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Abstract

The circadian clock underlies daily rhythms of diverse physiological processes, and alterations in clock function have been
linked to numerous pathologies. To apply chemical biology methods to modulate and dissect the clock mechanism with
new chemical probes, we performed a circadian screen of,120,000 uncharacterized compounds on human cells containing
a circadian reporter. The analysis identified a small molecule that potently lengthens the circadian period in a dose-
dependent manner. Subsequent analysis showed that the compound also lengthened the period in a variety of cells from
different tissues including the mouse suprachiasmatic nucleus, the central clock controlling behavioral rhythms. Based on
the prominent period lengthening effect, we named the compound longdaysin. Longdaysin was amenable for chemical
modification to perform affinity chromatography coupled with mass spectrometry analysis to identify target proteins.
Combined with siRNA-mediated gene knockdown, we identified the protein kinases CKId, CKIa, and ERK2 as targets of
longdaysin responsible for the observed effect on circadian period. Although individual knockdown of CKId, CKIa, and ERK2
had small period effects, their combinatorial knockdown dramatically lengthened the period similar to longdaysin
treatment. We characterized the role of CKIa in the clock mechanism and found that CKIa-mediated phosphorylation
stimulated degradation of a clock protein PER1, similar to the function of CKId. Longdaysin treatment inhibited PER1
degradation, providing insight into the mechanism of longdaysin-dependent period lengthening. Using larval zebrafish, we
further demonstrated that longdaysin drastically lengthened circadian period in vivo. Taken together, the chemical biology
approach not only revealed CKIa as a clock regulatory kinase but also identified a multiple kinase network conferring
robustness to the clock. Longdaysin provides novel possibilities in manipulating clock function due to its ability to
simultaneously inhibit several key components of this conserved network across species.
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Introduction

A variety of physiological processes such as sleep/wake behavior,

body temperature, hormone secretion, and metabolism show daily

rhythms under the control of the circadian clock which is intrinsic to

the organism. Perturbation of clock function has been implicated in

numerous pathologies including circadian sleep disorders, cardiovas-

cular disease, cancer, and metabolic disease [1–4]. The close

association of the circadian clock with diverse physiological processes

and diseases implies that identification of clock-modulating com-

pounds could form the basis for therapeutic strategies directed towards

circadian rhythm-related disorders, shift-work fatigue, and jet lag.

The manifestation of circadian disorders at the level of the

whole organism can be caused by dysfunction of the clock at the

level of intracellular networks, as single cells exhibit circadian

rhythms in a cell-autonomous manner [5–6]. In mammals, these

cellular oscillators are organized in a hierarchy, in which the

suprachiasmatic nucleus (SCN) of the hypothalamus constitutes

the central circadian pacemaker controlling behavioral rhythms,

while peripheral clocks in other tissues control local rhythmic

outputs [1,3,7]. In the intracellular circadian network, the clock

genes and their protein products form transcriptional feedback

loops: CLOCK and BMAL1 transcription factors activate

expression of Per and Cry genes, and PER and CRY proteins

(PER1, PER2, CRY1, and CRY2) in turn inhibit their own

transcription to generate rhythmic gene expression [3,8].

In addition to transcriptional regulation, post-translational

modification of clock proteins provides another level of regulation,
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as most clock proteins undergo rhythmic phosphorylation [9].

Hamster tau mutants showing a short period behavioral rhythm

have a missense mutation in the CKIe gene [10], and human

familial advanced sleep phase syndrome (FASPS) with early sleep

times is attributed to missense mutations of PER2 and CKId genes

[11–12]. CKId and CKIe phosphorylate PER to trigger

proteasomal degradation, and tau and FASPS mutations lead to

higher PER degradation than wild type, consistent with the short

period phenotype [13–15]. Supporting the functional importance

of CKId/e, application of the known CKI inhibitors IC261, CKI-

7, and D4476 causes period lengthening in cultured cells [14,16–

17]. Generation of CKIe and CKId deficient mice [15,18] as well

as the development of the CKIe-selective inhibitor PF-4800567

[19] revealed the minimal, if any, role of CKIe in period length

regulation and also demonstrated a dominant role for CKId. In
contrast, potential roles of CKI family members other than CKId/
e are less characterized: They show much less binding with PER1

than that of CKIe [20–22], and knockdown of CKIa-like, a

homolog of CKIa, has no period effect in cultured cells [23].

Together with CKId/e, GSK-3b and CK2 are also implicated in

period regulation. GSK-3b phosphorylates PER2, CRY2, REV-

ERBa, CLOCK, and BMAL1 for functional regulation [24–28],

and pharmacological and RNAi-based inhibition of GSK-3b
causes period shortening in cultured cells [29–30]. Conversely,

inhibition of CK2 causes period lengthening [29,31–33], and

CK2-mediated phosphorylation regulates PER2 and BMAL1

functions [31–32,34].

Genetic and molecular biological studies over the past two

decades have identified more than a dozen genes that form the

core of the mammalian circadian network [3,8,35]. However, it is

clear that more clock components and modulators remain to be

discovered [36]. Considering the limitations of conventional

biological approaches associated with lethality, pleiotropy, and

functional redundancy of closely related proteins, introduction of

new strategies will accelerate the identification of novel clock

mechanism. Chemical biology approaches are attractive candi-

dates, because they utilize small molecules as proof-of-concept

probes for biological systems and can be effective in discovering

novel biological mechanisms and evaluating their effects in vivo by

complementing the limitations of conventional biological ap-

proaches [7,37]. Furthermore, the circadian clock network can be

a good target for chemical biology approaches due to the

quantitative readout of an oscillation. To discover new chemical

probes for dissecting biological mechanisms, it is valuable to screen

comprehensive, large-scale compound libraries containing hun-

dreds of thousands of compounds, because a wide variation of

chemical structures has the advantage of probing many classes of

potential targets. Although it is technically challenging to identify

proteins specifically affected by a novel compound [38], this

process might also be necessary for known compounds, given that

even well-characterized kinase inhibitors have off-targets unrelated

to the primary effect [39–40]. Combined with conventional

biological approaches, the chemical biology approach is expected

to provide an effective way to identify novel components of the

circadian clock [41].

We previously developed a cell-based high-throughput circadi-

an assay system to perform compound screening [29]. In this

system, Bmal1-dLuc reporter cells derived from human U2OS

osteosarcoma cells show robust luminescence rhythms on 384-well

plates by expressing a rapidly degradable luciferase under the

control of a mouse Bmal1 gene promoter. We initially tested a

chemical library containing 1,280 well-characterized compounds

(LOPAC; Library of Pharmacologically Active Compounds) and

found 11 compounds that change period length of the lumines-

cence rhythms in a dose-dependent manner. The kinase inhibitors

among the hit compounds revealed novel roles of GSK-3b and

CK2 in the mammalian clock mechanism as described above.

Furthermore, many of the hits were previously known to alter the

circadian period in other organisms and tissue preparations,

demonstrating the predictive value of the high-throughput assay

system [29]. Together, these observations indicate the effectiveness

of small molecules as probes and/or modulators of the circadian

clock mechanism. A similar LOPAC screen in NIH3T3 and

U2OS cells identified CKId/e-dependent phosphorylation as a

chemically sensitive process of the clock [42]. It was found that the

CKId/e-targeting compounds cause much larger period length-

ening than CKId gene knockout [18,29,42], but the molecular

mechanism underlying the strong effects of the compounds

remains unknown. The present study aimed to apply chemical

biology methods to probe the clock mechanism with novel small

molecules through a circadian screen of a structurally diverse

library of ,120,000 uncharacterized compounds. We found a

purine derivative, longdaysin, that dramatically lengthens the

circadian period. Identification and characterization of long-

daysin-target proteins revealed the roles for protein kinases CKIa
and ERK2 in period regulation, as well as confirmed the

importance of CKId. Simultaneous inhibition of these three

kinases drastically lengthened the circadian period, illustrating a

new facet of the clock mechanism whose robustness is conferred in

part by a multiple kinase network.

Results

Identification of a Novel Compound Lengthening the
Circadian Period
By applying a high-throughput circadian assay system using

human U2OS cells with Bmal1-dLuc reporter [29], we analyzed

approximately 120,000 uncharacterized compounds correspond-

ing to diverse chemical scaffolds [43–44] at a final concentration of

7 mM. We identified a number of compounds with different

scaffolds that lengthened the circadian period of cellular

luminescence rhythms. Among them, we selected one purine

derivative compound 1 (Figure 1A) for follow-up studies, because

Author Summary

Most organisms show daily rhythms in physiology,
behavior, and metabolism, which may be advantageous
because they anticipate environmental changes thus
optimize energy metabolism. These rhythms are controlled
by the circadian clock, which produces cyclic expression of
thousands of output genes. More than a dozen compo-
nents of the circadian clock are called clock genes, and the
proteins they encode form a transcription factor network
that generates rhythmic gene expression. In this study, we
set out to control the function of the circadian clock and to
identify new clock proteins by means of chemical tools. We
tested the effects on the clock in human cells of around
120,000 uncharacterized compounds. Here we describe
identification of a novel compound ‘‘longdaysin’’ that
markedly slows the circadian clock both in cultured
mammalian cells and in living zebrafish. By using long-
daysin as a chemical probe, we found new proteins that
modulate clock function. Because defects of clock function
have been linked to numerous diseases, longdaysin may
form the basis for therapeutic strategies directed towards
circadian rhythm-related disorders, shift-work fatigue, and
jet lag.

A New Small Molecule Modulator of Circadian Clock
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it strongly lengthened the period in a dose-dependent manner and

showed less effect on the amplitude of Bmal1-dLuc rhythms (Figure

S1). A preliminary structure-activity relationship study helped to

identify a derivative of compound 1 that is 3 times more potent

and able to generate .10 h period change at a concentration of

10 mM (Figure 1B and Table 1). We termed this derivative

‘‘longdaysin’’ (Figure 1A), based on its prominent period

lengthening effect. We further investigated the effect of longdaysin

(Figure 1C–E) by using primary cells and tissues isolated from

mPer2Luc knockin mice harboring a mPer2Luc reporter [45–46] as an

additional clock-controlled reporter different from Bmal1-dLuc

used in the screen. Longdaysin consistently caused dose-dependent

period lengthening in adult tail fibroblasts (Figure 1C) and lung

explants (Figure 1D), which represent peripheral clocks, and in

SCN explants (Figure 1E), which represent the central clock. The

effect of longdaysin was reversible, as the period length returned to

normal after washout of the compound (Figure S2). Taken

together, these results demonstrate that longdaysin potently

lengthens the circadian period in multiple mammalian cells

including SCN neurons.

Binding of Longdaysin With Protein Kinases
In order to identify potential biological targets of longdaysin by

affinity-based proteomic approaches [38], we synthesized long-

daysin analogs with an aminohexyl linker, based on the

preliminary structure-activity relationship analysis. Among them,

compound 2 with a linker at the C2 position (Figure 2A) retained

the period lengthening effect in the cell-based circadian assay

(Figure 2B). We then prepared agarose-conjugated compound 3

(Figure 2A) and incubated it with U2OS cell lysate in the presence

or absence of 100 mM longdaysin as a soluble competitor

(Figure 2C). Proteins that bound to the affinity resin, and could

Figure 1. Effect of a novel compound on the circadian period in cultured cells and tissues. (A) The chemical structure of compound 1 and
longdaysin. (B) Effects of compound 1 and longdaysin on the luminescence rhythms in Bmal1-dLuc U2OS cells. Luminescence rhythms were
monitored in the presence of various concentrations of compound (10 points of 3-fold dilution series in DMSO; final 0.7% DMSO). The representative
luminescence profiles for longdaysin treatment are indicated as raster plot (left panel), in which each horizontal raster line represents a single well,
with elapsed time plotted to the right. Luminescence intensity is indicated by color scale. Period parameter was obtained by curve fitting, and period
change relative to the mean of DMSO control was plotted against compound concentration (right panel; the mean with SEM, n= 4). Longdaysin
showed cytotoxicity at 71 mM. (C–E) Effect of longdaysin on the circadian period in adult tail fibroblasts (C), lung explants (D), and SCN explants
(E) from mPer2Luc knockin mice. Fibroblasts were cultured in the presence of various concentrations of longdaysin (the mean with SEM, n= 4). Lung
and SCN explants were cultured in the presence of increasing concentration of longdaysin (0 to 9 mM; 1 wk for each concentration), and period
change relative to the mean of DMSO control at first week was plotted for individual culture (n=3 for lung and n= 2 for SCN).
doi:10.1371/journal.pbio.1000559.g001

A New Small Molecule Modulator of Circadian Clock

PLoS Biology | www.plosbiology.org 3 December 2010 | Volume 8 | Issue 12 | e1000559



be competed off by free longdaysin, were separated by SDS-PAGE

and analyzed by liquid chromatography-tandem mass spectrometry

(LC-MS/MS). This analysis yielded 10 proteins (Figure 2D)

including the protein kinases (highlighted in blue) CKId (CSNK1D),

CKIa (CSNK1A1), ERK2 (MAPK1), CDK7, and p38a
(MAPK14). Independent affinity chromatography followed by

Western blotting with specific antibodies confirmed both the

binding of the protein kinases to the affinity resin as well as

decreased binding in the presence of free longdaysin (Figure S3).

Furthermore, in vitro kinase assays revealed that longdaysin

inhibited CKId, CKIa, ERK2, and CDK7 activities (IC50=8.8,

5.6, 52, and 29 mM, respectively; Figure 2E and Table 1), while it

had much less effect on p38a (unpublished data). In contrast,

compound 1 inhibited CKId, CKIa, and ERK2 with,3 times less

potency than longdaysin and inhibited CDK7 similarly to long-

daysin (Figure 2E and Table 1). The difference in potency between

longdaysin and compound 1 against CKId, CKIa, and ERK2 was

consistent with their cellular period effects (Table 1), suggesting an

involvement of these three kinases in the period regulation.

Lengthening of the Circadian Period by Knockdown of
CKId, CKIa, and ERK2
To identify the protein(s) mediating longdaysin effect on period

length, we first tested the contribution of CKId, a well-

characterized kinase in period regulation [12,18–19,47], by using

embryonic fibroblasts prepared from CKId deficient mice

harboring the mPer2Luc knockin reporter [18]. In a 384-well plate

format, the period of CKId deficient (CKIdD2/D2) cells was 1.1 h

longer than that of wild type (CKId+/+) cells (CKIdD2/D2,
25.960.5 h; CKId+/+, 24.860.9 h; n=48), consistent with a

previous report [18]. We found that longdaysin lengthened the

period in a dose-dependent manner in CKId deficient cells as well

as in wild type cells (Figure 3A). This result indicates the presence

of additional longdaysin-target(s) that regulate period length

besides CKId.

To investigate the effects of RNAi-mediated inhibition of

potential longdaysin-targeted kinases on the circadian period, we

conducted knockdown experiments by applying four independent

siRNAs against each gene. At least two siRNAs for CSNK1D

(encoding CKId), CSNK1A1 (CKIa), and MAPK1 (ERK2) caused

period lengthening (Figure 3B, red box), while those for CDK7 and

MAPK14 (p38a) did not, thus proposing CKId, CKIa, and ERK2

as the potential clock-acting targets of longdaysin. We also tested

siRNAs against the close homologs of these three kinases (CSNK1E

for CSNK1D, CSNK1A1L for CSNK1A1, and MAPK3 for MAPK1)

and found that the homologs had little or no effect on the period

(Figure 3B). The minor period effects for MAPK14, CSNK1E, and

CSNK1A1L are in line with previous reports [23,42]. We further

looked at the primary screening data from our genome-wide RNAi

study [33] in which we used four siRNAs different from this study

by combining two siRNAs as a pool. Among the 10 longdaysin-

interacting proteins identified by the affinity chromatography

(Figure 2D), only CSNK1D, CSNK1A1, and MAPK1 showed period

lengthening of the reporter with both siRNA pairs (Figure S4, red

box), supporting important roles for CKId, CKIa, and ERK2 in

period regulation as longdaysin targets. We then characterized the

period lengthening effects of siRNAs against CSNK1D, CSNK1A1,

and MAPK1 by using an 8-point dilution series of the effective

siRNAs. All siRNAs tested gave dose-dependent changes of the

period (Figure 3Ci) and reduction of the target gene mRNA levels

without affecting the levels of closely homologous genes

(Figure 3Cii). The only exception was CSNK1A1 si1, which has

sequence similarity against CSNK1A1L mRNA (96% identical on a

23 bp stretch) and reduced its level at higher dose (Figure 3Cii).

The correlation between period effect and mRNA knockdown

effect matched well for two siRNAs against CSNK1A1 or MAPK1

(Figure S5). The proportional changes of circadian function by

dose-dependent knockdown of CSNK1D, CSNK1A1, and MAPK1

(Figure 3C) are common characteristics among the core clock

components and clock modifiers [23,33]. Taken together, these

results illustrate the involvement of CKIa and ERK2 in the period

regulation, as well as confirming the importance of CKId.

We further tested knockdown of all three kinases CSNK1D,

CSNK1A1, and MAPK1 in combination, in order to determine if

their concomitant reduction could explain the strong effect of

longdaysin as an inhibitor of all three kinases. Combinatorial

knockdown of the three genes caused strong and dose-dependent

lengthening of the period to .10 h (Figure 3Di). The multiple

gene knockdown effect (Figure 3Dii, red line) matched well with

the theoretical sum of the effect of single gene knockdown (black

line). These results suggest that the knockdown of these three

kinases works in an additive manner to cause prominent period

lengthening similar to that generated by longdaysin.

CKIa-Dependent Phosphorylation and Degradation of
PER1
In contrast to the well-characterized roles of CKId/e-mediated

phosphorylation of PER proteins [9–21], the functions of CKIa
and ERK2 in period regulation have yet to be characterized. To

examine the interaction of CKIa and ERK2 with the core clock

proteins, we co-expressed HA-tagged kinases with Flag-tagged

clock proteins in HEK293T cells. Immunoprecipitation assay

revealed interactions of both CKIa and ERK2 with PER1 and

PER2, and to a lesser extent, CRY1 and CRY2 (Figures 4A, S6A,

Table 1. Effective concentrations of longdaysin and compound 1.

U2OS Cell-Based Circadian Assay

(Concentrations for Period Change,

mM)a In Vitro Kinase Assay (IC50, mM)b

Cell-Based PER1

Degradation Assay (EC50,

mM)c

Compound 5 h 10 h 15 h CKId CKIa ERK2 CDK7 CKId CKIa

Longdaysin 1.5 5.7 13 8.8 5.6 52 29 9.7 9.2

Compound 1 4.4 17 38 21 23 160 29 n.d. n.d.

a–cValues were determined from
aFigure 1B,
bFigure 2E, and
cFigure 4E.
n.d., not determined.
doi:10.1371/journal.pbio.1000559.t001
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and S6B). Co-expression of PER1 with CKIa generated lower

electrophoretic mobility forms of PER1 (Figure 4B), which

disappeared upon phosphatase treatment (Figure S7A), suggesting

CKIa-dependent phosphorylation of PER1. This modification

relied on the kinase activity of CKIa, because the kinase-dead

K46R mutant of CKIa [CKIa (KR)] [48] did not cause the

mobility-shift of PER1 (Figure 4B). In contrast, ERK2 showed no

detectable effect on the PER1 mobility (unpublished data).

Treatment of the cells with longdaysin reduced the CKIa- and
CKId-dependent mobility-shift of PER1 (Figures 4C, S7B, and

S7C), consistent with a potential mode of longdaysin action

through CKIa and CKId.

Figure 2. Identification of potential longdaysin-binding proteins. (A) The chemical structure of compounds 2 and 3. A circle represents an
agarose bead. (B) Effect of compound 2 on the circadian period. Luminescence rhythms of Bmal1-dLuc U2OS cells were monitored in the presence of
various concentrations of compound 2. Data are the mean with SEM (n=4). (C) The scheme of longdaysin-binding protein identification. Cell lysate
was prepared from confluent and unsynchronized U2OS cells. (D) A list of potential longdaysin-binding proteins. Listed proteins were identified by
$10 tandem MS spectra and showed $3-fold signal reduction upon competition with free longdaysin. Protein kinases are highlighted in blue.
Sequence coverage refers to the experiment performed in the absence of free longdaysin [competition (2)]. (E) Effects of longdaysin and compound
1 on protein kinase activity. Activities of CKId, CKIa, ERK2, and CDK7 in vitro were analyzed in the presence of various concentrations of compound.
Data are the mean with SEM (n= 6 for longdaysin, n=4 for compound 1).
doi:10.1371/journal.pbio.1000559.g002

A New Small Molecule Modulator of Circadian Clock

PLoS Biology | www.plosbiology.org 5 December 2010 | Volume 8 | Issue 12 | e1000559



Figure 3. Effect of kinase gene knockdown on the circadian period. (A) Effect of longdaysin on the circadian period in embryonic fibroblasts
from CKId deficient mPer2Luc knockin mice. Luminescence rhythms of CKId deficient (CKIdD2/D2) or wild type (CKId+/+) cells were monitored in the
presence of various concentrations of longdaysin. Period change relative to the mean of DMSO control of wild type cells was plotted (the mean with
SEM, n= 4). (B) Effects of kinase gene siRNAs on the circadian period in Bmal1-dLuc U2OS cells. Luminescence rhythms were monitored after transient
transfection with siRNA. Period parameter was obtained by curve fitting, and period change relative to the mean of control was plotted. Data are the
mean with variation (n= 2). The period estimation for CSNK1D si4 was not accurate because of poor curve fitting (indicated by asterisk). (C) Dose-
dependent effects of kinase gene siRNAs on the circadian period (Ci) and the gene expression (Cii). Luminescence rhythms of Bmal1-dLuc U2OS cells
were monitored after transient transfection with various amounts of siRNA (Ci). Representative profiles are indicated in the left panels, and period
changes were plotted against siRNA amount in the right panels (the mean with SEM, n=5–6). Gene expression of unsynchronized cells at time 0 h
was analyzed by RT-qPCR (Cii). Expression levels of target gene, homologous gene, and control gene (ACTB) are indicated in the left, middle, and right
panels, respectively, by setting control value as 1. Data are the mean with variation (n= 2). (Di) Effect of multiple kinase gene knockdown on the
circadian period. Equal amounts of CSNK1D si3, CSNK1A1 si4, MAPK1 si4, and control siRNA were mixed and used for transient transfection. Data are
the mean with SEM (n= 8). (Dii) Comparison of single and multiple kinase gene knockdown effects. Effects of single (pink, blue, and purple lines; data
from Ci) and multiple (red line; data from Di) gene knockdown were plotted against each siRNA amount. Black line is the theoretical sum of single
gene knockdown effects.
doi:10.1371/journal.pbio.1000559.g003

A New Small Molecule Modulator of Circadian Clock
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Figure 4. Effect of CKIa on the core clock proteins. (A) Interaction of CKIa and ERK2 with the core clock proteins. HA-tagged CKIa or ERK2 was
co-expressed with Flag-tagged clock proteins in HEK293T cells and subjected to immunoprecipitation assay with anti-HA antibody. Because of the
low level expression CLOCK, its interaction could not be tested. The interaction of ERK2 with CRY1 and CRY2 was detected as reported previously [67].
(B) CKIa-dependent phosphorylation of PER1. PER1 was co-expressed with CKIa, kinase-dead mutant of CKIa [CKIa (KR)], or CKId in HEK293T cells and
analyzed by Western blot 2 d after transfection (left panel). Intensity profile of each PER1 band is shown in right panel by setting the peak value as 1.
Bracket indicates lower electrophoretic mobility forms of PER1 whose intensity increased in the presence of CKIa or CKId. (C) Effect of longdaysin on
CKIa- and CKId-dependent phosphorylation of PER1. PER1 was co-expressed with CKIa or CKId in HEK293T cells. The cells were treated with 10 mM
longdaysin or 0.1% DMSO for 24 h, and a part of the cell extract was analyzed by Western blot. (D) Effect of CKIa on PER1 stability. Luciferase-fused

A New Small Molecule Modulator of Circadian Clock
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As phosphorylation of PER1 modulates its stability [16–17,21],

we further tested the effect of CKIa on the stability of PER1 by

expressing luciferase-fused PER1 protein (PER1-LUC) in

HEK293T cells. Luminescence changes were monitored following

inhibition of de novo protein synthesis by cycloheximide treatment.

Co-expression of CKIa but not CKIa (KR) accelerated PER1-

LUC degradation relative to that of LUC (Figure 4D). The CKIa-
and CKId-dependent degradation of PER1 was inhibited by

longdaysin treatment in a dose-dependent manner (Figure 4E).

Similar results were obtained by using PER1 without the LUC

fusion (Figure S8A). In contrast, we found that CKIa had no effect

on the stability of a PER2-LUC fusion protein while CKId
accelerated its degradation (Figure S8B). These results demon-

strated the selectivity of CKIa against PER1 degradation over

PER2. Longdaysin inhibited the CKId-mediated PER2-LUC

degradation in a dose-dependent manner (Figure S8C), suggesting

its role in regulating both PER1 and PER2 stabilities through

CKId and/or CKIa.

We then investigated the effect of longdaysin on the protein

level of endogenous PER1 in Bmal1-dLuc U2OS cells during

circadian cycles. The cells were synchronized with medium change

and collected every 6 h from 28 h to 58 h after the medium

change (Figure 4Fi). Consistent with the longdaysin-dependent

shift of the second trough of Bmal1-dLuc luminescence rhythm (34,

38, and 46 h for 0, 3, and 9 mM longdaysin, respectively;

Figure 4Fi), the second peak of PER1 protein rhythm shifted in

parallel (40, 40–46, and 52 h for 0, 3, and 9 mM longdaysin,

respectively; Figure 4Fii). Furthermore, 3 or 9 mM longdaysin

treatment strongly up-regulated overall protein amount of PER1

compared with 0 mM control (Figure 4Fii) without affecting its

mRNA level (Figure 4Fiii), demonstrating post-transcriptional

increase of endogenous PER1 by longdaysin. The progressive

phosphorylation of PER1 was still observed in the presence of

longdaysin (Figure 4Fii), possibly because of the phosphorylation

by kinase(s) that was not affected by longdaysin. Collectively, these

results provide a possible mechanism of longdaysin action for

period regulation through the CKIa- and CKId-mediated control

of PER1 stability.

Period Lengthening of Gene Expression Rhythms by
Longdaysin in Zebrafish In Vivo
Lastly, we investigated if longdaysin had any in vivo efficacy by

using zebrafish, which provide a useful model system for studies on

circadian rhythms at the level of the whole organism [49], and

have conserved CKI and ERK family genes [50–51]. By using

transgenic zebrafish harboring a per3-luc reporter [52], we first

established an in vivo circadian assay to investigate the effects of

compounds. Larval per3-luc fish were entrained in 12 h light/12 h

dark cycles from day 3 to 6 postfertilization and then placed in an

individual well of a 96-well plate to monitor luminescence rhythms

under constant darkness. By using this assay, we found that

longdaysin treatment caused .10 h period lengthening in a dose-

dependent manner in per3-luc reporter fish (Figure 5A and 5B),

without affecting body size (Figures 5C and S9). The in vivo period

changes were similar to those observed in mammalian tissues and

cells (Figure 1), showing the prominent characteristics of long-

daysin as a period lengthening compound.

Discussion

The present study highlighted the effectiveness of the chemical

biology approach in dissecting circadian clock mechanisms. Our

large-scale small molecule screening identified a novel compound

longdaysin that exhibited a drastic effect on the circadian period of

not only a variety of mammalian cells but also zebrafish in vivo. As

a first attempt to determine the molecular mechanism underlying

such a large period effect, we conducted affinity-based proteomics

and siRNA-mediated knockdown analyses. Our results revealed

CKId, CKIa, and ERK2 as targets of longdaysin for period

regulation. Effective concentrations of longdaysin against CKId

and CKIa in a cell-based PER1 degradation assay were similar to

those in in vitro kinase assays (Table 1), suggesting efficient cell

permeability of the compound. Treatment with 10 mM longdaysin

consistently inhibited CKId and CKIa activities in vitro and their

effects on PER1 phosphorylation and degradation, resulting in a

13 h period lengthening in U2OS cells. The increasing period

effect at the range of 3 to 24 mM, in which longdaysin considerably

inhibited ERK2 in vitro, supported the role of ERK2 at higher

longdaysin concentration.

In mammals, the CKI family of Ser/Thr kinases contains seven

members (a, b, c1, c2, c3, d, and e). While the roles of CKId/e in

the circadian clock mechanism have been extensively studied, the

inhibition of CKId/e alone is insufficient to explain the drastic

effect of longdaysin. Knockout of these genes has only a modest

effect on period length and the effect of longdaysin was also

observed in CKId deficient cells. We found that CKIa, in addition

to CKId and CKIe, binds to PER1 and regulates its stability. This

observation is reminiscent of the CKIa-, CKId-, and CKIe-

mediated regulation of b-catenin and Ci, key players in the Wnt

and Hedgehog signaling pathways [53–54]. Similar to NFAT

transcription factors that are the targets of CKIa and/or CKIe

[55–56], the CKI docking site of PER1/2 contains a FXXXF

motif necessary for CKIe binding [56]. Although PER1/2 bind

with CKIa/d/e, the affinity of CKIa is much lower than CKId/e

(Figure S6C). A recent study demonstrated that two amino acid

residues in the CKI kinase domain cause weaker affinity of CKIa

for PER1 compared with CKIe [22]. The low affinity will be

advantageous to release PER proteins from CKIa for subsequent

regulations, such as phosphorylation by other kinases and

degradation. Disruption of the circadian rhythm in CKId deficient

fibroblasts by overexpression of dominant negative form of CKIe

[57] may be mediated also by perturbation of CKIa-dependent

regulation, because of the tight binding of dominant negative

CKIe with PER proteins. On the other hand, ERK1 and ERK2

PER1 (PER1-LUC) or luciferase (LUC) was co-expressed with GFP, CKIa, CKIa (KR), or CKId in HEK293T cells. The cells were treated with cycloheximide
from time 0, and luminescence was recorded. Representative profiles for PER1-LUC and LUC are shown in the left and middle panels, respectively, by
setting peak luminescence as 100%. Half-life of PER1-LUC was divided by that of LUC to cancel out the effect of LUC degradation on PER1-LUC
stability (right panel). Data are the mean with SEM (n= 4). (E) Effect of longdaysin on CKIa- and CKId-dependent regulation of PER1 stability. PER1-LUC
or LUC was co-expressed with GFP, CKIa, or CKId in HEK293T cells. The cells were treated with 0 to 20 mM longdaysin for 24 h and then treated with
cycloheximide for luminescence recording. Representative profiles for PER1-LUC and LUC are shown in the left and middle panels, respectively. The
relative half-life of PER1-LUC against LUC is indicated (right panel). Data are the mean with SEM (n= 6). (F) Effect of longdaysin on endogenous PER1
level in Bmal1-dLuc U2OS cells. Luminescence rhythms were monitored in the presence of 0, 3, or 9 mM longdaysin (Fi). In parallel, the cells were
collected at indicated time points and analyzed by Western blotting (Fii). Also, the cells were collected at two time points separated by about half of
the period length (40 and 52 h for 0 mM longdaysin, 40 and 55 h for 3 mM, 40 and 58 h for 9 mM) and analyzed by RT-qPCR as a mixture of the two
time points (Fiii, the mean with SEM, n= 4).
doi:10.1371/journal.pbio.1000559.g004
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MAP kinases have been well characterized in the resetting

mechanism of the clock [58]. Our results demonstrated a role

for ERK2 in the regulation of circadian period as well.

Attenuation of the circadian rhythms in SCN explants by

treatment with the MEK (ERK kinase) inhibitor U0126 [59]

could potentially be explained by strong inhibition of both ERK1

and ERK2. Similar to CKId and CKIa, ERK2 bound to PER1/

2, suggesting PER protein as a key node in phosphorylation-

dependent period regulation by multiple kinases. The effect of

ERK2 on PER phosphorylation and function will be addressed in

future studies.

CKId, CKIa, and ERK2 are involved in diverse cellular

processes such as cell proliferation and apoptosis [53,60].

Consistently, CKId and ERK2 are required for normal develop-

ment as revealed by gene knockout studies [18,61–62], while

CKIa deficient mice are not reported yet. In addition to the

regulation of PER by these kinases, it is possible that the regulation

of other clock proteins and/or changes in cellular physiology may

also affect the circadian period. Therefore, it is important to

identify specific residues of PER responsible for the CKId-, CKIa-,
and ERK2-mediated period regulation. In contrast to the CKId-
dependent progressive phosphorylation of PER1, CKIa caused a

smaller mobility-shift (Figure 4B,C), suggesting a key role for site-

specific phosphorylation rather than a global change of phosphor-

ylation level. In Neurospora, a quantitative mass spectrometry

approach identified .75 in vivo phosphorylated residues of the

clock protein FRQ [63]. Interestingly, phosphorylation of two

distinct regions leads to opposing effects on FRQ stability and

circadian period [63]. In mammals, phosphorylation site mapping

via mass spectrometry identified 21 phosphorylated Ser/Thr

residues in PER2 overexpressed in HEK293 cells [14]. Identifi-

cation of PER1 phosphorylation sites and characterization of the

role of each residue will lead to the understanding of CKId-,
CKIa-, and ERK2-mediated regulation of PER1 function and the

circadian period. Furthermore, the phenotypic differences be-

tween PER1 and PER2 observed in CKIa-dependent regulation
of stability (Figure S8B) and CKIe-mediated control of nuclear

translocation [64] could be explained by comparing phosphory-

lation sites and their functions.

We found that combinatorial knockdown of CKId, CKIa, and
ERK2 worked additively for prominent period lengthening

(Figure 3D), similar to that caused by longdaysin. In contrast,

knockout of CKId (Figure 3A), knockdown of single kinase

(Figure 3B,C), and CKI inhibitors D4476 and IC261(Figure S10)

all showed smaller period effects. These observations indicate that

the network of multiple kinases confers robustness to the clock

mechanism. A single small molecule such as longdaysin inhibiting

the multiple pathways simultaneously can significantly perturb the

clock system and elicit unexpectedly long period. Previous

screening of the LOPAC chemical library identified several kinase

inhibitors that cause large period lengthening [29,42]. These

compounds have the potential to inhibit CKId/e [39–40,42],

although their primary target is CDK, p38 MAPK, JNK, CK2, or

VEGFR signaling pathway. Because of the high conservation of

the kinase domain between CKId and CKIa, these compounds

are also likely to inhibit CKIa. Considering our current finding,

Figure 5. Effect of longdaysin on the circadian period in zebrafish in vivo. Zebrafish hemizygous for per3-luc were entrained in 12 h light/
12 h dark cycles, and then luminescence rhythms were monitored in constant darkness in the presence of various concentrations of longdaysin.
Representative luminescence rhythm of individual fish (n=5 for each condition) was plotted after smoothing with 2.4 h moving average and baseline
subtraction with fourth order polynomial curve (A). Period parameter was obtained by curve fitting and plotted against compound concentration (B)
(n=13, 5, 11, and 8 for 0, 1, 3, and 9 mM longdaysin, respectively). Representative pictures of zebrafish after 1 wk of treatment with longdaysin are
shown (C). Scale bar, 1 mm.
doi:10.1371/journal.pbio.1000559.g005
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the inhibition of the primary target (CDK, p38 MAPK, JNK,

CK2, or VEGFR signaling pathway) in combination with CKId/

e/a may be essential for the large period effect of these

compounds. Supporting this idea, CK2 acts cooperatively with

CKIe to regulate PER2 stability [32]. Having multiple targets

might be a common characteristic of therapeutically effective

compounds, such as sunitinib and sorafenib for cancer treatment

[65]. Our zebrafish experiments clearly showed an in vivo effect of

longdaysin in a vertebrate, and further optimization of longdaysin

in mammalian systems may provide a chemical starting point for

the identification of small molecule therapeutics specifically

designed for ameliorating circadian disorders.

Materials and Methods

Ethics Statement
All animal studies were approved by the University of

California, San Diego, Institutional Animal Care and Use

Committee and performed in accordance with the guidelines.

Compounds
Synthesis of compound 1, longdaysin, compound 2, and

compound 3 is described in Text S1. The dilution series of the

compounds was made on 384-well plates by using a robotic liquid

handling system (MiniTrak, Perkin-Elmer).

Cell-Based Circadian Assay for Compound Experiment
The compound screen was done with the high-throughput

circadian assay system as described previously [29]. In brief,

Bmal1-dLuc U2OS cells were suspended in the culture medium

(DMEM supplemented with 10% fetal bovine serum, 0.29 mg/ml

L-glutamine, 100 units/ml penicillin, and 100 mg/ml streptomy-

cin) and plated onto 384-well white solid-bottom plates at 20 ml

(2,000 cells) per well. After 2 d, 50 ml of the explant medium

(DMEM supplemented with 2% B27, 10 mM HEPES, 0.38 mg/

ml sodium bicarbonate, 0.29 mg/ml L-glutamine, 100 units/ml

penicillin, 100 mg/ml streptomycin, 0.1 mg/ml gentamicin, and

1 mM luciferin, pH 7.2) was dispensed to each well, followed by

the application of 500 nl of compounds (dissolved in DMSO; final

0.7% DMSO). The plate was covered with an optically clear film

and set to luminescence monitoring system equipped with a CCD

imager (ViewLux, Perkin Elmer). The luminescence was recorded

every 2 h for 3–4 days. In follow-up studies, the luminescence was

recorded every 100 min by using a microplate reader (Infinite

M200, Tecan). The period parameter was obtained from the

luminescence rhythm by curve fitting program CellulaRhythm

[29] or MultiCycle (Actimetrics), both of which gave similar

results.

Luminescence rhythms of adult tail fibroblasts [46] and

embryonic fibroblasts [18] from mPer2Luc knockin mice were

analyzed similarly to U2OS cells, except that 1,800 cells were

plated per well. Because of the low luminescence intensity of the

fibroblasts, the higher sensitivity ViewLux imager was used for

rhythm recording.

Explant Culture of Mouse Tissues
Explants of lung and SCN were dissected from mPer2Luc knockin

mice [45] and cultured in explant medium as described previously

[46]. The medium was changed every week with increasing

concentration of longdaysin each time (from 0 to 9 mM, final 0.7%

DMSO). The luminescence was recorded every 10 min with

LumiCycle luminometer (Actimetrics), and the period parameter

was obtained by using LumiCycle Analysis software (Actimetrics).

Affinity Chromatography
U2OS cells kept in confluence (26108 cells) were collected with

ice-cold PBS and homogenized by using Dounce homogenizer in

5 ml of lysis buffer (25 mM MOPS, 15 mM EGTA, 15 mM

MgCl2, 1 mM DTT, 60 mM b-glycerophosphate, 15 mM p-

nitrophenyl phosphate, 1 mM Na3VO4, 1 mM NaF, 1 mM

phenyl phosphate, 10 mg/ml leupeptin, 10 mg/ml aprotinin,

10 mg/ml soybean trypsin inhibitor, 100 mM benzamidine,

pH7.2). The homogenate was sonicated and centrifuged

(16,0006g) at 4uC for 20 min. The resulting supernatant was

split into two, and each portion was incubated with or without

100 mM longdaysin (final 0.1% DMSO) at 4uC for 10 min

(Figure 2C). Then, 120 ml of compound 3 [50% slurry in bead

buffer (50 mM Tris, 250 mM NaCl, 5 mM EDTA, 5 mM EGTA,

0.1% NP-40, 5 mM NaF, 10 mg/ml leupeptin, 10 mg/ml

aprotinin, 10 mg/ml soybean trypsin inhibitor, 100 mM benzami-

dine, pH 7.4)] was added to the mixture and incubated at 4uC for

1 h with rotation. The agarose beads were washed 6 times with

2 ml of the bead buffer. The bound proteins were eluted with SDS

sample buffer and separated by SDS-PAGE (4%–12% gradient

gel, Invitrogen). The gel was CBB stained, and the gel lane for

each condition was cut horizontally into 24 pieces.

Protein Mass Spectrometry
All gel bands were subjected to LC-MS/MS analysis as described

previously [66]. Tandem MS data were analyzed using Sequest

(ThermoFinnigan, San Jose, CA; Version 3.0). Sequest was set up to

search a Homo sapiens subset of the EBI-IPI database (Version 3.32)

to which a reversed copy of the protein database was appended,

assuming the digestion enzyme trypsin. Sequest was searched with a

fragment ion mass tolerance of 0 Da and a parent ion tolerance of

3.0 Da. Iodoacetamide derivative of cysteine was specified in

Sequest as a fixed modification. Oxidation of methionine was

specified in Sequest as a variable modification.

Scaffold (version Scaffold_2_05_00, Proteome Software Inc.,

Portland, OR) was used to validate MS/MS based peptide and

protein identifications. Peptide identifications were accepted if they

could be established at greater than 95.0% probability as specified by

the Peptide Prophet algorithm. Protein identifications were accepted

if they could be established at greater than 99.0% probability and

contained at least three unique peptides. Protein probabilities were

assigned by the Protein Prophet algorithm. Crude differential

quantitation of proteins identified in both pulldown experiments

was performed by comparing the number of assigned peptides.

In Vitro Kinase Assay
The CKId, CKIa, CDK7, and ERK2 kinase assays were

performed on 384-well plates (10 ml volume). The reaction

mixture was as follows: for CKId, 2 ng/ml CKId (Millipore, 14-

520), 50 mM peptide substrate RKKKAEpSVASLTSQCSYSS

corresponding to human PER2 Lys659-Ser674 [47], and CKI

buffer (40 mM Tris, 10 mM MgCl2, 0.5 mM DTT, 0.1 mg/ml

BSA, pH 7.5); for CKIa, 1 ng/ml CKIa (Invitrogen, PV3850),

50 mM CKI peptide substrate (Anaspec, 60547-1), and CKI

buffer; for CDK7, 5 ng/ml CDK7 (Millipore, 14-476), 100 mM

Cdk7/9 peptide substrate (Millipore, 12-526), and CKI buffer; for

ERK2, 1.5 ng/ml ERK2 (Millipore, 14-550), 0.8 mg/ml MBP

(Millipore, 13-104), and ERK buffer (50 mM Tris, 10 mMMgCl2,

0.5 mM DTT, 1 mM EGTA, pH 7.5). Five hundred nl of

compound was added to the mixture (final 5% DMSO), and the

reaction was started by adding ATP (final 5 mM). After incubation

at 30uC for 3h, 10 ml of Kinase-Glo Luminescent Kinase Assay

reagent (Promega) was added, and the luminescence was detected

to determine remaining ATP amount. All of the tested compounds
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did not inhibit luciferase activity directly. IC50 value was obtained

by using Prism software (GraphPad Software).

Cell-Based Circadian Assay for RNAi Experiment
siRNAs against protein kinase genes (obtained from Human

Protein Kinome Set, Integrated DNA Technologies) were tested on

384-well plates in Figure 3B, and resynthesized siRNAs (Table S1,

Integrated DNA Technologies) were tested on 96-well plates in

Figure 3C,D by using Bmal1-dLuc U2OS cells as described

previously [29,33]. In brief, for 96-well plates, the siRNA was

spotted onto white solid-bottom plates, and 60 ml of Opti-MEM

(Invitrogen) containing 0.4 ml of Lipofectamine 2000 (Invitrogen)

was dispensed onto each well. After incubation at room temperature

for 20 min, 60 ml of the cells in DMEM supplemented with 20%

fetal bovine serum was dispensed (6,000 cells/well). The cells were

cultured overnight, and the medium was changed to 180 ml of the

culture medium. After 2 d, the medium was changed to 180 ml of

the explant medium, and the plate was covered with optically clear

film. The luminescence was recorded every 36 min by using the

Tecan luminometer. The period parameter was obtained from the

luminescence rhythm by using MultiCycle software.

RT-qPCR
Bmal1-dLuc U2OS cells were transfected with siRNAs as

described above and harvested just before the change to the

explant medium (i.e., the cells were unsynchronized at the time of

harvest). Total RNA preparation and RT-qPCR were performed

as described previously [29,33]. The primers for qPCR are listed

in Table S2.

Transient Transfection and Immunoprecipitation
HEK293T cells (1.256106 cells) were reverse transfected on 6-

well plates by Lipofectamine 2000 with 1 mg each of expression

vectors for C-terminally 3XFlag-tagged clock protein (in

p3XFLAG-CMV-14, Sigma) and N-terminally HA-tagged kinase

(in p3XFLAG-CMV-14). For ERK2, 0.05 mg of expression vector

with 0.95 mg of empty vector was used because of its efficient

expression. After 24 h, the cells were collected with ice-cold PBS

and suspended in 100 ml of incubation buffer [50 mM Tris,

50 mM NaCl, 2 mM EDTA, 10% glycerol, 1 mM DTT,

Complete Protease Inhibitor Cocktail (Roche), Phosphatase

Inhibitor Cocktail 1 and 2 (Sigma), pH 8.0]. The mixture was

supplemented with NP-40 (final 1%) and incubated on ice for

15 min, followed by centrifugation (16,0006g) at 4uC for 10 min.

A part of the resulting supernatant (40 ml) was incubated with

0.4 mg of anti-HA antibody (Roche, 11867423001) cross-linked

with Dynabeads Protein G (Invitrogen) at 4uC for 2 h with

rotation. The beads were washed twice with the incubation buffer

supplemented with 1% NP-40. The bound proteins were eluted

with SDS sample buffer, separated by SDS-PAGE (4%–12%

gradient gel), and analyzed by Western blotting with anti-Flag

antibody (Sigma, F1804) or anti-HA antibody conjugated with

HRP (Roche, 12013819001). For the analysis of PER1 electro-

phoretic mobility-shift, the cell extracts were separated by SDS-

PAGE (3%–8% gradient gel, Invitrogen) and analyzed by Western

blotting with anti-Flag antibody or anti-a-tubulin antibody (Santa

Cruz Biotechnology, sc-32293). Protein concentration of each

sample was measured by the Lowry method using DC protein

assay (BioRad).

Protein Degradation Assay
HEK293T cells (6.06104 cells) were reverse transfected on 96-

well white solid-bottom plates by Lipofectamine 2000 with 40 ng

each of expression vectors for C-terminally luciferase-fused PER1

(in p3XFLAG-CMV-14) and N-terminally HA-tagged kinase (in

p3XFLAG-CMV-14). For luciferase (in p3XFLAG-CMV-14),

2 ng of expression vector with 38 ng of empty vector was used

because of its efficient expression. After 48 h, the medium was

supplemented with luciferin (final 1 mM) and HEPES-NaOH

(pH 7.2; final 10 mM). After 1 h, cycloheximide (final 20 mg/ml)

was added to the medium, and the plate was covered with optically

clear film. The luminescence was recorded every 10 min by using

the Tecan luminometer. Half-life was obtained by using Prism

software (GraphPad Software).

Time-Course Assay of Endogenous PER1 Abundance
Bmal1-dLuc U2OS cells were plated onto 6-well-plates (2.06105

cells/well). After 2 d, the medium was replaced with 2 ml explant

medium containing 0, 3, or 9 mM longdaysin. The plate was

covered with film and kept at 36uC. At indicated time points, the

cells were collected with ice-cold PBS and stored at 280uC. Then

the cell pellets were homogenized in SDS sample buffer and

analyzed by Western blotting with anti-PER1 antibody (Cosmo

Bio, KAL-KI044) or anti-a-tubulin antibody. In parallel, lumi-

nescence rhythms of the cells plated on 35 mm dishes were

recorded with LumiCycle luminometer at 36uC.

In Vivo Measurement of Luminescence Rhythms in
Zebrafish
The per3-luc transgenic line [52] was obtained from Zebrafish

International Resource Center. Hemizygote larval fish were

entrained in 12 h light/12 h dark cycles from day 3 to 6

postfertilization. They were then placed in an individual well of

a 96-well white solid-bottom plate with 180 ml of E3 solution

(5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, and 0.33 mM

MgSO4, pH 7.0) containing 0.5 mM luciferin, 0.013% Amquel

Plus Instant Water Detoxifier (Kordon brand; Novalek, Hayward,

California, United States), and various concentrations of long-

daysin (final 0.1% DMSO). The plate was covered with optically

clear film, and the luminescence was recorded every 36 min by

using the Tecan luminometer at 25uC. The period parameter was

obtained from the luminescence rhythm by using MultiCycle

software.

Supporting Information

Figure S1 Effect of compound 1 on the luminescence

rhythms in Bmal1-dLuc U2OS cells. Luminescence rhythms

were monitored in the presence of various concentrations of

compound 1. The representative profiles are indicated as raster

plot (left panel), in which each horizontal raster line represents a

single well, with elapsed time plotted to the right. Luminescence

intensity is indicated by color scale. Period parameter was

obtained by curve fitting, and period change relative to the mean

of DMSO control was plotted against compound concentration

(right panel; the mean with SEM, n=4).

Found at: doi:10.1371/journal.pbio.1000559.s001 (0.26 MB PDF)

Figure S2 Effect of washout of longdaysin on the

circadian period in cultured cells and tissues. Bmal1-dLuc

U2OS cells (left panel) were cultured in the presence of various

concentrations of longdaysin for 5 d (pre-wash). Then the medium

was replaced, and the cells were cultured without longdaysin for

another 5 d (post-wash). Period change relative to the mean of pre-

wash 0 mM condition was plotted for individual culture (n=5 for

each condition). Adult tail fibroblasts (middle panel) and lung

explants (right panel) from mPer2Luc knockin mice were treated
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similarly (fibroblasts, n=4, 3, and 4 for 0, 3, and 9 mM,

respectively; lung, n=3 and 4 for 0 and 9 mM, respectively).

Found at: doi:10.1371/journal.pbio.1000559.s002 (0.24 MB PDF)

Figure S3 Binding of protein kinases to longdaysin.
Affinity chromatography was performed as described in Figure 2C.

Proteins bound to compound 3 were subjected to Western blotting

with specific antibodies [anti-CKId (Santa Cruz Biotechnology, sc-
55553), anti-CKIa (Cell Signaling Technology, 2655), anti-

ERK1/2 (Cell Signaling Technology, 9102), and anti-CDK7

(Santa Cruz Biotechnology, sc-529)]. Anti-CKIa reacted with

short (close arrowhead) and long (open arrowhead) variants of

CKIa. Note that ERK1, a homolog of ERK2, showed less binding

to compound 3, indicating the selectivity of the compound.

Found at: doi:10.1371/journal.pbio.1000559.s003 (0.45 MB PDF)

Figure S4 Effects of siRNAs against longdaysin-binding
proteins on the circadian period. Data are extracted from

the primary screen of our genome-wide RNAi study [33].

Luminescence rhythms of Bmal1-dLuc U2OS cells were monitored

after transient transfection with siRNAs. Four independent

siRNAs were tested per gene as two siRNA pools (#1 and #2),

each containing two independent siRNAs. Data are the mean with

variation (n=2). Asterisk indicates low amplitude rhythm, which

sometimes causes wrong period estimation because of poor curve

fitting. Pairs#1 and#2 for H2AFV and pair#1 for H2AFZ have

highly possible off-target genes, and the result is not shown.

Found at: doi:10.1371/journal.pbio.1000559.s004 (0.23 MB PDF)

Figure S5 Comparison of the effect of individual siRNA
on the circadian period and the target gene expression.
Target gene knockdown effect from Figure 3Cii (x-axis in log scale; the

mean with variation, n=2) was plotted against period effect from

Figure 3Ci (y-axis; the mean with SEM, n=5–6) for each siRNA.

Found at: doi:10.1371/journal.pbio.1000559.s005 (0.24 MB PDF)

Figure S6 Interaction of CKIa and ERK2 with the clock
proteins. (A) Long exposure images of Figure 4A. (B) Interaction

of CKIa and ERK2 with PER1/2. (C) Interaction of CKIa,
CKId, and CKIe with PER1/2. HA-tagged kinases were co-

expressed with Flag-tagged clock proteins in HEK293T cells and

subjected to immunoprecipitation assay with anti-HA antibody.

Found at: doi:10.1371/journal.pbio.1000559.s006 (1.35 MB PDF)

Figure S7 Effect of longdaysin on CKIa- and CKId-
dependent phosphorylation of PER1. (A) HEK293T cell

extract expressing PER1 and CKIa was treated with l protein

phosphatase in the absence or presence of phosphatase inhibitor

and analyzed by Western blot. (B and C) PER1 was co-expressed

with CKIa or CKId in HEK293T cells. The cells were treated

with longdaysin (10 mM in B and 20 mM in C) or DMSO for 24 h

and analyzed by Western blot. Intensity profile of each PER1

band is shown in (B) and bottom panels of (C) by setting the peak

value as 1. Western blot image for (B) is shown in Figure 4C.

Arrows indicate (sub)peaks of PER1, which appeared depending

on CKIa or CKId and shifted by longdaysin treatment.

Found at: doi:10.1371/journal.pbio.1000559.s007 (0.56 MB PDF)

Figure S8 Effect of longdaysin on CKIa- and CKId-
dependent regulation of PER1 and PER2 stability. (A)

Flag-tagged PER1 was co-expressed with CKIa or CKId in

HEK293T cells. The cells were treated with 0, 10, or 20 mM

longdaysin for 24 h and then treated with cycloheximide from

time 0. The cells were collected 0, 2, 4, or 6 h later and analyzed

by Western blot. Note that co-expression of CKIa or CKId
accelerated degradation of PER1 compared with empty vector

control (upper panels, 0 mM longdaysin). The effects of CKIa and

CKId were partially inhibited by 10 mM longdaysin (middle

panels) and strongly inhibited by 20 mM longdaysin (lower panels).

(B) PER1-LUC, PER2-LUC, or LUC was co-expressed with

various amounts of GFP, CKIa, CKIa (KR), or CKId in

HEK293T cells. The cells were treated with cycloheximide from

time 0, and luminescence was recorded. The relative half-life of

PER1-LUC (upper panel) or PER2-LUC (lower panel) against

LUC is indicated. Data are the mean with SEM (n=4). Note that

CKIa did not affect PER2-LUC stability, while its effect on PER1-

LUC was saturated at 80 ng condition. (C) PER2-LUC or LUC

was co-expressed with GFP, CKIa, or CKId in HEK293T cells.

The cells were treated with 0 to 20 mM longdaysin for 24 h and

then treated with cycloheximide for luminescence recording. The

relative half-life of PER2-LUC against LUC is indicated. Data are

the mean with SEM (n=4).

Found at: doi:10.1371/journal.pbio.1000559.s008 (0.96 MB PDF)

Figure S9 Effect of longdaysin on body length of
zebrafish. Zebrafish were treated with longdaysin for luminescence

recording (Figure 5). Body length of zebrafish was measured after the

1 wk treatment and plotted against compound concentration (n=13,

5, 11, and 8 for 0, 1, 3, and 9 mM longdaysin, respectively).

Found at: doi:10.1371/journal.pbio.1000559.s009 (0.21 MB PDF)

Figure S10 Effects of CKI inhibitors D4476 and IC261
on the circadian period. Luminescence rhythms of Bmal1-dLuc

U2OS cells were monitored in the presence of various concen-

trations of compounds. Data are the mean with SEM (n=4).

Longdaysin and D4476 showed cytotoxicity at 71 mM.

Found at: doi:10.1371/journal.pbio.1000559.s010 (0.23 MB PDF)

Table S1 siRNA sequences.

Found at: doi:10.1371/journal.pbio.1000559.s011 (0.22 MB PDF)

Table S2 qPCR primer sequences.

Found at: doi:10.1371/journal.pbio.1000559.s012 (0.24 MB PDF)

Text S1 Supporting methods. Synthesis of compound 1,
Longdaysin, compound 2, and compound 3.

Found at: doi:10.1371/journal.pbio.1000559.s013 (0.49MBDOC)
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