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Abstract— This paper presents a detailed analysis of an ar-
chitectural pipeline scheme for Quantum-dot Cellular Automata
(QCA); this scheme utilizes the so-called Bennett clocking for
attaining high throughput and low power dissipation. In this
arrangement, computation stages (utilizing Bennett clocking) and
memory stages combine the low power dissipation of reversible
computing with the high throughput feature of a pipeline. An
example of the application of the proposed scheme to an XOR
tree circuit (parity generator) is presented; a detailed analysis
of throughput and power consumption is provided to show the
effectiveness of the proposed architectural solution for QCA.

I. INTRODUCTION

Among so-called emerging technologies that have been

proposed to overcome the limitations of CMOS at the “end

of the technology roadmap”, Quantum-dot Cellular Automata

(QCA) shows features that are very promising to achieve both

high computational throughput and low power dissipation. The

QCA computational paradigm [1] [2] [3] is readily suited to

pipelined architectures with high speed (in the order of THz),

while radically departing from the traditional nature of switch-

based operation of CMOS, i.e. avoiding the movement of

charge from Vdd to ground and the resulting energy dissipation.

An operating single cell [4] and a functional logic gate

have been demonstrated [5] using metal dot implementations

at cryogenic temperatures. Recent advances show promising

results for manufacturing atomic silicon quantum dots [6];

moreover, molecular scale QCA may make fabrication of QCA

cells possible at nanometer dimensions for room temperature

operation [7] [8].

In addition to great promise due to its small size and high

computational speed, it has been shown that QCA has great po-

tential for low power operation. The reversible computational

paradigm is particularly well suited to QCA because Timler

has shown that in a clocked, information preserving system,

the energy dissipation of a QCA circuit can be significantly

lower than kBT ln2 [9]. Reversible computation is drawing

increasing interest as a low power computation paradigm

because it may overcome the fundamental power limitation
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of today’s irreversible approaches based on bulk CMOS. It is

foreseen [10] that in few decades, one of the main obstacle to

further integrate computing will be posed by thermal consider-

ations. As bit energies approach the absolute thermodynamic

lower bound of kBT ln2, [11], then only the energy associated

to the physical information of a bit (physical entropy) may be

used to encode each logical bit. This assumption relies on the

relationship between information an computation, i.e. when

destroying the information of a computed bit, its energy needs

to be irreversibly “thermalized”, or converted to a thermal

energy Q = TΔS = TkBln2 where T is the temperature,

kB is Boltzmann’s constant and ΔS is the increase in entropy

related to the loss of free energy of one bit.

However, information does not need to be destroyed during

computation as shown in [12]. In the Bennett scheme, interme-

diate results of computation are stored rather than destroyed.

Once the output is computed and saved, computation can be

reversed to decompute the intermediate results, i.e. instead

of destroying the intermediate results, they are transformed

back into the original input value. This approach allows power

consumption to be reduced to an arbitrarily low level; however,

it incurs in a computation cost (either in time or space [13]).

This approach has inspired the introduction of the so-called

“Bennett clocking” scheme for QCA [14]. In such a scheme,

the intermediate values of computation are saved “in place” by

locking the QCA cells that computed the intermediate results.

The Bennett scheme has very low power consumption and

no space overhead because it requires no modification to the

QCA circuit; however due to its fine-grained pipeline structure,

it introduces a significant time overhead to the commonly

employed clocking scheme (often referred to as Landauer

clocking) for QCA. A QCA circuit using only a Bennett

scheme would require an unacceptably long time to generate

outputs. A hybrid solution is therefore needed to reduce

power dissipation with no significant loss of throughput. Such

hybrid solution should combine the advantages of pipelining

and reversibility to achieve high throughput and low power

consumption. This paper proposes a hybrid design approach

for QCA circuits; it combines regions of Bennett clocked logic

with memory regions (or stages) to facilitate pipelining. The

proposed approach is evaluated in terms of throughput and

power consumption due to bit erasures under different pipeline

granularity. It should be noticed that an analysis of the overall

power consumption would also include power consumption

due to the clocking layer, however a detailed analysis of this

component which is highly material dependent, is beyond the

scope of this work, therefore it is not dealt in this manuscript.
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Fig. 1. a) Bistable QCA cell , b) QCA binary wire

Fig. 2. QCA gates

This paper is organized as follows: section 2 introduces

molecular QCA, section 3 presents the proposed approach and

discusses in detail the stage organization (for computation and

memory). Section 4 discusses performance evaluation. Section

5 presents as a case study, the performance evaluation of an

XOR based parity checker. Section 6 provides the conclusion

to this manuscript.

II. MOLECULAR QCA

Quantum-dot Cellular Automata (QCA) is a computation

paradigm based on a cell made of four or six quantum

dots (depending on the implementation technology) and two

extra charges. The charges can tunnel between the dots of

the cell but they cannot tunnel outside the cell. Coulombic

repulsion between the extra charges leads to two stable states

in which the charges are in antipodal locations along one of

the two diagonals (figure 1 a)). A logic zero corresponds to

the configuration in which a line through the extra charges has

a negative slope. A logic one corresponds to a positive slope.

The center dots are used to facilitate clocking by means of

an electric field perpendicular to the plane of the QCA cell.

Using the clocking field, the extra charges can be drawn into

the center dots (thus making the cell neutral) or pushed onto

the corner dots (forcing the cell to assume a logic value).

Through Coulombic interaction, the information of a single

cell is propagated to other cells to form a binary wire (figure

1 b)). In QCA the basic logic gate is the majority voter, i.e.

the output cell assumes the polarity of the majority of the

inputs (figure 2). Along with the QCA inverter, this forms

a functionally complete logic set. Figures 1 b) and 2 also

show that the propagation of a signal in QCA is carried out

through a sequence of four clock phases denoted by switch,

hold, release, and relax. These clock phases are generated by a

traveling wave of the E field perpendicular to the QCA plane.

In the switch phase, a cell takes a new configuration when

the charges move from the center to the corner dots. In the

hold phase, a cell has a definite configuration and can drive

the value of neighboring cells. In the release phase, the cell

loses its configuration as the extra charges are drawn into

the center dots. Finally, when a cell is in the relax phase,

it cannot influence the configuration of neighboring cells. In

a six dot cell, this corresponds to the configuration when the

extra charges are in the center dots. In figure 1 b), the cells on

the far left and right of the shown QCA wire segment are in

the relax phase. The second cell (from the left) is releasing its

value. The third, fourth, and fifth cells have a definite value

and are in the hold phase. These cells drive the sixth cell

that is in the switch phase, thus assuming a new value. As the

seventh cell (far right) is in the relax phase, then it has no value

and cannot influence the new configuration being assumed

by the sixth cell. The clocking scheme in which this pattern

ripples down the wire in one direction is the traditional QCA

clocking scheme, commonly referred to as Landauer clocking.

Its advantage is that it allows information to be pipelined at a

very fine-grained level. However, the wire and the inverter are

logically reversible functions of low power consumption (�
kBT ln2 as they do not destroy information), the majority voter

is logically irreversible because the information associated

with the minority input (if present) is erased. The energy of

the minority input is then thermalized, thus increasing the

entropy by ΔS = kBln2 and dissipating at least kBT ln2
(approximately the kink energy Ek).

To take advantage of the low power computation potential

of QCA, information cannot be destroyed as previously de-

scribed. Bennett clocking provides a solution to this problem.

If the intermediate results (in this case the inputs to the

majority gate) are saved, then the majority function can be

decomputed after its output has been latched. In the context of

QCA, this can be done with no space overhead by employing

Bennett clocking for the circuit [14]. This approach forms the

foundation of the hybrid solution presented in this manuscript.

While Bennett clocking does not incur in a space overhead,

it does however entail a performance degradation in terms of

throughput. The hybrid approach discussed below leverages

the strengths of the Bennett scheme as well as the strengths

of pipelining for QCA circuit operation.

III. PROPOSED APPROACH

This section describes the proposed approach to attain high

performance for both power consumption and throughput. The

QCA design is divided into computational and memory stages,

the computational stages are clocked by the Bennett scheme

and do not dissipate power. The memory stages are used to

increase the throughput of the pipeline. In this paper, the QCA

circuit is partitioned into M stages, each stage has ij inputs

and oj outputs (obviously ij = o(j−1)).

A. Computation Stages
This section describes the clocking scheme for the com-

binational parts of the QCA circuit. Prior to describing the

proposed clocking scheme a review of clock distribution

techniques and clocking schemes for QCA is presented. In

this paper, the distribution mechanism introduced by [15] is

utilized; an E field generated on a layer of metallic wires

above (or below) the QCA layer controls the tunneling within

individual QCA cells. The cells are not directly connected to

the clocking circuitry, this provides a substantial advantage at
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Fig. 3. Proposed pipelined approach: top view

molecular scale. Moreover the continuous transition of the E

field on the leading edge of the wave reduces the possibility

of occurrence of kink, or error on a QCA wire.

The traveling E field is generated by providing each of

the wires with a voltage (phase shifted from the neighbor

by π
2 ) and a conducting ground layer on the other side

of the QCA layer. Hennessy has shown that the E field

generated with such a circuit can assume a sinusoidal shape,

allowing for Landauer clocking. The z component of the

vector �E acting as clock signal can be described by the wave

equation [16], i.e. Ez(x, t) = E0cos(κx − ωt). Computation

and switching of cells occur only on the leading edge of

the wave, thus providing directionality to the QCA circuit

and virtually eliminating the probability of kink. This is a

space continuous implementation of the classic four phases-

four zones clocking scheme introduced in [2]. This clocking

strategy has been called a “traveling wave”, a “computational

wave”[8], and “Landauer”[9] clocking. Here, in the context

of reversibility, “Landauer” clocking is used to describe this

clocking approach.

The highest (maximum) performance in terms of speed is

related to the maximum applicable clock speed and is derived

from the tunneling phenomena between quantum dots. To

maintain the adiabatic nature and solution of the Schrödinger

equation, the switching time t∗ of the E field on a QCA cell

must be greater than the tunneling speed between quantum

dots [2]. Consequently, the fastest applicable clock period on

a cell is Tl = 2t∗ and therefore ω ≤ ω0 = 2π
2t∗ . The constraint

on the maximum applicable period is used in a later section

to assess the throughput of a Landauer clocking schemes; in

general for o outputs, Tr = o
2t∗ .

A Bennett scheme has two steps: computation and decom-

putation. In the first step, it performs the computation on the

inputs and propagates to the outputs without deleting inter-

mediate results. In the second step, the intermediate results

are decomputed by the clock “backing off”. So, the release

of the cells starts from the outputs and is traced back to the

inputs, eventually releasing the whole circuit. This process

does not erase (delete) any information because every cell that

is released, can “copy” its contents to the still locked cell that

originally produced the information in the cell being released.

This process prevents information from being thermalized [9].

Hence, circuits implemented with Bennett clocking do

not dissipate energy over the course of a computa-

tion/decomputation cycle; at the end of a Bennett region’s

computation/de-computation cycle, both the original inputs

and outputS are stored. The speed of computation is function

Fig. 4. Clocking wave for the Bennett scheme. T represents the time period
of the pipeline stage.

of the time required for the clocking signals to propagate back

and forth across the region. Furthermore, it is not necessary

to make any modifications to an irreversible QCA circuit to

make it reversible. In this case, reversibility is accomplished

through clocking rather than by circuit, avoiding any circuit

overhead required for accomplishing reversibility by Landauer

clocking. A circuit clocked with the Bennett scheme has also

the advantage that it requires no modification to the layout

to avoid deleting the information at the inputs (as it would

happen if the inputs were propagated to the outputs). The

power dissipated when losing a bit of information is almost

equal to the kink energy, Ediss � Ek � kBT ln2. The value

of the dissipated energy is obtained from the non equilibrium

equation i.e. a set of first-order differential equations for the

coherence vector of the QCA cells in contact with the thermal

environment [16].

For the computation stages, a Bennett scheme can be im-

plemented using Hennessy’s clocking implementation strategy

[15] by applying suitable signals, Φ1...Φn, (figure 5 a)) to the

buried wires. The signals needed for Bennett style clocking are

very different from the signals needed Landauer style clocking.

For the Bennett clock, once the QCA cells have been locked,

they must remain locked throughout the remaining part of

the computation phase and be released in the decomputation

phase as described earlier (figure 4). The pattern of waveforms

present on each wire to produce this effect is shown in figure

5 a); Φi remains high at Vmax until Φi+1 reaches Vmin.

With this clocking scheme, data is provided as output from

a stage at every period t = T , i.e the time required for the

clock to sweep forward, latch the output and then retract back

the decomputation of all intermediate solutions. As discussed

above, to preserve adiabaticity, the switch time on a cell must

be at least t∗. For d as the lateral size of a QCA cell, and N =
λc/d as the width of the Bennett-clocked region in number of

cells, then the period is given by Tb =
2λ
d t∗ = 2Nt∗.

B. Memory Stages

Each memory stage is a single buffer (register) that is used

to separate the different stages of the pipeline. A memory stage

provides the inputs to a Bennett clocked zone and latch the

outputs. The memory stage implementation is straightforward;

it can be implemented with a single vertical row of QCA cells,

or the minimum number of cells related to the achievable pitch

2010 IEEE/ACM International Symposium on Nanoscale Architectures 19



a b

Fig. 5. a) Clock signal to the buried wires, b) Clocking signal for the memory
zones

Fig. 6. Asymmetric interaction on memory cell

of the clocking wires.

In the simplest design, the contents of the latch are over-

written on each cycle when a new input is stored. This results

in a dissipation given by the number of bits (as stored in

each latch) multiplied by the number of latches. However, the

properties of QCA cells and the clock can be exploited to

reduce this dissipation. As shown in figure 5 b) the clocking

signal is sinusoidal with the same period T as for the Bennett

clocking scheme. Rather than using a traditional QCA circuit

design in which completely locked cells drive the value of

neighboring switching cells (with fully relaxed cells on the

other side), an asymmetric interaction is used. In this case, the

cells that would normally be in the relax phase (with no value)

are instead in the process of releasing their values at the same

time as the latch is assuming its own values. The directionality

of the circuit is preserved because the signal from the driver

cell is still stronger than the releasing cell. However, if the

data being released is the same as the new data being latched,

then that bit will not be dissipated. Instead, it will be “copied”

into the new bit being stored.

The signals applied to each buried clocking wire for this

asymmetric interaction are shown in figure 5 a). Phase Φ1 of

stage j+1 releases its information, while the memory stage is

switching; phase Φn of stage j is in the hold phase. This allows

the new value to propagate correctly to stage j while avoiding

the deletion of the information in stage j + 1 when the value

is the same. The propagation in the two opposite directions

is illustrated in figure 6; two opposite values interact on the

memory cells located in the center. Since the cell on the left

locks its value (hold phase) earlier than the one on the right,

then the Coulombic interaction (quadripole moment) on the

memory cell is stronger and therefore, it causes the memory

cell to assume its value.

IV. PERFORMANCE EVALUATION

The performance of the proposed solution is evaluated in

terms of both throughput and power consumption. In general

these figures of merit could be in conflict; an increase in

the number of pipeline stages leads to a higher throughput.

However, an increase in the number of pipeline stages also

increases the possible discarded bits of information, resulting

in a higher power consumption. Therefore the number of

stages must be carefully selected such that computational

performance and power consumption can be best assessed as

per application requirements.

Fig. 7. Pipelined stages with Bennett clocking

Consider a pipelined circuit with no feedback loop; this

circuit is assumed to have M stages and o outputs. As the

period of a Bennett stage is given by Tb = 2Nt∗, then the

throughput is Tr = o
Tb

= o
2Nt∗ and the initial latency Lb is

proportional to Tb/2 (figure 7) as Lb =
MTb

2
For this M staged pipeline, the power consumption P (t) as

function of time is given by

P (t) = Ediss ·
∞∑
j=0

M−1∑
i=0

Ki(t)δ(t− jTb

2
) (1)

where Ki(t) is the number of inputs of stage i that change

value at time t, Ediss is the energy dissipated (thermalized)

when a bit is deleted on the stage latches.

The time varying value of Ki(t) accounts for the random

time variability of the data in the pipeline on the memory stage

i. On average, it is likely to be nearly half of the bits stored

in memory. The power dissipation of a circuit is therefore

spatially localized on the memory stages and is a time varying

function composed of a train of pulses. It accounts for the

dissipation occurring at the discrete time instants t = jT/2
(where j is an integer) on the memory stages. As shown in

figure 7 at each t = jT/2 power dissipation occurs only on

�M/2� i.e. deletion of data occurs only in half of the memory

stages in which the waves for computing and decomputing

meet. So, at time t = nT/2 the number of coefficients Ki(t) �=
0 is �M/2�.

V. CASE STUDY: XOR TREE PARITY CHECKER

The size of the Bennett clocked zones can vary from

a minimum of two QCA cells (the single cell case is a

pathological case as equivalent to a Landauer scheme with

a clock as a traveling wave) to the whole circuit (i.e. a purely
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Fig. 8. Case Study: XOR tree parity checker

Bennett clocked circuit). As stated previously, it is expected

that increasing the zone size, throughput and power consump-

tion would both decrease, i.e. degradation in computational

performance but improvement in power dissipation

Power dissipation depends also on the circuit functionality:

a circuit made of only wires and inverters (so reversible by

definition), has the best performance with Landauer clocking

(no information is deleted). However at the input/output, a

circuit made of majority voters requires the introduction of

a Bennett scheme to reduce dissipation due to deletion of

information. For low power dissipation a Bennett clocked stage

must have a number of MVs such that the number of bits of

information to be deleted in that stage using Landauer clocking

is significantly higher than the number of inputs deleted in

the Bennett stage (the number of bits deleted in a stage is not

necessarily equal to the MVs as shown next).

An example of the proposed scheme is analyzed in detail;

an M stage tree made of XOR gates generates the parity

bit for w = 2M inputs. A worst-case analysis of throughput

and power dissipation is calculated for the XOR based parity

bit generator by using the previously introduced analysis. For

the same XOR tree, different clocking schemes are employed.

Landauer clocking is used to provide an irreversible reference

for comparison. For the Landauer clocked case, the throughput

is Trl =
1
Tl
, where Tl is the period of the Landauer clocking

wave. A single result is generated as output on each cycle after

the pipeline is full.

With the Bennett scheme, throughput and power consump-

tion depend on the period of the Bennett clocked regions,

i.e. the period depends on the width of these regions. So, let

Tb = 2Nt∗, where N is the width (in number of XOR gates)

for the region under consideration. Since the same circuit is

being compared, then there is again one output per clock

period, i.e. Trb = 1
Tb

= 1
2Nt∗ . For both the Landauer and

Bennett clocked schemes, the worst case dissipation for an

XOR gate is given by 2Ediss. For the Landauer case, consider

the XOR function implemented as shown in figure 9. At most,

the combination of inputs leads to a dissipation of 2Ediss. The

Bennett case is simpler as there are two inputs to each XOR

gate. No dissipation will occur within the XOR gate, but the

inputs may be written over on the next cycle. This, then, also

leads to a worst case dissipation of 2Ediss.

To compare the power dissipation of a M stages XOR tree

Fig. 9. Dissipation of the XOR gate

clocked with the Landauer and Bennett schemes, the following

assumptions and definitions are used:

1) the dissipated energy of a thermalized bit of information

is considered equal to the kink energy, i.e. Ediss � Ek

2) the kink energy value is Ek = 3.14577 · 10−20 Joule

obtained for a molecular squared cell of lateral size l =
1.5nm [17] and relative permittivity εr = 1 (no dielectric

material between cells)

3) the number of stages of the XOR tree is k;

4) the number of stages of the pipeline is M ;

5) the number of stages of the XOR tree per pipeline stage

is c = k
M

6) the values of dissipated energy are calculated over the

respective period of computation for each scheme; then

the corresponding power values are considered averaged

on the same period

7) by considering the worst case scenario, the value of

Ki(t) from equation 1 is not time dependent; therefore

the deleted information is always equal to the number

of inputs of stage i

Based on the previous assumptions and analysis, the energy

dissipated in a period Tb for a Bennett clocked scheme in the

XOR tree is

EB =

∫ Tb

0

PB(t)dt = 2Ek

M−1∑
i=0

2ic = 2Ek
2cM − 1

2c − 1
(2)

where the sum of a geometric progression of ratio 2c is used.

So, the energy dissipated in a Landauer clocked tree is the

sum of the energy dissipated by the whole tree, i.e.

EL =

∫ Tl

0

PL(t)dt = 2Ek

M−1∑
i=0

2i = 2Ek(2
M − 1) (3)

Figures 10 through 12 show the effect of keeping the circuit

size (k) constant while varying the number of pipeline stages

(M ) and consequently the number of XOR gates per pipeline

stage (c). Although only the integer values of c are meaningful,

the intermediate values are also shown for better understanding

of the overall trend of this plot. As c applies only to Bennett

clocking, the results for Landauer clocking are constant. Figure

10 shows a comparison of the throughput for the Bennett and

Landauer schemes. As expected, the Landauer scheme shows

a higher throughput and the gap in performance increases with

an increase in c, i.e. as the pipeline stages become wider

and the depth of the pipeline decreases, then he throughput

decreases.

Figure 11 shows the advantage of the Bennett scheme for

dissipated energy per period of computation. As the pipeline

2010 IEEE/ACM International Symposium on Nanoscale Architectures 21



Fig. 10. Throughput

Fig. 11. Energy dissipation per period

depth decreases (c increases), the power dissipated per compu-

tation period improves because there are fewer latches (whose

contents are dissipated). Even when the entire circuit is in

a single Bennett stage, the dissipation does not drop to zero

because the original inputs are still being deleted every Tb.

Finally figure 12 plots the amount of operations (output bits)

per Joule per second, i.e. introducing time too. The results

show that there exists a point (the intersection of the curves)

for c to attain better performance (c ≤ 6) for Landauer

clocking (for c > 6 Bennet clocking is better), i.e. for low

values of c the throughput of a pipelined approach with the

Bennett scheme is not sufficient to overcome the penalty in

terms of power dissipation, while by increasing the size of the

pipeline stages (higher c) the power dissipation has a higher

impact with respect to a reduction in performance.

VI. CONCLUSION

This paper has introduced a pipelined architecture for low

power QCA circuits using a Bennett clocking scheme; this is

a clocking scheme that allows intermediate results to be de-

computed rather than erased, thus avoiding power dissipation

due to loss of information. This architecture allows designers

to adjust the level of reversibility in a QCA circuit based on

throughput and/or power dissipation. The utilization of Bennett

clocking and pipelining enhances performance of the design

space to asses the often conflicting figures of merit of power

Fig. 12. Comparison of operations per joule per second

and throughput. An example of a QCA circuit that utilizes

the proposed scheme, has been analyzed in detail; this circuit

is the parity generator (XOR tree). It has been shown that a

Bennett clocked pipeline can provide substantial power saving

over a Landauer clocked circuit operation.
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