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High-throughput assessment of 
mechanical properties of stem cell 
derived red blood cells, toward 
cellular downstream processing
Ewa Guzniczak1, Maryam Mohammad Zadeh1, Fiona Dempsey2, Melanie Jimenez3,  

Henry Bock1, Graeme Whyte1, Nicholas Willoughby1 & Helen Bridle1

Stem cell products, including manufactured red blood cells, require efficient sorting and purification 
methods to remove components potentially harmful for clinical application. However, standard 

approaches for cellular downstream processing rely on the use of specific and expensive labels (e.g. 

FACS or MACS). Techniques relying on inherent mechanical and physical properties of cells offer 
high-throughput scalable alternatives but knowledge of the mechanical phenotype is required. 

Here, we characterized for the first time deformability and size changes in CD34+ cells, and expelled 
nuclei, during their differentiation process into red blood cells at days 11, 14, 18 and 21, using Real-
Time Deformability Cytometry (RT-DC) and Atomic Force Microscopy (AFM). We found significant 
differences (p < 0.0001; standardised mixed model) between the deformability of nucleated and 
enucleated cells, while they remain within the same size range. Expelled nuclei are smaller thus could 
be removed by size-based separation. An average Young’s elastic modulus was measured for nucleated 

cells, enucleated cells and nuclei (day 14) of 1.04 ± 0.47 kPa, 0.53 ± 0.12 kPa and 7.06 ± 4.07 kPa 
respectively. Our identification and quantification of significant differences (p < 0.0001; ANOVA) in 
CD34+ cells mechanical properties throughout the differentiation process could enable development of 
new routes for purification of manufactured red blood cells.

Annually, around 112.5 million blood donations are collected across 176 countries in over 13000 blood cen-
tres1. However, each year the World Health Organisation reports a shortage of safe donated blood for transfu-
sion, mostly due to a decreasing number of people eligible to donate blood and technical limitations for blood 
long-term storage2. �ere is consequently an urgent need for easily manageable alternative sources of red blood 
cells (RBCs), one option being their manufacture from stem cells3–6. Manufactured red blood cells (mRBCs) have 
been positively validated as a potential clinical product in 2011 by Giarratana et al.7, with potentially transfus-
able RBCs already produced in vitro using embryonic stem cells5, induced pluripotent stem cells8, CD34+ cells 
sourced from bone marrow4 or umbilical cord blood9, and recently an immortalized adult human erythroid line 
(Bristol Erythroid Line Adult BEL-A)10. However, the di�erentiation protocols currently used are not 100% e�-
cient. Speci�cally, the end-product of the protocol is a heterogeneous cell mixture containing not only fully func-
tional enucleated mRBCs, but also free-�oating nuclei expelled during enucleation and undi�erentiated nucleated 
cells. �e presence of residual stem cells, partially di�erentiated cells and nuclei, pose a health risk if injected into 
patients11 and is consequently a serious concern that must be alleviated for mRBCs and other cellular therapies by 
developing adequate puri�cation procedures12–17. Traditionally, target cell separation is performed by Fluorescent 
Activated Cell Sorting (FACS) and Magnetic Activated Cell Sorting (MACS). Both techniques are very speci�c 
since they utilize molecular biomarkers but require the addition of costly modifying agents, such as antibodies 
or DNA stains, and separate quality-control processes18,19. Furthermore, the throughput of these techniques is 
limited (e.g. 107 cells/ hour for the FACS instrument used in this research) and industrially viable technologies 
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require cost-e�ective, automated and scalable approaches20. Various label-free approaches have been proposed in 
the literature, though have not yet reached the stage of commercial testing: acoustophoresis21, magnetophoresis22, 
optical methods23 and passive sorting24. Passive sorting (such as inertial focusing25, pinch �ow fractionation26, 
deterministic lateral displacement27 and �ltration28) exploits properties of the device design and, except for a liq-
uid pumping system, they do not require any other external forces. �ese systems present many potential advan-
tages such as a reduced number of sample processing steps (e.g. by reducing staining/washing steps), relatively 
high-throughput (millilitres/min29 and litres/min30) and e�ciency (>90%)31–33. However, sorting in this type of 
system is facilitated purely by endogenous cell properties such as size and deformability and further evidence is 
needed to quantify the cell mechanotype, to overcome the existing lack of knowledge on e.g. mRBCs mechanical 
properties34, and determine the potential for mechanotype based sorting.. Deformability is emerging as a novel 
homogeneity marker that could serve to identify subpopulations within complex cell samples such as mRBCs35. 
However, while qualitative observations have noted changes in phenotype throughout the di�erentiation pro-
tocol of CD34+ cells, little is known about their mechanical phenotype changes. �is article reports on the �rst 
extensive quantitative analysis of these changes, combining both high-throughput micro�uidics as well as tradi-
tional biophysical characterisation. Speci�cally, we characterised for the �rst time the mechanotype of cord blood 
CD34+ undergoing in vitro di�erentiation into RBCs, focusing on four key stages. Data was collected determin-
ing the size and deformability of enucleated cells, nucleated cells and free-�oating nuclei using real-time deform-
ability cytometry (RT-DC), atomic force microscopy (AFM), and bright �eld/�uorescent imaging. Furthermore, 
staining of the nucleus and cytoskeletal proteins was undertaken to investigate the potential contribution of these 
factors to the observed mechanotypical changes.

Results and Discussion
�e in vitro manufacture of RBCs from hematopoietic stem cells (CD34+) follows an in vitro protocol which is a 
recapitulation of in vivo erythropoiesis through distinct developmental stages36,37 (for details of the protocol and 
the di�erent stages involved consult Fig. S1). Initially, the culture is expanded for the �rst ten days (D0 to D10) 
before di�erentiation is induced at D11, resulting in drastic cell phenotype changes during the �nal 11 days of 
di�erentiation. Observed changes are induced stage-wise, by adjusting cell culture medium components. �e 
presence of biological markers at di�erent points in the di�erentiation has been studied8,9,38, underpinning the 
label-based separation approaches, and it is known that between D0 and D11, CD34+ cells extensively proliferate 
without changing their identity. Around D14 cells start producing haemoglobin and reduce their intracellular 
structures (the cytoplasm becomes simpli�ed) and size. By D18, chromatin becomes compacted, cellular division 
slows and in the �nal stages, the nucleus is expelled. Based upon this, four distinct time points (at D11, D14, D18 
and D21) were selected to assess the changing mechanotype of CD34+ during in vitro erythropoiesis to deter-
mine the potential for mechanical properties to act as a homogeneity marker upon which passive cell separation 
methods can be developed.

High-throughput size and deformability assessment. While there are many available well-established 
technologies for assessing cell mechanotype such as Atomic Force Microscopy (AFM)39, micropipette aspira-
tion40, magnetic tweezers and optical stretchers41, these methods su�er from low-throughput42. To assess a 
high number of cells (thousands of events per minute), we used a micro�uidic-based Real-Time Deformability 
Cytometer (RT-DC)43. RT-DC is a contactless technique, allowing gain of thousands of events per minute, which 
is convenient for the global characterisation of complex samples44. For comparison of technologies for cell mech-
anotype assessment see Table S1.1. In the RT-DC set-up, shear stress is generated by a viscous liquid �owing 
through a channel of de�ned dimensions to induce cell deformation, which is de�ned as cell circularity45 and is 
given by:

π=c A l2 / (1)

where A is the projected cell surface area and l is the cell perimeter. For perfectly circular objects =c 1 and a 
deformable object will be characterised by <c 1.

CD34+ cells size and deformability at D11, D14, D18 and D21 were assessed using RT-DC for both individual 
and mixed populations of nucleated and enucleated cells as well as expelled nuclei. Free-�oating nuclei and undif-
ferentiated cells constitute the two main contaminants that must be removed from the sample, prior to clinical 
application, to leave puri�ed mRBCs. A global view of mechanical changes using mixed populations, directly 
from the cell culture, is presented in Fig. 1a, plotting deformation against cell area. �e results indicate that as the 
di�erentiation process progresses, deformability increases while size decreases and the emergence of a greater 
number of di�erent cell populations can be observed. At D11 cells are strongly heterogeneous in size (cell areas 
ranging between 25 and 175 µm2) while deformability is low (<0.2). At D14 the �rst spontaneous enucleation 
events are observed characterized by a new emerging subpopulation on the deformation axis (events with defor-
mation >0.2) and the reduction in cell size very few cell areas above 100 µm2). Closer to the end of the di�eren-
tiation process (D18 and D21), the enucleated cell subpopulation becomes dominant (deformability >0.25) and 
another population corresponding to expelled nuclei appears (deformability < 0.03). In in vivo di�erentiation, 
nuclei would be removed by macrophages46,47.

Utilising the above data, we compared the size and deformability of enucleated and nucleated cells and nuclei 
at each of the time points. Firstly, we con�rmed the identity of the three subpopulations by collecting data from 
a mixed sample as well as from samples which were sorted into pure populations by FACS and assessed using the 
RT-DC separately (Fig. S2). Regions corresponding to each subpopulation were therefore identi�ed and used for 
analysis (using the polygon tool in the ShapeOut so�ware) (Fig. S2).

http://S1
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�e populations identi�ed from the mixed sample (Fig. S2a) correspond to the individual gated enucleated 
(Fig. S2d) and nucleated (Fig. S2e) cells and nuclei (Fig. S2c) populations. In general, the individual popula-
tions of cells are slightly sti�er than those from the mixed population, due to the extra processing undertaken48.
However, Fig. S2b shows that the three di�erent subpopulations plot in di�erent regions suggesting that there 
is potential to utilise size and deformability changes as a basis for separation and sorting. Secondly, to con�rm 
that so�ware could utilise size and deformability di�erences to classify cells, events from the scatter plot of a 
mixed sample were analysed using a Gaussian mixture model also identifying three subpopulations (Fig. 1b), as 
expected from the previous gating analysis (Fig. S2).

To further analyse the data, box plots were generated showing the average and range of the size and deforma-
bility characteristics for each of the subpopulations. Figure 1c illustrates the size variation of the three populations 
at the selected time points (D11 only appears for nucleated cells as this is before the enucleation step). Nuclei are 
much smaller (with area 22.8 ± 3.8 µm2, mean ± SD) than the nucleated cells (D11 72.9 ± 25.8, D14 71.6 ± 12.8, 
D18 54.7 ± 7.2 and D21 52. 2 ± 7.5 µm2) and enucleated cells (D14 57.6 ± 8.6, D18 50.9 ± 9 and D21 47.9 ± 7.5 
µm2) with little size overlap (p < 0.0001). In terms of the size of cells, there is a statistically signi�cant di�erence 

Figure 1. (a) Scattered plots obtained from RT-DC for CD34+ undergoing in vitro haematopoiesis 
corresponding to four time points: D11, D14, D18 and D21. Cells are �owing at 0.12 µl/min through a 
20 µm × 20 µm channel. Each dot represents a single event (the total number of collected events is displayed on 
the top of each diagram). Colours indicate a density scale. Grey isoelasticity lines on the scatter plots represent 
a predicted cell deformability for cells of the same elasticity and di�erent size45 (b) By analysing raw data with a 
Gaussian mixture model at least three subpopulations within sample from D18 were detected and colour-coded, 
corresponding to nucleated (purple), enucleated cells (pink) and nuclei (grey). Remaining events (blue) are 
considered unclassi�ed events, artefacts and cell debris. (c,d) Box plots summarizing cell area and deformation 
respectively. Values for each subpopulation are extracted from raw data by gating enucleated, nucleated cells 
and nuclei as justi�ed in Fig. S2. P-values were calculated using a generalized mixed model (***p < 0.0001). �e 
line in the box represents the median and the box itself represents data from lower and upper quartile while the 
whiskers correspond to the lowest and highest extreme values.
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between enucleated and nucleated cells (p < 0.0001). However, there is an overlap between events from both 
subpopulations (Fig. 1c).

Figure 1d considers the deformability di�erences between the three populations and demonstrates greater 
discrimination potential. Nuclei deformability is 0.03 ± 0.01 whereas that of nucleated cells is greater than 0.1 
(D14 0.13 ± 0.04, D18 0.18 ± 0.05 and D21 0.12 ± 0.05) and enucleated cells greater than 0.25 (D14 0.26 ± 0.05, 
D18 0.34 ± 0.05 and D21 0.33 ± 0.05) and the di�erence is statistically signi�cant (p < 0.0001). Additionally, a 
signi�cant di�erence in deformability (p < 0.0001) is observed for nucleated (deformability 0.1–0.25) and enu-
cleated (deformability >0.25) cells.

To quantify the degree of the size and deformability overlap, receiver operating characteristic (ROC) curves 
were plotted and the corresponding area under the curve (AUC) calculated (Fig. S2). Using this approach we 
determined that enucleated cells are 100% separated (AUC = 1) from the nuclei population in terms of size 
(Fig. S3b) and deformability (Fig. S3d). Micro�uidic systems have been designed to separate particles in the same 
range of sizes (diameter) as nuclei (6 µm) and enucleated cells (7–10 µm)24,49 and the data supports the potential 
for a size-based separation as a route for nuclei removal. Figure S3a shows that within a population classi�ed 
in terms of size as enucleated cells, 17% of those cells belong to the nucleated cell population (AUC = 0.83). 
�erefore size-based separation between nucleated and enucleated cells would be possible but would result in a 
signi�cant contamination. �e deformability di�erence between enucleated and nucleated cells (Fig. S3c) is close 
to 100% (AUC = 0.99) suggesting the feasibility of deformability to separate these populations.

Young’s modulus measurements for enucleated and nucleated cells and nuclei with 
AFM. AFM is the current gold standard for the biomechanical characterisation of cells. AFM imaging was 
employed to con�rm the size based analysis. Furthermore, AFM force-distance curves were utilised to analyse 
the di�erences observed by RT-DC in deformability and convert from the circularity measure of deformability to 
elastic modulus, which is a useful measure for the design of separation systems.

Using AFM Quantitative Imaging (QI) mode and a sharp conical tip, the elastic properties of 60 D14 cells 
from a mixed culture were measured along with individual populations, isolated by FACS, of 25 nucleated 
and 25 enucleated cells and 60 nuclei (Fig. 2). As discussed in previous work, AFM elastic measurements are 
position-dependant50,51 which means based on the location indented on the cell, derived elastic modulus can be 
di�erent from another location on the same cell. �ese changes in the elastic modulus across the cell are due to 
the presence/absence of a nucleus and other organelles. �erefore, 64 measurements were taken at di�erent loca-
tions of each cell to obtain elasticity changes over the cell, and the derived Young’s elastic modulus was averaged 

Figure 2. (a) QI mode of AFM is applied to measure the elastic properties of umbilical cord CD34+ cells 
during their di�erentiation process along with the nucleus extruded from the cells. �e Young’s elastic 
modulus is calculated using the Hertz-Sneddon model for a conical tip. Derived elastic modulus is plotted 
versus probability for the nucleated, enucleated and a mixture of nucleated and enucleated cells at D14 of cell 
di�erentiation along with the nuclei. (b) Box and whisker plot summarising the Young’s elastic modulus of the 
di�erent subpopulations. �e line in the box represents median, the box itself 25 and 75% (upper and lower 
quartile) and whisker extreme values (60 samples for mix and nuclei, 25 samples for nucleated and enucleated 
cells; ***p < 0.001 ****p < 0.0001), where each box presents the distribution of data from lower and upper 
quartile with a line in each box shows the median. �e whiskers represent the lowest and highest extreme 
values.
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(Fig. 2a). To determine the elastic modulus, calculations were based on the Hertz-Sneddon contact model uti-
lising all derived results from di�erent locations on each cell and all cells in each group (mixed, enucleated and 
nucleated cells, and nuclei). To study the di�erence in the elastic modulus of the subpopulations, each range of 
the elastic modulus was plotted against the probability of each elastic modulus [E] (Fig. 2a). Probability can be 
de�ned as the number of occurrences of a targeted elastic modulus divided by the number of occurrences plus the 
number of failures of occurrences (total possible outcomes) and it is calculated from:

=probability
number of events within targeted E range

total number of events (2)

�e average Young’s elastic modulus for the mixed cells, nucleated and enucleated cells, and nuclei were 
derived as: 0.91 ± 0.52 kPa (n = 60), 1.04 ± 0.47 kPa, and 0.53 ± 0.12 kPa (both n = 25), and 7.06 ± 4.07 kPa 
(n = 60) respectively (cf. Figure 2b for boxplot summarizing the average and range with the underlying data 
included in Tables S2 and S3). �e elastic modulus of RBCs was reported in the literature as (0.143 ± 0.059 kPa), 
using spherical indenter52. As expected the elasticity of enucleated cells is consequently the closest to the elasticity 
of RBCs, although still somewhat higher. However, it needs to be mentioned that most cell studies use spherical 
indenters, which can give a lower elastic modulus when compared directly to a conical tip. It can be noted that 
biological changes, including a gradual decrease in the number of organelles, continue a�er the enucleation pro-
cess resulting in further so�ening of the cells53.

�is data is in accordance with the RT-DC data, showing that the enucleated cells are the most deformable 
whereas the nuclei are sti�est. Furthermore, as also shown by AFM, there is a signi�cant di�erence between the 
derived Young’s elastic modulus of nucleated cells and nuclei (p < 0.0001), enucleated cells and nuclei (p < 0.0001, 
AUC = ) and nucleated and enucleated cells (p < 0.001), (Fig. 2b). �us, the AFM data con�rms the RT-DC �nd-
ing that deformability is a potential homogeneity marker for downstream sample processing and quanti�es the 
elastic modulus di�erence by creating ROC curves and calculating the AUC = 0.94 (Fig. S4) for nucleated and 
enucleated cells. Existing separation techniques based upon deformability enables the sorting of cells using di�er-
ences in their Young’s elastic modulus. For instance it has been demonstrated that for a mixed cell culture media, 
a mixture of four cells, MDA MB 231, HL60, MCF 7 and HeLa, with Young’s elastic modulus of 1 kPa, 2.7kPa, 3.4 
kPa and 13.5 kPa could be sorted using the sti�ness-based sorting micro�uidic channel with an e�ciency ranging 
from 70 to 85%54.

AFM images from individual populations of nucleated cells, enucleated cells and nuclei were utilised to 
study the morphological di�erences among subpopulations. As also demonstrated by the RT-DC data, nuclei 
were observed to be smaller both in height and width in comparison to the other two subpopulations (Fig. S5a). 
Comparing enucleated and nucleated cells (Fig. S5b and c) the nucleated cells are slightly higher and narrower 
than the enucleated cells since on the poly-D-lysine coated petri dish the enucleated cells spread out more.

Correlation between mechanotype and biology. Cell deformability is determined by the structural components 
of the cell, particularly the cytoskeleton55. �e cytoskeleton is a protein network (mostly actin and spectrin in 
RBCs56) supporting the cell structure and providing mechanical integrity to the cells. �is network underlies the 
cell membrane and connects with the nucleus by extending through the cytoplasm and plays a crucial role in the 
enucleation, which is a dynamic process lasting approximately 10 min57. During the process, F-actin and myo-
sin �laments undergo re-arrangements to facilitate the act of enucleation. Paraformaldehyde �xed cell samples 
were stained at D11, D14, D18 and D21 for F-actin (Fig. 3a), one of the most abundant cytoskeletal protein, and 
imaged. At D11 and D14 F-actin assembles into a uniform shell surrounding the cell interior. By the end of the 
di�erentiation protocol, at D18 and D21, the shell becomes thinner and less visible with small aggregates visible, 
which support the observed so�ening of nucleated cells between those days. Observed thinning is in agreement 
with literature evidence, where cytoskeletal protein levels were quanti�ed by Western Blot36. It was reported 
that actin is downregulated during erythropoiesis with α-spectrin and β-spectrin expressed in higher quantities. 
Together, those rearrangements are believed to be an adaptation of RBCs to change their shape under the applied 
shear stress they experience during the vascular circulation, without haemolysis. When the lack of a nucleus is the 
main feature providing optimal cell deformability for oxygen transfer in tissues58. �e presence of a nucleus, its 
changing characteristics and eventual expulsion throughout di�erentiation could contribute substantially to the 
overall cell mechanical behaviour59.

�e contribution of the nucleus to the mechanotype is determined by its relative size60. To assess the nucleus/
whole cell ratio, cytospin cell slides prepared at D11, D14, D18 and D21 were stained with rapid Romanowsky 
stain and visualised using a bright �eld microscope (Fig. 3b). Approximately 1000 events per condition were ana-
lysed and results are presented in Fig. 3c. Nuclei become smaller over time and at D11, on average, they constitute 
around 60% of the cell. �e cytoplasm becomes simpli�ed at later days and the nucleus is more compacted and 
smaller (50% for D14 and 40% for D18). We further explored the contribution of nuclei to the mechanical behav-
iour of cells by looking at cell elongation within the RT-DC micro�uidic device under shear stress (Fig. 4a and 
b). In the RT-DC system, cells �rst pass through a reservoir section to then be forced through a smaller channel 
where a sheath �ow induces a shear stress on the cells (Fig. S6). As presented in Fig. 4, the y-axis for enucleated 
and nucleated cells is larger than nuclei in the reservoir. When cells enter the main channel, the nuclei y-axis 
remains unchanged while the enucleated y-axis is shortened and the nucleated y-axis remains above the length of 
the nucleus. �e presence of the nucleus seems therefore to constitute a barrier to the capability of a cell to deform 
under shear stress. To verify if it would be possible to separate enucleated and nucleated cells based on the degree 
of deformation they undergo under hydrodynamic stress, the length of the y-axis of enucleated and nucleated 
was compared. �e measurement was obtained in the reservoir section of the device where cells experience shear 
stress and by creating a ROC curve and calculating the AUC = 1 (Fig. S7) we see that there is no overlap in the 
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y-axis length. Deformability and size are coupled and the cell size revealed by their original shape change under 
applied stress could constitute a basis for cell separation (e.g. by passing through a �lter with a cut-o� size smaller 
than the length of y-axis for nucleated cells).

Figure 3. To visualise changes in cell morphology over the course of the di�erentiation procedure (Day 11, 
14, 18 and 21) (a) cytoskeletal protein F-actin (green) and nuclei (blue) were stained with �uorophores and (b) 
cytoplasm and nuclei were stained with Romanowsky stain. Scale bars represent 10 µm; (c) cytospin images 
of Rmanowsky’s stained cells were analysed using Matlab for cell and nucleus area (mean ± SD) and nucleus/ 
whole cell ratio were calculated (mean ± SD).

Figure 4. Cells at D14 were sorted on FACS into enucleated, nucleated cells and nuclei populations. �eir 
minor and major axis (y and x respectively) were assessed by RT-DC image analysis. (a) Measurements were 
captured in both the reservoir (with negligible degree of shear stress) and in the channel (20 µm width) where 
shear stress exerted on cells causes them to deform from their original shape. (b) Changing x- and y-axis length 
for pure populations, in the reservoir and in the channel, were captured. Bar graph represents mean axis length 
with error bars showing SD from the mean.
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Conclusion and Outlook. Regenerative medicine, and cell therapy, in particular, are seen as a potential route to 
revolutionize medicine and to improve healthcare for patients who currently have either limited or no treatment 
options. �e in vitro produced RBCs are seen to address needs in transfusion medicine.

For the wide-spread adoption of mRBCs, and indeed other cell therapies, challenges related to cell source, 
maturation and viability need to be addressed by biologists, while advancements in cell processing technologies 
will be required to manufacture those cells in meaningful quantities and achieve satisfactory purity. Label-free 
separation techniques based on mechanical phenotype di�erences o�er a promising route to large-scale puri�ca-
tion. However, to design optimal downstream processing protocols we �rst need to understand the mechanical 
characteristics of subpopulations within the samples, how these relate to molecular and architectural changes 
and how those changes evolve with cell-state and progressing di�erentiation protocols. �us, here we charac-
terised the mechanical properties (size and deformability) of CD34+ cells from cord blood as they undergo in 
vitro erythropoiesis. Cell size and deformability are highly dynamic features, signi�cantly changing during the 
di�erentiation process. Based on our observations, using both novel high-throughput techniques (RT-DC) and 
AFM, cells become smaller and so�er between D11 and D18 as di�erent cell subpopulations emerge. Our staining 
results, linked with data from the literature, suggest that this phenomenon is driven by changes in the nucleus 
properties, which is expelled towards the end of the protocol, coupled to morphological changes in the cytoplasm 
and cytoskeleton.

Several key �ndings emerged from our mechanotype analysis. Firstly, there is no overlap between the sizes 
of the nuclei and the cells (both enucleated and nucleated). Data con�rmed a 100% separation for both size and 
deformability. It could, therefore, be possible to design label-free systems to remove the nuclei exploiting the 2 µm 
di�erence in the average diameter of the cells and the nuclei at D18, a size at which there is plenty of evidence in 
the literature for successful separation approaches targeting di�erent applications49.

Secondly, since the data showed a signi�cant overlap of the enucleated/nucleated cell populations in terms 
of size, the cell mechanotype marker of size might thus not be practical. �irdly, we demonstrated a signi�cant 
di�erence in deformability (from ROC curves AUC = 99%) and more speci�cally in Young’s elastic modulus (0.51 
kPa di�erence on average at the end of the protocol) between the enucleated/nucleated cell populations. In order 
to purify enucleated cell from nucleated cells, methods which exploit either, or both of, the observed di�erences 
in cells Young’s elastic modulus and deformation under shear stress could be utilised.

Overall, our data provide the �rst quantitative information regarding the mechanotype of CD34+ cells under-
going di�erentiation into manufactured RBCs, which could assist in the design of robust label-free puri�cation 
approaches.

Materials and Methods
Sample Preparation. Cord CD34+ Stem Cell Culture. All methods were carried out in accordance with 
relevant guidelines and regulations and were approved by the Heriot-Watt Engineering and Physical Sciences 
Ethics Committee as well as the Heriot-Watt Engineering and Physical Sciences Biosafety Review. �e cells used 
in this work were commercially obtained from donated cord blood and therefore consented to the research use. 
�e CD34+ hematopoietic stem cells were primarily purchased from Stem Cell Technologies, expanded and cry-
opreserved a�er 6 days in culture using a variation of the method previously described61. A master cell bank from 
one healthy donor was created with D6 cells cryopreserved in fresh medium supplemented with 30% Knockout 
Serum Replacement and 10% DMSO. Cells at day 6 were resuscitated, washed and re-cultured in fresh pre-
warmed growth medium: Iscove’s basal medium (VWR, cat. BCHRFG0465), 5% human AB+ Serum (Sigma 
Aldrich, cat. H4522), 3 U/ml heparin (Sigma Aldrich, cat. H5515), 10 µg/ml insulin (Sigma Aldrich, cat. 19278) 
and 200 µg/ml human holotransferrin (VWR, cat. 616397-500) supplemented with 60 ng/ml recombinant human 
stem cell factor (SCF) (PeproTech, cat. 300-07), 5 ng/ml recombinant human IL-3 (PeproTech, cat. 200-03), 3 U/
ml erythropoietin (EPO) (clinical grade material, Roche) and 1 µM hydrocortisone (Sigma Aldrich, cat. H0888) 
until day 8. At day 8 cell culture medium was replaced with fresh ISHIT cell culture medium supplemented with 
10 ng/ml SCF, 3U/ml Erythropoietin, 1 µM Hydrocortisone and 300 µg/ml Transferrin and cultured until day 14. 
At day 14, a cell count was performed using the trypan blue exclusion technique, cells centrifuged at 300 g for 
5 min and re-seeded in fresh culture medium containing 3 U/ml erythropoietin and 300 µg/ml holotransferrin. 
A�er a further four days of culture (day 18) cells were re-seeded in fresh medium (the same composition as day 
14). Each time cells were harvested, they were transferred into a centrifuge tube (Corning, UK) and centrifuged 
at 300 g for 5 min. All cell culture manipulations were carried under aseptic conditions in a cabinet with a laminar 
air �ow.

Flow Cytometry. Cells were assayed for expression of CD235a (Glycophorin A) and for the presence of a 
nucleus using �ow cytometry during di�erentiation. At each control time point: day 11, 14, 18 and 21 (D11, D14, 
D18 and D21), cells were collected and counted, centrifuged at 300 g for 5 min and re-suspended in basal medium 
supplemented with 0.5% BSA at a concentration of 1 × 107 cells/ml. To each 100 µl aliquot of cells, 0.625 µl of 
FITC-conjugated Mouse Anti-Human CD235a (BD, cat. 559943) and 0.5 µl of 5 mM DRAQ5™ Fluorescent Probe 
(BD, cat. 564902) was added to obtain a �nal concentration of 5 µM. Cells were incubated for at least 30 min 
at room temperature in darkness. �e excess �uorescent stain was not removed to prevent cell damage. Cells 
were analysed on a BD FACSCalibur within two hours of staining and raw data analysed using FlowJo V10 CL. 
�e same staining strategy was used for cell sorting by FACS (FACSAria IIu �ow cytometer, Beckton Dickinson 
Immunocytometry Systems (BD, UK) running BD FACSDiva v6 So�ware.

Mechanotype Characterisation. Real-Time Deformability Cytometry. Cells size and deformability 
changes were assessed using a Real-Time Deformability Cytometer (RT-DC). Measurements were performed as 
described in Nat. Methods 201543. In our work, a PDMS chip with a 20 µm × 20 µm cross-section channel was 
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used. Prior to measurements, cells were harvested by centrifugation at 300 g for 5 min and resuspended in a 0.05% 
methylcellulose solution at 1–2 × 106 cells/ml. Cells were pumped into the channel at 0.12 µl/min. RT-DC data 
were analysed using original RT-DC so�ware ShapeOut 0.6.9 (available at www.zellmechanik.com). Using the 
polygon tool built in the so�ware, area and deformability values were obtained separately for day 11, 14, 18 and 21 
as well as for separate subpopulations (enucleated cells, nucleated cells and nuclei). Data were then extracted from 
the so�ware and further analysed using MatLab R2016b and GraphPad Prism 7. �e signi�cance of the results 
was calculated using a standardized mixed model that assumes non-normal distribution with three replicas of 
each experiment (Fig. S8). �e receiver operating characteristic curves were generated and the area under the 
curve was calculated using a customised MatLab script (MatLab R2016b).

Atomic Force Microscopy (AFM) -Cell preparation. To prepare cells for AFM measurements, a concentration 
of 2 × 106 cells/ml was seeded onto poly-D-lysine hydrobromide (Sigma Aldrich cat. P6407, UK) coated AFM 
petri dishes. �e dishes were then incubated for 1 minute to allow for adequate cellular attachment. Cell seeded 
sample dishes were then gently rinsed with 1 ml of Hank’s Balanced Salt Solution (HBSS, pH = 7) (Merk Millipore 
cat. H9394, UK) to remove any loosely and/or unattached cells. 2 ml of HBSS was then added to the sample dish, 
which was then mounted onto the BioCell™ stage, which maintains the cell sample and HBSS media at 37 °C for 
the duration of the AFM experiment52. �e same protocol was applied for nucleus preparation.

AFM quantitative imaging mode. AFM measurements were carried out using the NanoWizard III Bio 
AFM (JPK Systems, Berlin, Germany), mounted on a Zeiss Observer D1 inverted optical microscope placed on 
top of a Halcyonics i4 anti-vibration table. For all experiments, silicon coated HQ: NSC36/Cr-Al series conical 
probe cantilevers, (MicroMasch, UK) half cone angle of 20° and tip radius of ~8 nm with spring constant of 
0.01 N/m were used. In AFM measurements, obtained elastic modulus are highly dependent on the shape of the 
tip, indentation depth, cell preparation protocol and applied contact mechanical model. For instance, if compar-
ing indenting a cell with a conical or a spherical shape indenter, the derived elastic modulus from the conical tip 
is higher than the one obtained from the spherical tip. �is can be due to the fact that the conical tip provides 
more local elastic properties while the spherical tip presents the overall elastic properties62. �e thermal noise 
method is used to determine the spring constant of the cantilever. Quantitative Imaging (QI) mode with the map 
size of 8 × 8 indexes is used to record force-distance curves from the whole area of each cell. For all experiments, 
the indentation speed was kept at 5 µm/sec, with the applied force in the range of 0.8–1 nN, depending on the 
di�erentiation date.

Elasticity analysis for AFM. Obtained force-distance curves were analysed for the elasticity measurements using 
the JPK data processing so�ware version spm-5.0.69. Based on the map size of 8 × 8 indexes, 64 force-indentation 
curves per cell were recorded. �e curves, which were from the AFM dish coating and/or residues within the cul-
ture media were discarded from the analysis. Due to the shape of the chosen cantilever probes, the Hertz-Sneddon 
contact model (for the conical probe geometry) was applied to determine the elastic modulus of the cells for each 
force-displacement curve obtained63,64.

δ
α

π ν
δ=

−

F
E tan

( )
2

(1 ) (3)
2

2

Where F is an applied force, E is Young’s elastic modulus, α is a half cone angle of the AFM tip, δ is the indentation 
depth and ν is the Poisson ratio.

For use of the Hertz-Sneddon contact model to derive the Young’s elastic modulus of the cells, cells were 
assumed to be homogeneous, isotropic and semi-in�nite bodies. Since the approach curves were not a�ected 
by the adhesion force, only the approach curves were used for the elasticity analysis. For each force curve, the 
baseline correction was carried out by calculating the average value of the baseline and subtracting it from the 
whole curve. �e Hertz-Sneddon contact model was �tted approximately from the point where the force curve 
starts increasing.

Biological Characterisation. Cell morphology- Cytospin. To visualise cells morphology and structure, 
cells were transferred onto microscope slides using a cytocentrifuge then �xed and stained using Giemsa-Wright 
staining (Rapid Romanowsky Stain Pack, TCS Bioscience, cat. SW167/500). Cells at selected time points (D11, 
D14, D18 and D21) were harvested by centrifugation at 300 g for 5 min and resuspended at 2 × 106 cells/ml in 
Dulbecco’s PBS−/−. 100 µl of cell suspension was transferred into a cytocentrifuge cell funnel and centrifuged 
at 450 rpm for 4 min in a cytocentrifuge (Cellspin I �armac, Germany) to transfer the cells onto the slide. Slides 
were then air-dried for 15 min, �xed and stained according to the manufacturer’s instructions. A�er staining, 
slides were air-dried then �xed with DePeX mounting medium (Sigma Aldrich, cat. 06522). Slides were photo-
graphed for further image analysis using an EOS 60D Canon camera (Canon, UK) mounted on an AXIO Scope.
A1 Zeiss microscope (Zeiss, Germany) at ×100 magni�cation. Images were analysed in Matlab R2016b using a 
custom-made script.

Widefield Microscopy. To study the cytoskeletal changes in CD34+ cells undergoing in vitro erythropoie-
sis, cells at day 11, 14, 18 and 21 were �xed in 4% paraformaldehyde (PFA) (�ermoFisher Scienti�c, cat. 28906) 
and imaged using a wide�eld microscope Olympus IX-81 TIRF+ with a ×150 1.4 NA immersion oil lens and 
EMCCD camera (Hamamatsu, UK). First cells were stained for 30 min at room temperature (RT) against F-actin 
with Actin Creen 488 Ready Probes reagents (Life Technologies, cat. R37110) then cells were transferred onto 
poly-D-lysine hydrobromide (Sigma Aldrich, cat. P6407, UK) coated cover slips to attach. Two minutes before 

http://www.zellmechanik.com
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the end of the incubation time, Hoechst 33342 (Sigma Aldrich, cat. 14533) was added to a �nal 10ng/ml concen-
tration. A�er 2 minutes the cover slip was gently washed with PBS−/− to unattached free-�oating cells. Twenty 
stack images per di�erentiation day (D11, D14, D18 and D21) were collected. Obtained stack images were decon-
voluted with the Huygens Professional so�ware.

Data availability. �e datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request
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