughput, 32× times more energy efficiency, and 5× more
area efficiency while maintaining similar decoding performance.

Index Terms—Area efficiency, Energy efficiency, Error Cor-
recting Code (ECC), Guessing Random Additive Noise Decoding
(GRAND), Maximum Likelihood Decoding (MLD), Ordered
Reliability Bits GRAND (ORBGRAND), VLSI architecture

I. INTRODUCTION

FOLLOWING Shannon’s seminal 1948 paper [3], much
work was directed toward developing practical coding

schemes that could approach channel capacity (named “the
Shannon limit”). Early proposed channel coding techniques
mainly focused on designing error correcting codes where
the number of correctable errors is selected by design. This
approach towards channel coding brought rise to Hamming
codes [4] and Bose–Chaudhuri–Hocquenghem (BCH) codes
[5], [6]. Recently, researchers have been trying to discover
new capacity achieving and capacity-approaching codes. Most
notably, Turbo codes [7] and LDPC codes [8], were proposed

S. M. Abbas, T. Tonnellier, M. Jalaleddine and W. J. Gross are with the
Department of Electrical and Computer Engineering, McGill University,
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(a) : PC (128, 105+11) (b) : PC (128, 99+11)
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Fig. 1. Comparison of the decoding performance of different GRAND variants
with OSD (Order = 2), CA-SCL and DSCF (ω = 2, Tmax = 50) decoder
for 5G-NR Polar Codes.
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Fig. 2. Comparison of the decoding performance of different GRAND variants
with OSD (Order = 2) and ML decoder for BCH Codes.

over time as capacity-approaching codes. On the other hand,
Polar codes [9], proposed in 2008, are the first proven class of
codes that asymptotically reach the Shannon limit for binary-
input symmetric memory-less channels, as well as discrete and
continuous memory-less channels [10]. However, designing
codes that perform well in the short-to-medium block length
regime is challenging [11].

The Guessing Random Additive Noise Decoding (GRAND)
[12] is a recently proposed Maximum Likelihood (ML) decod-
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ing technique for short-length and high-rate channel codes.
Emerging applications such as intelligent transportation sys-
tems (ITS) [13], the internet of things (IoT) [14], [15], aug-
mented and virtual reality, machine to machine communication
(M2M) [16], and ultra-reliable low-latency communication
(URLLC) [17] (5G New-Radio (NR) use case) necessitate
short data packets with high reliability (target FER of 10−5 ∼
10−9) and ultra low latency to deal with critical events.
GRAND is a maximum likelihood decoder for these channel
codes with short lengths and high rates. Furthermore, because
GRAND focuses on noise, transmissions with low noise are
quickly decoded. GRAND is therefore suitable for applications
that require high reliability and ultra-low latency.

In addition to GRAND, other universal decoders for (n, k)
linear block codes, where n is the code length and k is the
code dimension, include brute-force ML decoding, Ordered
Statistic Decoding (OSD) [18] and its variants [19], [20], [21],
[22]. Due to the high complexity requirement, the ML decoder
is unsuitable for high-rate codes. Whereas the OSD and its
variants permute the columns of the generator matrix (G) of
the underlying code in a way that is dependent on the received
vector of channel observation values (y), and the G matrix is
transformed to a systematic form using Gaussian elimination.
OSD is unsuitable for parallel hardware implementation [23]
due to the complexity of Gaussian elimination (O(n3)) and the
reliance of column permutations of G on the received vector
(y). GRAND, on the other hand, provides a low-complexity
ML decoding solution for short-length and high-rate codes
because it does not require Gaussian elimination or G column
permutations. GRAND instead requires simple bit-flipping and
syndrome check (codebook membership verification) opera-
tions.

GRAND generates test error patterns, which are succes-
sively applied to the vector of channel observation values (y)
and the resulting vector is evaluated for codebook membership.
GRAND can be used with any codebook as long as there is
a method for validating a vector’s codebook membership. For
linear codebooks (C), the codebook membership for a vector
can be verified using the parity check matrix H . For other
non-structured codebooks, stored in a dictionary, the codebook
membership of a vector can be checked with a dictionary
lookup. For the rest of the discussion, we restrict ourselves
to (n, k) linear block codes.

The order in which these test error patterns are gener-
ated is the primary distinction between GRAND variants.
GRAND with ABandonment (GRANDAB) [12] is a hard
decision input version of GRAND that produces test error
patterns in increasing Hamming weight order up to weight
AB. Ordered Reliability Bits GRAND (ORBGRAND) [24]
and Soft GRAND (SGRAND) [25] are soft-input variants
that efficiently utilize soft information (channel observation
values), resulting in improved decoding performance over
hard-input GRANDAB.

Figure 1 compares the decoding performance of various
GRAND variants for decoding 5G NR CRC-aided polar code
(128,105+11) and polar code (128,99+11). Furthermore, the
decoding performance of state-of-the-art soft-input decoders
such as the CRC-Aided Successive Cancellation List (CA-

SCL) decoder [26], [27], Dynamic SC-Flip (DSCF) [28], [29]
decoder and OSD [18], [19], [20] is included for reference.
The numerical simulation results presented in this work are
based on BPSK modulation over an AWGN channel. The
ORBGRAND and SGRAND soft-input decoders outperform
the hard-input GRANDAB variant in decoding performance,
and the SGRAND variant achieves ML decoding performance
similar to OSD, as shown in Fig. 1. Figure 2 compares the
decoding performance of different GRAND variants with OSD
and ML decoding of BCH codes (127, 106) and (127, 113),
respectively. The ML decoding results are obtained from [2].
Similar trends in decoding performance can be seen in the
BCH codes depicted in Fig. 2, where soft-input variants of
GRAND (ORBGRAND and SGRAND) outperform the hard-
input traditional Berlekamp-Massey (B-M) [30], [31] decoder
and the SGRAND achieves ML performance comparable to
OSD.

The SGRAND outperforms the other GRAND variants in
terms of decoding performance; however, SGRAND is not
suitable for parallel hardware implementation. The generated
test error patterns in SGRAND are interdependent, and their
query order changes for each received vector of channel
observation values (y) [25]. As a result, SGRAND does not
lend itself to efficient parallel hardware implementation, and
a sequential hardware implementation will result in a high
decoding latency, which is unsuitable for applications that
require ultra-low latency. The ORBGRAND, on the other
hand, generates test error patterns in a predetermined logistic
weight order based on integer partitioning. Furthermore, the
test error patterns generated are mutually independent and can
be generated in parallel. ORBGRAND is thus highly paral-
lelizable and well suited to parallel hardware implementation.

In this paper, we investigate the parameters that affect the
decoding performance as well as the computational complexity
of the ORBGRAND algorithm, and we propose modifications
to the ORBGRAND algorithm to aid hardware implementa-
tion and reduce complexity. In addition, we present a high-
throughput and energy-efficient ORBGRAND VLSI architec-
ture. The VLSI implemenation results show that, considering
a code of length 128 and a target FER of 10−7, the pro-
posed harware architecture can achieve an average information
throughput of up to 42.5 Gbps. Furthermore, the proposed
hardware can be used to decode any code as long as the length
and rate constraints are met. When compared to the state-of-
the-art fast dynamic successive cancellation flip decoder (Fast-
DSCF) [28], [29] using a 5G NR polar code (128, 105), the
proposed ORBGRAND implementation results in 49× more
average throughput, 32× more energy efficiency, and 5× more
area efficiency.

It should be noted that a part of this work was previously
discussed in [1]. This paper builds on the earlier work [1] and
extends the proposed ORBGRAND in following ways:
• For various classes of channel codes, including Bose-

Chaudhuri-Hocquenghem (BCH) codes, Cyclic Redun-
dancy Check (CRC) codes, Random Linear Codes
(RLCs), and Polar codes, the proposed ORBGRAND is
evaluated in terms of decoding performance and com-
pared with state-of-the-art decoding approaches.
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• The ORBGRAND VLSI architecture [1] can only support
a limited set of parameters (LW ≤ 64 and P ≤ 6). The
proposed ORBGRAND VLSI architecture is expanded to
support the additional parameters (LW ≤ 96 and P ≤ 8)
in this work. Furthermore, detailed VLSI implementation
results for area, power, throughput, hardware efficiency,
and energy efficiency are presented.

• This paper describes the proposed test error pattern gener-
ation scheme for the ORBGRAND hardware and presents
a step-by-step procedure for leveraging shift registers to
generate error patterns corresponding to logistic weight
order based on the integer partitioning procedure.

• This paper provides a comprehensive analysis of worst-
case latency and throughput for selecting different pa-
rameters for the proposed ORBGRAND hardware. This
analysis assists in the selection of optimal ORBGRAND
hardware parameters to meet the throughput and latency
requirements of a target application.

• For the proposed ORBGRAND VLSI hardware, we pro-
pose segmenting the sorter module into multiple parti-
tions. The effect of partition number on the displace-
ment of LLR elements |yi| (∀i ∈ [1, n]) from their
correct locations and their effect on ORBGRAND de-
coding performance is thoroughly investigated. Finally,
the ORBGRAND with segmented sorter approach is
implemented and compared to the baseline ORBGRAND
hardware with non-segmented sorter, and the effect of
varying the number of sorter-segments on area overhead
is investigated.

The remainder of this work is structured as follows: Section
II includes preliminary information on GRAND and ORB-
GRAND. Section III investigates ORBGRAND parameters
and proposes modifications for simple hardware implemen-
tation as well as complexity reduction of ORBGRAND. The
proposed hardware architecture for ORBGRAND is detailed
in Section IV. Section V presents implementation results and
compares them to the Fast-DSCF and GRANDAB decoders.
Finally, in Section VI, concluding remarks are made.

II. PRELIMINARIES

A. Notations

Matrices are denoted by a bold upper-case letter (M ),
while vectors are denoted with bold lower-case letters (v).
The transpose operator is represented by >. The number of k-
combinations from a given set of n elements is noted by

(
n
k

)
.

1n is the indicator vector where all locations except the nth

are 0 and the nth is 1. Similarly, 1v is the indicator vector in
which all locations vi (∀i ∈ [1, n]) are 1. All the indices start
at 1. For this work, all operations are restricted to the Galois
field with 2 elements, noted F2. The symbols ∴ and ∵ denote
therefore and because respectively. a ◦ b denotes permuting
elements in a according to the permutation order in b.

B. GRAND decoding of linear block codes

A linear block code is a linear mapping g : Fk2 → Fn2 , where
k < n. In this mapping, a vector u of size k maps to a vector
c of size n and the ratio R , k

n is called the code-rate. For

every linear block code, there exists a k × n matrix G called
generator matrix and a (n − k) × n matrix H called parity
check matrix. The set of the 2k vectors c is called a code C,
whose elements c are called codewords and each codeword
verifies the following property:

∀ c ∈ C, H · c> = 0. (1)

Consider the case where c was sent via a noisy channel and r
was received at the channel’s output. Because of the channel
noise, r and c might differ. As a result, the relationship
between r and c may be deduced as follows: r = c ⊕ ē,
where ē represents the channel-induced noise.

GRAND sequentially generates the test error patterns (e),
and applies them to r and checks for codebook membership
of r by verifying that

H · (r ⊕ e)> (2)

is equal to zero. If so, e is the guessed noise and ĉ , r ⊕ e
is the estimated codeword. GRAND’s focus is on noise, thus
it can be used with any codebook as long as there is a method
for validating a vector’s codebook membership. For linear
codebooks, the codebook membership for a vector can be
verified using H .

C. ORBGRAND decoding

Algorithm 1 summarizes the steps of the ORBGRAND. The
inputs to the algorithm are the vector of channel observation
values (log-likelihood ratios (LLRs)) y of size n, a (n−k)×n
parity check matrix of the code H , an n × k matrix G−1

such that G · G−1 is the k × k identity matrix, with G
a generator matrix of the code, and the maximum logistic
weight considered LWmax (LWmax ≤ n(n+1)

2 ). The logistic
weight (LW ) corresponds to the sum of the indices of non
zero elements in the test error patterns (e)[24]. For example,
e = [0, 1, 0, 0, 1, 0] has a Hamming weight of 2, whereas the
logistic weight is 2 + 5 = 7.

ORBGRAND begins by sorting y in ascending order of
absolute value of LLRs (|y|), and the corresponding indices
are recorded in a permutation vector denoted by ind (line 1).
Following that, all integer partitions (λ = (λ1, λ2, . . . , λP ) ` i
where P ∈ [1, Pmax] and i ∈ [0, LWmax]; explained in section
III ) are generated for each logistic weight (line 3). The integer
partition (λ) is used to generate a test error pattern (e), which
is then ordered using the permutation vector ind (line 5-6).
The generated test error patterns are then applied sequentially
to the hard decision vector (ŷ), which is obtained from the
input soft channel observation values (y). The resulting vector
is then queried for codebook membership (line 7). If the
codebook membership criterion (2) is met, then e is the
guessed noise and ĉ , ŷ ⊕ e is the estimated codeword.
Otherwise, either larger logistic weights or the remaining error
patterns for that logistic weight are considered. Finally, using
G−1 (line 8), the original message (û) is retrieved from the
estimated codeword, and the decoding process is terminated.

The frame error rate (FER) performance of ORBGRAND, a
soft decision decoder, is compared to a hard decision variant
GRANDAB for cyclic redundancy check (CRC) codes [32]
and Random Linear Codes (RLCs) [33], [34] in Fig. 3. CRC
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Algorithm 1: ORBGRAND Algorithm

Input: y, H , G−1, LWmax
Output: û

1 [ind, ȳ]← Sort(|y|) // ȳi ≤ ȳj (∀i < j)
2 for i← 0 to LWmax do
3 S ← (λ1, λ2, . . . , λP ) ` i // P ∈ [1, Pmax])
4 forall j in S do
5 e← 0
6 e← (e⊕ 1j) ◦ ind
7 if H · (ŷ ⊕ e)> == 0 then
8 û← (ŷ ⊕ e) ·G−1
9 return û
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Fig. 3. Comparison of the GRANDAB and ORBGRAND decoding perfor-
mance using (a) Cyclic Redundancy Check (CRC) codes and (b) Random
Linear Codes (RLCs) for n = 128 and k = 104.

codes [32] are typically used to detect errors in communication
systems and to assist list-based channel code decoders in
selecting the final candidate codeword. On the other hand,
CRC codes can also be used for error correction using the
GRAND algorithm. The concept of using CRC codes for error
correction with GRAND decoding was presented in [35] and
expanded on in [36]. RLCs [33], [34] are linear block codes
that are theoretically high-performing [33], [34] but are not
considered realistic in terms of decodability. For CRC code
(128,104), generator polynomial 0xB2B117 is used. As seen
in Fig. 3, ORBGRAND outperforms GRANDAB by at least 2
dB for a target FER ≥ 10−5 for both CRC codes and RLCs.

To conclude, both GRAND and ORBGRAND can be
used to decode any linear block code (n, k), structured or
unstructured, as long as the underlying code’s parity check
matrix (H) is provided. Furthermore, as a soft-input decoder,
ORBGRAND outperforms hard-input GRANDAB.

III. ORBGRAND DESIGN CONSIDERATIONS

ORBGRAND is centered around generating distinct integer
partition of a particular logistic weight (LW ), and these integer
partitions are then used to generate test error patterns (e).

An integer partition λ of a positive integer m, noted λ =
(λ1, λ2, . . . , λP ) ` m where λ1 > λ2 > . . . > λP , is the

multiset of positive integers λi (∀i ∈ [1, P ]) that sum to m. If
all parts λi (∀i ∈ [1, P ]) of the integer partition are different,
the partition is called distinct. Note that the generated test error
pattern obtained from an integer partition with P elements has
a Hamming weight of P . The ORBGRAND considers n(n+1)

2
as the maximum logistic weight for a (n, k) linear block code
(LWmax = n(n+1)

2 ). Furthermore, the generated TEPs have a
maximum Hamming weight of n (HWmax = n). It should be
noted that only distinct integer partitions are taken into account
when generating TEPs, and all parts (λi) of the partition are
less than or equal to n (λi ≤ n (∀i ∈ [1, P ])).

A. Parametric analysis of ORBGRAND

As seen in Algorithm 1, LWmax is an important parameter
for the ORBGRAND. LWmax impacts ORBGRAND’s decod-
ing performance as well as its computational complexity. The
computational complexity of GRAND and its variants can be
expressed in terms of the number of codebook membership
queries required. Furthermore, the complexity can be further
subdivided into worst-case complexity, which corresponds
to the maximum number of codebook membership queries
required, and average complexity, which corresponds to the
average number of codebook membership queries required.
It should be noted that with improved channel conditions,
the average complexity of GRAND and its variants decreases
sharply as transmissions subject to light noise are quickly
decoded [12][25][24].

In addition to LWmax, another important parameter of
ORBGRAND is the number of elements (P ) in the generated
integer partition (λ). Furthermore, P denotes the Hamming
weight of the generated test error pattern. ORBGRAND’s
LWmax and P parameters can be appropriately chosen to
reduce worst-case complexity while having a minimal impact
on decoding performance.

Fig. 4(a) depicts the impact of different parameters (LWmax,
P ) on ORBGRAND decoding performance for 5G CRC-
aided polar code (128,105+11) [37], [38] with BPSK mod-
ulation over an AWGN channel. Furthermore, the decoding
performance of state-of-the-art soft-input decoders such as
CA-SCL decoder [26], [27] and DSCF [28], [29] decoder is
included for reference. The number of DSCF attempts (Tmax)
parameter is set to 50, and the maximum bit-flipping order
(ω) is set to 2. As seen in Fig. 4(a), the FER performance
of ORBGRAND outperforms the GRANDAB (AB=3) [12]
decoder by at least 2 dB for target FERs ≤ 10−5. Furthermore,
the ORBGRAND decoder outperforms the CA-SCL decoder
[26], [27] and the DSCF decoder [28], [29] for decoding
polar code (128,105+11) at target FER of 10−4 and 10−6,
respectively.

The maximum number of codebook membership queries for
LWmax values of 128, 96, and 64 is 5.33×107, 3.69×106, and
1.5×105, respectively. When LWmax is decreased from 128 to
64, a performance degradation of 0.2 dB is observed at FER =
10−7, as shown in Fig. 4(a). The complexity, on the other hand,
is reduced by 355× as a result of this reduction. Similarly, the
degradation in ORBGRAND decoding performance for the
considered polar code with LWmax = 64 is negligible when
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P = 6 is used instead of an unbounded P . As a consequence,
with LWmax = 64 and P = 6, the maximum number of queries
is limited to 1.16×105, and the ORBGRAND (for target FER
of 10−5) performs similarly to the state-of-the-art DSCF polar
code decoder [28], [29].

Similarly, Fig. 4(b) presents a comparison of ORBGRAND
decoding performance for the BCH (127,106) code. The
ORBGRAND decoding performance is compared to that of the
hard decision input Berlekamp-Massey (B-M) decoder [30],
[31] and the soft-input OSD [18], [19], [20] decoder. ORB-
GRAND decoding of BCH (127, 106) code results in a 1.7dB
performance gain at a target FER of 10−5 when compared
to B-M decoder. For target FER of 10−6, the OSD decoder
outperforms the ORBGRAND decoder by 0.7dB. However,
due to the complexity of Gaussian elimination (O(n3)) and
the reliance of column permutation of the G matrix on the
received vector from the channel (y), OSD is unsuitable for
parallel hardware implementation [23]. ORBGRAND, on the
other hand, requires only simple bit-flipping and syndrome
check (codebook membership verification) operations, making
it ideal for applications requiring ultra-low decoding latency.

To conclude, the appropriate selection of ORBGRAND
parameters LWmax and P results not only in a reduction in
computational complexity but also in the design of simple
hardware, as seen in the section IV.

B. Proposed simplified generation of integer partitions (λ)

A hardware implementation for the generation of integer
partitions was proposed in [39]. However, since the gen-
erated partitions are not distinct, their approach cannot be
directly applied to our proposed ORBGRAND architecture.
Furthermore, their integer partition generation is sequential,
which is unsuitable for use in a parallelized, high-throughput
hardware architecture. In this section, we propose a method
for generating integer partitions of a particular logistic weight
using a specific arrangement of shift registers and XOR gates.

For generating integer partitions of a specific logistic weight
m, we noticed that a breakdown of m generates convenient
patterns. For example, for m = 12 the distinct integer
partitions are λ = {(12); (11, 1); (10, 2); (9, 3); (8, 4);
(7, 5); (9, 2, 1); (8, 3, 1); (7, 4, 1); (6, 5, 1); (7, 3, 2); (6, 4, 2);
(5, 4, 3); (6, 3, 2, 1); (5, 4, 2, 1)}. If a listing order is followed
for P = 2 (i.e. the subset {(11, 1); (10, 2); (9, 3); (8, 4);
(7, 5)}), the first integer descends while the second ascends.
Therefore for a particular logistic weight m, integer partitions
of size 2 (P = 2) can be generated as (λ1, λ2) ` m where
λ2 ∈ [1,

⌊
m
2

⌋
− 1] and λ1 = m− λ2.

Similar trends can be observed for higher-order partitions
such as P = 3 (i.e. the subset {(9, 2, 1); (8, 3, 1); (7, 4, 1);
(6, 5, 1); (7, 3, 2); (6, 4, 2); (5, 4, 3)}), the first integer de-
scends while the second ascends as the third integer remains
fixed until all iterations for the first two integers are complete.
Hence, integer partitions of size 3 (P = 3) can be generated
as (λ1, λ2, λ3)`m where, λ3 ∈ [1, λmax3 ], λ2 ∈ [λ3 +1, λmax2,λ3

]
and λ1 = m−λ2−λ3. Moreover, λmax3 is the maximum value
of λ3, and λmax2,λ3

is the maximum value of λ2 for a specific
value of λ3 (λ3 ∈ [1, λmax3 ]).

In general, an integer partition of size P can be gen-
erated as (λ1, λ2, . . . , λP ) ` m where λP ∈ [1, λmax

P ],
λi ∈ [λi+1 + 1, λmax

i,λi+1,...,λP−1
]∀i ∈ [2, P − 1] and λ1 =

m −
P∑
i=2

λi. Moreover, λmaxP is the maximum value of λP ,

and λmax
i,λi+1...,λP−1

is the maximum value of λi for specific
values of λj (∀j ∈ [i + 1, P − 1]). For similpicity, we will
denote λmax

i,λi+1...,λP−1
as λmax

i . The maximum value for each
λi (∀i ∈ [2, P ]) is bounded by (3).

Lemma III.1. If a positive integer m is partitioned into P
distinct parts, ∀i ∈ [2, P ], and assuming that λi are ordered,
the maximum value for each λi is bounded by

λmax
i <

2×m− (i× (i− 1)) + 2− 2×
P∑

j=i+1

λj

2× i
. (3)

whereas the first value of λ is given as λ1 = m−
P∑
j=2

λj .

Proof. The proof is provided in Appendix A.

IV. VLSI ARCHITECTURE FOR ORBGRAND

A VLSI architecture for GRANDAB (AB=3) was proposed
in [35] for (n, k) linear block codes. Shift registers are used
in [35] to store syndrome of error patterns with a Hamming
weight of 1 (denoted as si = H · 1>i , i ∈ J1 . . nK).
Furthermore, [35] employs the underlying code’s linearity
property to combine multiple si to generate syndrome of an
error pattern with a Hamming weight of l > 1 (s1,2...,l =
H · 1>1 ⊕ H · 1>2 . . . ⊕ H · 1>l ). We refer the reader to
[35] for more details. The VLSI architecture for GRANDAB
(AB=3) [35] forms the basis for the proposed ORBGRAND
architecture. The GRANDAB decoder [35] can only generate
test error patterns with Hamming weights ≤ 3. As a result,
significant improvements are needed to cater to soft-inputs,
to generate error patterns in increasing order of their logistic
weight, and to consider larger Hamming weights as required
by ORBGRAND.

A. Scheduling and details

As explained in section III, ORBGRAND is based on
generating test error patterns corresponding to integer par-
titions of a specific logistic weight m (∀m ∈ [3, LWmax]).
Moreover, for each m, integer partitions are generated with
size P (∀P ∈ [2, Pmax]). We propose to generate these
integer partitions in ascending order of their size (P ). This
modification does not impact the FER performance, however,
it helps in designing a simpler hardware implementation.

In this section, we propose an arrangement and intercon-
nection of shift registers and XOR gates to generate test error
patterns corresponding to a specific logistic weight m. The
shift registers store the syndromes that correspond to error
patterns with a Hamming weight of 1 (si). To check for error
patterns of hamming weight P , these syndromes are combined
using an array of XOR gates.
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Fig. 4. Comparison of decoding performance of ORBGRAND decoding with different parameters (LWmax, P ) for 5G CRC-aided Polar Code (128,105+11)
and BCH code (127, 106).

        

Shift Register 1 Shift Register 2

Shift Register 3

Fig. 5. Example of the shift registers content and interconnection for logistic
weight m = 20 for checking error patterns of Hamming weights 2 and 3.

B. Generating test error patterns for P ≤ 3

The size and number of shift registers used in [35] have
a direct impact on the Hamming weight of the error patterns
that can be evaluated in parallel. For example, in [35], two
n × (n − k) shift registers are used to evaluate n test error
patterns in parallel with a Hamming weight of 2. However,
if more shift registers are added, the number of intercon-
nections becomes a problem. As a result, for the proposed
ORBGRAND architecture, we choose three shift registers that
correspond to an integer partition of size 3 (P = 3).

In the proposed ORBGRAND VLSI architecture, λ1, λ2,
λ3 ((λ1, λ2, λ3) ` m) are mapped to first, second and third
shift register respectively. The third shift register is a λmax

3 ×
(n − k) bit shift register, where λmax

3 value is given by (3)

corresponding to P = 3. Whereas the first and second shift
registers are each 2× (λmax

3 + 1)× (n− k) bits in size. Since
we have λ1 = m−

∑3
i=2 λi, corresponding to P = 3, sm−i

is stored at the ith index of the first shift register, while for the
second and third shift registers si is stored at the ith index.

Fig. 5 shows an example of the content and interconnection
of three shift registers for logistic weight m = 20. The
elements of the three shift registers are syndromes (si) of the
error pattern with Hamming weight of 1. These syndromes (si)
of the error pattern with Hamming weight of 1 are combined
using an array of (n− k)-wide XOR gates to check for error
patterns with Hamming weights 2 and 3.

A collection of these connections is defined as a bus. Since
there are numerous connections and XOR gates involved, we
used a single XOR gate and a single bus symbol to illustrate
these interconnections in Fig. 5. As seen in Fig. 5, there are 6
buses (λmax

3 + 1, where λmax
3 = 5 for P = 3 (3)) for m = 20.

The first bus (highlighted by solid rectangle) is used to check
error patterns with Hamming weight of 2, and the remaining
buses (highlighted by the dashed rectangle in Fig. 5) are used
to check for error patterns of Hamming weight 3.

To check the error patterns corresponding to a Hamming
weight 2 (P = 2), the first bus (highlighted by solid rectangle)
is used to combine all the elements of shift register 1 with all
the elements of the shift register 2 using an array of XOR
gates. These results are again combined with the syndromes
of the received vector (sc) to check for the error patterns with
Hamming weight of 2. The detailed interconnections and the
associated XOR gates for the first bus are shown in Fig. 6a.

Similarly, to check the error patterns corresponding to a
Hamming weight of 3 (P = 3), the selected elements of the
shift register 1 and 2 are again combined with sc, but also with
the elements of the shift register 3. We use a single bus and
a single XOR gate to illustrate these interconnections, which
are depicted in Fig. 5 by the dashed rectangle. The detailed
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Shift Register 1 Shift Register 2

(a) Interconnections and the associated XOR gates for the first bus for
checking error patterns of Hamming weight of 2 (P = 2).

Shift Register 1 Shift Register 2

(b) Interconnections and the associated XOR gates for the last (6th) bus
for checking error patterns of Hamming weight of 3 (P = 3).

Fig. 6. Example of interconnections and the associated XOR gates for the
first and last bus for logistic weight m = 20.

interconnections and the associated XOR gates for the last
(6th) bus are shown in Fig. 6b.

Due to the described arrangement and interconnection of
the shift registers and XOR gates, all the error patterns
corresponding to an integer partition of sizes 2 and 3 for a
specific logistic weight m are checked in one time-step. In
general, to check the error patterns corresponding to an integer
partition of sizes 2 and 3 for any logistic weight m, the content
and the interconnection of the three shift registers are depicted
in Fig. 7.

C. Generating test error patterns for P > 3

To check all the test error patterns corresponding to integer
partitions of sizes P > 3, a controller is used in conjunction
with the shift registers. The controller combines Pmax − 3
syndromes together with the syndromes of the received vector,
noted scomp. Hence, when scomp is fixed, only one time-step is
required to generate all possible combinations of {λ1, λ2, λ3}
using the shift registers with adequately chosen shift values.

     
Shift Register 1

Shift Register 3

Shift Register 2

Fig. 7. Shift registers contents for checking error patterns corresponding to
a Hamming weight of 2 and 3 for any logistic weight m.

Shift Register 1 Shift Register 2

Shift Register 3

    

Fig. 8. Shift registers contents for checking error patterns corresponding to
P > 3 for any logistic weight m (λ1 = m−

∑P
i=2 λi).

The content and the interconnection of the three shift
registers, which are used to check the test error patterns
corresponding to integer partitions of sizes P > 3, are depicted
in Fig. 8. Since the first bus is only used to check error
patterns with Hamming weight of 2 (P = 2), it is disabled
for P > 3 and not shown in Fig. 8. A 0 corresponds to
a disabled connection, which means the respective elements
of the bus, do not take part in the final computations. Fig.
9 illustrates testing error patterns corresponding to P = 4.
At each time step, the controller outputs scomp = sc ⊕ sλ4

(λ4 ∈ [1, λmax4 ]) and {λ1, λ2, λ3} are computed and mapped
to their corresponding shift registers.

At the first time step, having received scomp = sc ⊕ s1
(λ4 = 1) as an output from the controller, λ3 (λ3 ∈ [2, λmax3,λ4

]
where λmax3,λ4

= 5 with λ4 = 1 (3)) is computed and
mapped to the third shift register. Similarly, λ2 (λ2 ∈ [λ3 +
1, λ(2×(λmax

3 +1)))]) and λ1 (λ1 = m−
∑4
i=2 λi) are computed

and mapped to their corresponding shift registers. The test
error patterns with λ4 = 1 are checked as shown in Fig. 9a.

At the next time step, the controller outputs scomp = sc⊕s2
(λ4 = 2) and λ3 (λ3 ∈ [3, λmax3,λ4

] where λmax3,λ4
= 5 with λ4 = 2

(3)) is computed. Shift register 2 is shifted up by 1 position
and shift register 1 outputs λ1 (λ1 = m−

∑4
i=2 λi) as shown

in Fig. 9b. Hence, the test error patterns with λ4 = 2 are
checked in the second time-step. Similarly, at third time step,
the controller outputs scomp = sc ⊕ s3, (λ4 = 3) λ3 (λ3 ∈
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Shift Register 1 Shift Register 2

        
Shift Register 3

(a) Shift registers contents for checking test error patterns corresponding
to P = 4 at time step 1.

        
Shift Register 1 Shift Register 2

Shift Register 3

(b) Shift registers contents for checking test error patterns corresponding
to P = 4 at time step 2.

        
Shift Register 1 Shift Register 2

Shift Register 3

(c) Shift registers contents for checking test error patterns corresponding
to P = 4 at time step 3.

Fig. 9. Shift registers contents for checking test error patterns corresponding
to to P = 4 (m = 20).

[4, λmax3,λ4
] where λmax3,λ4

= 4 with λ4 = 3 (3)) is computed as
shown in Fig. 9c. Therefore, a total of 3 time steps (λmax4 = 3,
Eq. 3), are required to check for error patterns corresponding

        
Shift Register 1 Shift Register 2

Shift Register 3

(a) Shift registers contents for checking test error patterns corresponding
to P = 5 at time step 1.

        
Shift Register 1 Shift Register 2

Shift Register 3

(b) Shift registers contents for checking test error patterns corresponding
to P = 5 at time step 2.

    

Shift Register 1 Shift Register 2

Shift Register 3

(c) Shift registers contents for checking test error patterns corresponding
to P = 5 at time step 3.

Fig. 10. Shift registers contents for checking test error patterns corresponding
to P = 5 (m = 20).

to P = 4 and m = 20.
Fig. 10 depicts the use of shift registers to check the error
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patterns corresponding to P = 5 and m = 20. At each time
step, the controller outputs scomp = sc ⊕ sλ5 ⊕ sλ4 . For
each value of λ5 (λ5 ∈ [1, λmax5 ]), λ4 (λ4 ∈ [λ5 + 1, λmax4,λ5

])
is computed. Similarly, for each value of λ4, λ3 (λ3 ∈
[λ4 + 1, λmax3,λ5,λ4

]), λ2 (λ2 ∈ [λ3 + 1, λ(2×(λmax
3 +1))]) and λ1

(λ1 = m −
∑5
i=2 λi) are computed and mapped to their

corresponding shift registers. Hence, a total of 3 time steps
(
∑λmax

5

λ5=1

(∑λmax
4,λ5

λ4=λ5+1 (1)
)

, where λmax
5 = 2, λmax

4,λ5=1 = 3 and
λmax
4,λ5=2 = 3 (3)) are required to check for error patterns

corresponding to P = 5 and m = 20 as shown in Fig. 10
In general, the number of time steps required to generate all
integer partitions of size P > 3 for a specific logistic weight
(LW ) is given by:

λmax
P∑

λP=1

 λmax
P−1,λP∑

λP−1=λP+1

. . . λmax
4,λ5,...,λP∑
λ4=λ5+1

(1)

 . (4)

D. Proposed VLSI architecture

Figure 11 depicts the proposed VLSI architecture for ORB-
GRAND which can be used to decode any linear block code
of length n. For clarity, the control and clock signals are not
shown. To support different codes and rates, any H matrix can
be loaded into the H memory of size (n − k) × n-bit at any
time. The hard decided vector ŷ is subjected to a syndrome
check (2) in the first phase of decoding. Decoding is assumed
to be successful if the syndrome is verified. Otherwise, the
LLRs values are sorted in ascending order of their absolute
value |y|.

As depicted in Fig. 11, the sorted syndromes of error pat-
terns with Hamming weight of 1 (si) are passed to the decoder
core, while the indices of the sorted LLRs are forwarded to
the multiplexers for later use by the word generator module.
Following the sorting process, all syndromes of error patterns
with Hamming weight of 1 (si) are tested for codebook
membership (2) in a single time-step. Following that, error
patterns are tested for codebook membership in ascending
logistic weight (LW ) order as explained in section II-C.

The test error pattern syndromes corresponding to integer
partitions of a given logistic weight m are generated using
the shift register and XOR gate arrangement proposed in
section IV-A. The rows of shift registers are combined with the
controller’s output (scomp), and the resulting test syndromes
are NOR-reduced and fed to a 2D priority encoder. Each
NOR-reduce output is 1 if and only if all of the bits of
the syndromes computed by (2) are 0. If any of the tested
syndrome combinations satisfy the parity check constraint
(NOR-reduced output is 1), the 2D priority encoder is used
in conjunction with the controller module to forward the
respective indices to the word generator module, where P
multiplexers are used to convert the sorted index values to
their appropriate bit-flip locations.

V. ORBGRAND DESIGN EXPLORATION

In this section, we present the VLSI implementation results
for ORBGRAND (LW ,P ). Initially, implementation results

for baseline ORBGRAND, which can support parameters
LW ≤ 64 and P ≤ 6, are presented. Please note that
a subset of these implementation results were previously
presented in [1]. In this work, baseline implementation results
are supplemented with power consumption, area, and energy
efficiency results. Furthermore, the proposed ORBGRAND
VLSI architecture is extended to support the parameters
LW ≤ 96 and P ≤ 8, and a comprehensive analysis of worst-
case latency and worst-case throughput for selecting different
parameters (LW , P ) for the proposed ORBGRAND hardware
is presented. Finally, the sorter module for the proposed
ORBGRAND is segmented into multiple partitions to reduce
the area overhead. The effect of the number of partitions on
ORBGRAND decoding performance as well as area overhead
is also presented and compared to the ORBGRAND with a
non-segmented sorter approach.

A. ORBGRAND baseline implementation
The proposed ORBGRAND VLSI architecture with pa-

rameters LW≤64 and P≤6 has been implemented in Verilog
HDL and synthesized using Synopsys Design Compiler with
general-purpose TSMC 65 nm CMOS technology. The design
has been verified using test benches generated via the bit-
true C model of the proposed hardware. Table I presents the
synthesis results for the proposed decoder with n = 128 and
the proposed architecture can support code rates between 0.75
and 1. Input channel LLRs are quantized on 5 bits, including
1 sign bit and 3 bits for the fractional part. To ensure accuracy
in power measurements, switching activities from real test
vectors are extracted for all of the VLSI architectures presented
in Table I.

The maximum frequency supported by the ORBGRAND
implementation is 454 MHz. Since there is no pipelining
technique for the decoder core, one clock cycle corresponds to
one time-step. The average decoding latency of the proposed
hardware is calculated using the bit-true C model after taking
account for at least 100 frames in error for each Eb

N0
point.

At target FER of 10−7 (EbN0
> 7.5 dB), the average latency

is only 2.47ns, resulting in an average decoding information
throughput of 42.5 Gbps for a (128,105) polar code. How-
ever, the worst-case (W.C.) scenario needs 4 226 cycles with
n = 128 and parameters LW≤64 and P≤6, culminating in a
W.C. latency of 9.3µs.

As seen in Fig. 4 (a), ORBGRAND with parameters LW ≤
64 and P ≤ 6 has similar decoding performance (target FER
of 10−5) to the Dynamic SC-Flip (DSCF) [28] decoder for
(128,105) 5G-NR CRC-Aided (CA) polar code. The proposed
ORBGRAND VLSI implementation (LW ≤ 64 and P ≤ 6) is
compared to VLSI architecture for DSCF polar code decoder
(ω = 2, Tmax = 50) [29], which employs 7 and 6 bit internal
and channel LLR quantizations, respectively. Compared to
DSCF [29], ORBGRAND (LW≤64, P≤6) has a 8× area
overhead, as well as a 52% increase in the worst-case latency.
However, at a target FER of 10−7, the proposed ORBGRAND
results in 49× higher average throughput than the DSCF
[29]. Furthermore, as compared to DSCF [29], ORBGRAND
(LW≤64, P≤6) is 5× more area efficient and 32× more en-
ergy efficient. Moreover, the proposed ORBGRAND hardware
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Fig. 11. Proposed VLSI Architecture for ORBGRAND.

TABLE I
TSMC 65 NM CMOS SYNTHESIS COMPARISON FOR ORBGRAND WITH GRANDAB AND DSCF FOR n = 128.

GRANDAB [35] ORBGRAND DSCF [29]

Parameters AB=3 LW≤64, P≤6 LW≤96, P≤8 LW≤96, P≤8, S = 2 LW≤96, P≤8, S = 4 ω = 2, Tmax = 50
Technology (nm) 65 65 65 65 65 65
Supply (V) 0.9 0.9 0.9 0.9 0.9 0.9
Max. Frequency (MHz) 500 454 454 454 454 426
Area (mm2) 0.25 1.82 2.25 2.08 1.85 0.22
W.C. Latency (µs) 8.196 9.30 205.76 205.76 205.76 6.103
Avg. Latency (ns) 2 2.47 2.47 2.47 2.47 122
W.C. T/P (Mbps)a 12.8 11.3 0.51 0.51 0.51 17.2
Avg. T/P (Gbps)a 52.5 42.5 42.5 42.5 42.5 0.86
Power (mW) 46 104.3 133 131.3 130 68.51
Energy per Bit (pJ/bit)b 0.87 2.45 3.13 3.09 3.0 79.6
Area Efficiency (Gbps/mm2)c 210 23.3 18.9 20.4 23 3.9
Code compatible Yes Yes Yes Yes Yes No
a Information Throughput (Gbps) = k

Decoding Latency (ns) , b Energy per Bit (pJ/bit) = Power (mW)
Avg. Throughput (Gbps) , c Area Efficiency (Gbps/mm2) = Avg. Throughput (Gbps)

Area (mm2)
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Fig. 12. Worst-Case (W.C.) latency and W.C. information throughput for the
proposed ORBGRAND architecture with various parameters (LW , P ).

is code and rate compatible, while the DSCF [29] can only
decode polar codes.

In comparison to the hard-input GRANDAB decoder
(AB=3) [35], ORBGRAND (LW≤64, P≤6) has a 7× area
overhead, as well as a 13.5% higher W.C. and a 23.5%
higher average latency. Furthermore, as compared to [35],
ORBGRAND (LW≤64, P≤6) is 2× less energy efficient and
9× less area efficient. However, as seen in Fig. 4, the FER
performance of ORBGRAND (LW≤64, P≤6), a soft decision
decoder, outperforms hard-input counterpart decoders by at
least 1.3 ∼ 2dB for target FERs ≤ 10−5.

TABLE II
DISPLACEMENT OF LLR ELEMENTS yi (∀i ∈ [1, n]) FROM THEIR

CORRECT LOCATIONS WITH SEGMENTED SORTER

# of segments for bitonic sorter
Displacement S = 2 S = 4 S = 8 S = 16

= 0 10.31% 5.98% 3.87% 2.59%
≤ 1 29.40% 17.42% 11.40% 7.67%
≤ 2 45.50% 28.18% 18.67% 12.65%
≤ 3 58.76% 38.05% 25.67% 17.50%
≤ 5 77.84% 54.62% 38.65% 26.85%
≤ 10 96.89% 81.64% 63.82% 47.68%
≤ 20 99.99% 98.34% 90.09% 75.95%
≤ 30 100% 99.94% 98.10% 90.58%

B. Design expansion and latency analysis

As illustrated in Fig. 4, the ORBGRAND with parameters
LW ≤ 96 and P ≤ 8 has similar decoding performance to the
ORBGRAND with parameters LWmax = 8256 and LWmax =
8128 (LWmax ≤ n(n+1)

2 [24] ) for both (128, 105) Polar code
and (127, 106) BCH code. Furthermore, at a target FER of
≤ 10−7, ORBGRAND with parameters LW ≤ 96 and P ≤ 8
results in a 0.2 ∼ 0.3dB gain in decoding performance when
compared to ORBGRAND with parameters LW ≤ 64 and
P ≤ 6.

Table I presents the VLSI implementation results for the
proposed ORBGRAND VLSI architecture with parameters
LW ≤ 96 and P ≤ 8 using the same implementation settings
described in section V-A. The proposed ORBGRAND can sup-
port a maximum frequency of 454 MHz. As shown in Table I,
the ORBGRAND implementation with parameters LW ≤ 96
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Fig. 13. Proposed segmented sorter (S = 4) for ORBGRAND.
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Fig. 14. Comparison of decoding performance of ORBGRAND decoding
with different parameters (LWmax, P , S) for Polar Code(128,105+11)

and P ≤ 8 incurs a 23.6% area overhead when compared to
the ORBGRAND implementation with parameters LW ≤ 64
and P ≤ 6. Furthermore, the ORBGRAND implementation
with parameters LW ≤ 96 and P ≤ 8 is 18.8% less area
efficient and 27.7% less energy efficient than the ORBGRAND
implementation with parameters LW ≤ 64 and P ≤ 6.

The ORBGRAND parameters LW and P influence the
decoding performance as well as the worst-case decoding
latency of the proposed ORBGRAND VLSI hardware. In
the worst-case scenario, the ORBGRAND with parameters
LW ≤ 64 and P ≤ 6 requires 4 226 cycles (n = 128),
whereas the ORBGRAND with parameters LW ≤ 96 and
P ≤ 8 requires 93 417 cycles, resulting in a worst-case
latency of 205.76µs. Figure 12 (a) depicts the worst-case
latency (in clock cycles (4)) of the proposed ORBGRAND
hardware for various LW and P parameter values. Fig. 12 (b)
depicts the information throughout corresponding to k = 105
and a maximum frequency of 454 MHz for the proposed
ORBGRAND (LW,P ) hardware.

To conclude, the ORBGRAND implementation parameters
(LW,P ) can be appropriately chosen to strike a balance
between area overhead, energy budget, and decoding perfor-
mance requirements for a target application.

C. ORBGRAND area optimization

In this section, we investigate the sorter module in the
proposed ORGRAND (LW,P ) VLSI implementation and
propose segmenting the sorter module into multiple partitions
to reduce the area overhead of ORBGRAND hardware. The
ORBGRAND decoding procedure, as described in Algorithm
1, begins by sorting channel LLRs (y) in ascending order of
their absolute value (|y|). Any sorter [40] (insertion sorter,
merge sorter, bubble sorter) may be used to sort |y| for
the proposed ORBGRAND hardware. The sorter choice is
determined by the target application’s budget in terms of
decoding latency and hardware overhead. On one end of
the spectrum, we have sequential sorters with high latency
but low hardware implementation cost, while on the other,
we have parallel sorters with low latency but high hardware
implementation cost.

The proposed ORBGRAND VLSI implementation employs
a bitonic sorter [41] of length n that is pipelined to log2(n)
stages. As a result, the sorting procedure requires just log2(n)
clock cycles. The bitonic sorter module of the proposed
ORBGRAND VLSI implementation can be partitioned into
multiple segments to reduce the ORBGRAND implementa-
tion’s area overhead. The size and number of partitions influ-
ence ORBGRAND decoding performance as well as the area
overhead of the proposed ORBGRAND VLSI implementation.
A bitonic sorter module of length n is segmented into S
segments, each having a size n

S , for the proposed segmented
sorter approach. Please note that the number of segments S
should be chosen in such a way that the size of each segment
n
S is an integer. The segmented bitonic sorter is depicted in
Fig. 13, which employs four sorters (S = 4) of length n

4 ,
each of which receives an unique subset of channel LLRs (y).
To generate the final LLRs, the sorted LLRs from individual
sorters are concatenated. The first four elements of the final
sorted LLRs are comprised of the first element of the output
of each sorter. Similarly, the second element of each sorter’s
output occupies the following four positions of the final sorted
LLRs. This procedure is continued until the last elements of
each sorter’s output are placed in the last four positions of the
sorted LLRs, as shown in Fig. 13.

A non-segmented sorter will sort the LLR elements |yi|
(∀i ∈ [1, n]) to their correct location. However, compared to
a non-segmented sorter, the sorted LLRs using a segmented
sorter (S > 1) will have elements that are displaced from their
correct locations. To investigate the effect of segments on the
displacement of LLR elements from their correct locations,
we performed Monte-Carlo simulations and measured the
percentage of LLR elements that were within a specified
distance of their correct location. Table II compares the
displacement of LLR elements from their correct locations
with varying numbers of segments employed in the segmented-
sorter approach. Table II shows that as the number of segments
decreases, more elements are concentrated closer to their
correct locations, but as the number of segments increases,
LLR elements are concentrated further away from their correct
locations.

Fig. 14 depicts the FER performance of implementing a
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segmented sorter approach for ORBGRAND (LW≤96, P≤8)
decoding of (128,105) polar code. As seen in the Figure 14,
the ORBGRAND using the segmented sorter with S = 2
and S = 4 suffers from a FER performance degradation of
0.1dB and 0.3dB respectively, at the target FER of 10−6, as
compared to ORBGRAND with a non-segmented sorter. Table
I compares VLSI implementation results for the ORBGRAND
(LW≤96, P≤8) using the non-segmented sorter to the pro-
posed ORBGRAND (LW≤96, P≤8) using segmented sorter
approach. As shown in Table I, the proposed ORBGRAND
(LW≤96, P≤8) with non-segmented sorter incurs an area
overhead of 8% and 21.6%, respectively, when compared to
ORBGRAND with segmented sorter parameters S = 2 and
S = 4. To conclude, the number of sorter segments influences
both decoding performance and the area overhead of the
ORBGRAND hardware; they can be chosen appropriately to
strike a balance between decoding performance requirements
and area overhead for a target application.

VI. CONCLUSION

In this work, we present a hardware architecture for the
ORBGRAND algorithm. ORBGRAND is a soft input GRAND
variant that generates test error patterns in a fixed logistic
weight order, rendering it suitable for parallel hardware im-
plementation. Due to the code-agnostic nature of the GRAND
and its variants, the proposed ORBGRAND architecture can
decode any code as long as the length and rate constraints are
met. We suggest modifications in the ORBGRAND algorithm
to simplify the hardware implementation and reduce the de-
coding complexity. Furthermore, the proposed ORBGRAND
VLSI architecture uses parameters that can be tweaked to meet
the optimal decoding performance as well as the decoding
latency for a specific application. According to ASIC synthesis
results, an average decoding throughput of 42.5 Gbps can
be achieved for a code length of 128 and a target FER of
10−7. The proposed VLSI architecture improves decoding
performance by at least 2 dB over the GRANDAB, a hard-
input variant of GRAND. In comparison to the state-of-the-
art DSCF hardware decoder for 5G (128, 105) polar code, the
proposed VLSI implementation achieves 49× higher decoding
throughput, 32× higher energy efficiency and 5× higher area
efficiency. Finally, the proposed architecture is the first step
toward implementing GRAND family soft-input decoders in
hardware.

APPENDIX A
PROOF OF LEMMA 1

Proof. It is sufficient to show that for all i (i ∈ [2, P ])

λmax
i <

2×m−(i×(i−1))+2−2×
P∑

j=i+1

λj

2×i . We use induction on i.
Base case (i = 2):

λmax
2 <

m−
P∑
j=3

λj

2

Since the λi are ordered ∴ λ2 < λ1

⇒ λmax
2 < m−

P∑
j=2

λj (∵ λ1 = m−
P∑
j=2

λj)

⇒ λmax
2 < m−

P∑
j=3

λj − λmax
2

∴ λmax
2 <

m−
P∑
j=3

λj

2
Inductive hypothesis (i = k):

λmax
k <

2×m− (k × (k − 1)) + 2− 2×
P∑

j=k+1

λj

2× k
Inductive step (i = k + 1):

λmax
k+1 <

2×m− (k × (k + 1)) + 2− 2×
P∑

j=k+2

λj

2× (k + 1)

∵ Inductive hypothesis

λmax
k <

2×m− (k × (k − 1)) + 2− 2×
P∑

j=k+1

λj

2× k

⇒ λmax
k <

2×m− (k × (k + 1)) + 2− 2×
P∑

j=k+1

λj

2× k
+ 1

(∵ k × (k − 1) = k × (k + 1) + 2× (k))

⇒ λmax
k <

2×m− (k × (k + 1)) + 2− 2×
P∑

j=k+2

λj

2× k

+ 1−
λmax
k+1

k

(∵
P∑

j=k+1

λj = λmax
k+1 +

P∑
j=k+2

λj)

⇒
λmax
k+1 + λmax

k − k
k

<

2×m− (k × (k + 1)) + 2− 2×
P∑

j=k+2

λj

2× k

⇒
λmax
k+1 + λmax

k − k
k + 1

<

2×m− (k × (k + 1)) + 2− 2×
P∑

j=k+2

λj

2× (k + 1)
(5)

Since λi are ordered ∴ λk+1 < λk

⇒ λmax
k+1 + 1 ≤ λmax

k (∵ λmax
k+1 + 1 ≤ λk ≤ λmax

k )



13

⇒ k × λmax
k+1 + k + λmax

k+1 ≤ k × λmax
k + λmax

k+1

⇒ λmax
k+1 ≤

λmax
k+1 + λmax

k − k
k + 1

Using (5): λmax
k+1 ≤

λmax
k+1 + λmax

k − k
k + 1

<

2×m− (k × (k + 1)) + 2− 2×
P∑

j=k+2

λj

2× (k + 1)

⇒λmax
k+1 <

2×m− (k × (k + 1)) + 2− 2×
P∑

j=k+2

λj

2× (k + 1)

(∵a ≤ b < c⇒ a < c)
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