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High-throughput discovery of organic cages and
catenanes using computational screening fused
with robotic synthesis
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Supramolecular synthesis is a powerful strategy for assembling complex molecules, but to do

this by targeted design is challenging. This is because multicomponent assembly reactions

have the potential to form a wide variety of products. High-throughput screening can explore

a broad synthetic space, but this is inefficient and inelegant when applied blindly. Here we

fuse computation with robotic synthesis to create a hybrid discovery workflow for discovering

new organic cage molecules, and by extension, other supramolecular systems. A total of

78 precursor combinations were investigated by computation and experiment, leading to

33 cages that were formed cleanly in one-pot syntheses. Comparison of calculations with

experimental outcomes across this broad library shows that computation has the power to

focus experiments, for example by identifying linkers that are less likely to be reliable for cage

formation. Screening also led to the unplanned discovery of a new cage topology—doubly

bridged, triply interlocked cage catenanes.
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S
upramolecular self-assembly is a powerful approach for
generating complex organic and organometallic molecules,
such as macrocycles1,2, cages3–6, catenanes7, rotaxanes8,

molecular knots9, and molecular machines10,11. The targeted
design of such molecules, however, can be very challenging,
particularly as they become more elaborate12,13. Intuitive design
strategies often fail as the system complexity increases and the
number of possible self-assembled structures proliferates. Like-
wise, de novo computational design strategies are hampered by
the size of such molecules and their conformational
complexity14–16. As a result, the discovery of new self-assembled
molecules can be relatively slow and labour intensive.

Porous organic cages (POCs) are a class of self-assembled
molecules that show potential for molecular separation17, sen-
sing18,19, and as building blocks for new materials, such as porous
liquids20. However, despite significant interest in this area, the
discovery rate for new cages has been relatively modest, reflecting
the challenge in designing wholly new systems from scratch. New
structures often involve small, iterative changes to known mole-
cules. To relate this to our own activity, since 2009 we have
published an average of three new cage molecules per year
(Fig. 1a), with a variation on the cage topology every couple of
years or so (Fig. 1b)4,21–24. Again, most of these molecules were
discovered by making small, iterative structural changes to the
precursors25–27. A bottleneck to advancing this area, as in many
other areas of supramolecular assembly, is our ability to reliably
design new self-assembled organic molecules. Pure in silico
design strategies cannot yet cope with the complexity of supra-
molecular materials. Blind experimental screening approaches,
while potentially rapid, are inefficient. Our strategy here is the
close fusion of computational screening with automated synthesis
and measurement protocols to create an integrated workflow for
supramolecular materials discovery.

There have been significant advances in the use of computa-
tional design strategies for POCs and for porous materials in
general16,28–31, along with a less widespread adoption in the use
of high-throughput automation for materials synthesis32–35.
Computation allows the prediction of the most likely cage

topology by studying the relative energies of different molecular
assemblies or their formation energies36,37. Calculations can
determine a priori whether a candidate cage structure will exhibit
shape-persistence, and hence perhaps be porous22, and predict
the effect of solvent scaffolding on molecular conformation38.
Implicit solvation models, such as a polarisable continuum model
(PCM) can be used to account for the electrostatic interactions
between cages and the surrounding solvent, and have previously
been found to stabilise the cage molecules relative to considera-
tion in the gas phase37. However, there are also significant lim-
itations to de novo computational design: for example, it is
currently challenging to fully include the effect of solvent choice,
particularly for large studies across a broad range of starting
materials. Our strategy, therefore, was to identify the affordable
elements of computational prediction that are of most value for
fusion with high-throughput automated synthesis methods.

We report here a new family of organic cages discovered using
this hybrid approach. A total of 78 possible imine cage combina-
tions were investigated based on an array of three candidate amines
and 26 candidate aldehydes. First, simulations were used to deter-
mine the most likely cage topology for each of the three types of
amine–aldehyde combinations. Computation suggested clear
topological preferences for some precursor combinations, as man-
ifested by large energy differences, while the topological preferences
for other combinations were less clear cut, suggesting the potential
for mixed products. However, in this study none of the candidate
reactions were discounted: rather, all combinations were trialled
experimentally to test our predictions, like a training set. Overall,
33 cages were synthesised in pure form, and a further 16 cages
could be identified along with side-products; this significantly
exceeds the total number of cage molecules reported by our
research group over the last 9 years (Fig. 1a). Successful experi-
mental ‘hits’ were analysed with further simulations to identify
candidate shape-persistent cages prior to scale-up and character-
isation. We present single crystal X-ray diffraction for 18 of these
structures, and there is excellent agreement with our a priori
computational structure predictions. We also use post-experiment
computation to explain why some systems formed unanticipated
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Fig. 1 High-throughput methods fused with computation provides a step-change in the discovery rate for new cage molecules. a Timeline shows the

number of organic cage molecules reported by our research group using traditional, iterative experiments in period 2009–2017 (grey bars; total of

30 cages). The number of cage molecules synthesised in this new study is also shown: we achieved clean conversion to 33 cages (teal bar) plus partial

formation of 16 others (orange bar). b Timeline showing variation in cage topologies studied by our group during the same period

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05271-9

2 NATURE COMMUNICATIONS |  (2018) 9:2849 | DOI: 10.1038/s41467-018-05271-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


topologies or mixtures, such as a unique doubly bridged, triply
interlocked cage catenane. This surprising result illustrates the
power of high-throughput experimental screening to reveal unex-
pected molecular structures. Finally, we propose a more generalised
workflow for the streamlined discovery of supramolecular materials
based on what we learnt from this study.

Results
Computational prediction of model cage topologies. Prior to
any experiments, we used computation to assess the possible
model cage topologies (see Supplementary Methods) that might
be formed by the reaction of a triamine precursor, (2,4,6-tri-
methylbenzene-1,3,5-triyl)trimethanamine, with a representative

example of the three different aldehyde types; meta and
paradialdehydes, and trigonal trialdehydes (Fig. 2), investigated in
the high-throughput screen (Fig. 3a). These precursors were
selected for the representative examples as the triamine is neither
the most flexible, nor the most pre-configured, the meta and para
dialdehydes the simplest linkers in the subsets, and the trigonal
trialdehyde previously used to form tetrapods with a more flexible
triamine linker23. We used our previous nomenclature for the
cage topologies (Supplementary Note 1);36 that is, TrixDiy and
TrixTriy, where the superscripts signify the number of tri-topic
and di-topic precursors incorporated into the cage.

The relative internal energies were computed for each possible
topology (Fig. 2b, right; Supplementary Note 2). Since the cages

m-dialdehyde

Triamine

H2N

H2N NH2

p-dialdehyde

Trialdehyde

N

O

OO

Tri
2

2
Tri

2
Tri

4
Tri

4
Tri

1
Tri

1

Tri
2

2
Tri

2

Tri
4
Tri

4
Tri

1
Tri

1

Tri
8
Di

12

Tri8Di12

Tri
6
Di

9

Tri6Di9

Tri
4
Di

6

Tri4Di6

Tri
2
Di

3

Tri
8
Di

12
Tri

6
Di

9
Tri

4
Di

6
Tri

2
Di

3

Tri2Di3

Tri8Di12Tri6Di9Tri4Di6Tri2Di3

Tri4Tri4Tri2
2
Tri2Tri1Tri1

Tri
8
Di

12
Tri

6
Di

9
Tri

4
Di

6
Tri

2
Di

3

400

300

200

100

R
el

at
iv

e 
en

er
gy

 (
kJ

 m
ol

–1
)

0

400

300

200

100

R
el

at
iv

e 
en

er
gy

 (
kJ

 m
ol

–1
)

0

400

300

200

100

R
el

at
iv

e 
en

er
gy

 (
kJ

 m
ol

–1
)

0

a

b

O O

O

O

Fig. 2 Reaction schemes and computational modelling for three model covalent organic cages. a Scheme showing possible cage topologies; (top) candidate

topologies for tritopic+ ditopic reactions (TrixDiy) and (bottom) for tritopic+ tritopic reactions (TrixTriy). Tritopic precursors are shown in blue or cyan,

ditopic precursors in purple. b Computationally derived structures for the possible topological combinations of the tritopic triamine linker ((2,4,6-

trimethylbenzene-1,3,5-triyl)trimethanamine), with m-dialdehyde (isophthalaldehyde), p-dialdehyde (terephthalaldehyde), and trialdehyde (tris(4-

formylphenyl)amine), respectively. The energetically preferred topologies have a grey box around them. The plots (right) show the relative internal

energies calculated for the different topologies, plotted on a common energy scale. For topologies where both collapsed and open conformations are

computed, the energy of the collapsed conformation is indicated by a triangle symbol; open conformations are indicated by circle symbols. For the p-

dialdehyde, only open conformations are shown in the images, collapsed Tri6Di9and Tri8Di12 topologies are shown in Supplementary Fig. 1. Tri2Di3 cages

are shown with orange carbons, Tri4Di6 with maroon, and Tri4Tri4 with teal. All nitrogens are blue and hydrogens are omitted
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are formed by reversible imine chemistry, one might expect
thermodynamic products to be formed—that is, the topologies
with the lowest relative internal energy. These calculations do not
take into account the potential effect of reaction solvent. We
chose not to include an implicit solvation model so as to explore
only the effect of the internal energy of the cages’ structures,
especially since many of the reactions here were attempted in
multiple solvents, each of which would have a differing dielectric
constant. Ideally, we would want to geometry optimise each

structure with the implicit solvation model, to explore how the
conformation adapts to the electrostatic influence of each solvent,
however this would be prohibitively computationally expensive
for the large number of systems here.

For cages involving the m-dialdehyde, an energetic preference
of 43 kJ mol−1 per [2+ 3] unit was found for a Tri2Di3

capsule topology (Fig. 2b, top row). The resulting cage was
shape persistent; that is, it did not collapse. Larger candidate cage
topologies (e.g., Tri4Di6) were all found to be higher in energy
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and non-shape-persistent, with the lowest energy conformations
being collapsed with no internal void. This predicted preference
for a Tri2Di3 topology with (2,4,6-trimethylbenzene-1,3,5-triyl)
trimethanamine agrees with previous studies on reactions of this
amine with isophthalaldehyde39,40, and alternative meta dialde-
hydes41, which form Tri2Di3 capsules.

For cages involving the p-dialdehyde (Fig. 2b, middle row), the
Tri4Di6 tetrahedron topology was predicted to be energetically
favoured by 29 kJ mol−1 per [2+ 3] unit with respect to other
‘open’ topologies, while the larger cage topologies collapsed to
give lower energy forms (triangle points in Fig. 2b); their open
conformations (circle points in Fig. 2b), which might be expected
to dominate in solution38, were higher in energy than the
uncollapsed Tri4Di6 topology.

For cages that combined the trialdehyde with the tritopic
amine (Fig. 2b, bottom row), three potential cage topologies were
considered, Tri1Tri1, Tri22Tri

2, and Tri4Tri4. The Tri4Tri4

‘tetrapod’ topology was predicted to be much more stable by
118 kJ mol−1 per [1+ 1] unit.

The magnitude of the topological preference based on the
relative energy differences for these three systems was ranked as
Tri4Tri4 (trialdehyde) > Tri2Di3 (m-dialdehyde) > Tri4Di6 (p-
dialdehyde). That is, the energetic preference for the Tri4Tri4

topology was predicted to be the most clear cut, suggesting a
more reliable design basis for cages based on this topology, at
least for this model reaction.

We next developed a robust synthesis method for these three
model cages (Supplementary Note 3). The reaction conditions,
which use only moderately high dilution and modest tempera-
tures, were selected to be easily translated onto a robotic synthesis
platform. Analysis of the cages by high-resolution mass spectro-
scopy (HRMS) confirmed that the experimental cage topologies
agreed with the computational predictions; that is, for these three
model systems at least, relative energies are a good predictor of
cage topology preference.

High-throughput cage synthesis. Using our optimised reaction
conditions, we screened a much broader range of aldehydes (1–
26) and amines (A–C) for cage formation using a synthesis robot
(Fig. 3, Supplementary Fig. 2). For all combinations, the target
cage topology was the one that was observed for the repre-
sentative m-dialdehyde, p-dialdehyde, and trialdehyde in the
model study, above. These three model combinations will be
referred to henceforth as B1, B11, and B23, respectively (Fig. 3a).

We explored two additional analogues of triamine B, both with
less (A) and more (C) alkyl substitution on the arene ring; this was
designed to introduce different degrees of flexibility and structural
pre-configuration. For the targeted Tri2Di3 analogues of B1, we
explored ten differentm-dialdehydes with various substituents at the
five position (1–9), plus a carbazole dialdehyde, 10 (Fig. 3a, top
panel). For the targeted Tri4Di6 analogues of B11, we studied 11

linear dialdehydes (11–21) containing different functionalities and
degrees of rotational flexibility (Fig. 3a, middle panel). For the
Tri4Tri4 analogues of B23, we studied five tritopic aldehydes (22–
26) with various lengths and flexibility (Fig. 3a, bottom panel). In
total, these three amines permutated with 26 aldehydes gave 78
reaction combinations.

Prior to the high-throughput experimental screen, models for
all but three of the 78 target cages were constructed in silico and
analysed computationally (Supplementary Note 4). Cages con-
taining the di-topic linker 7 were omitted because the nitro-group
was poorly described by the forcefield42. We also simplified 10 by
removing the external alkyl substituents. We assessed the
formation energies of the hypothetical cages and screened them
for conformation, size, and shape persistence, the latter to identify
cages with voids that are stable to desolvation (see Supplementary
Tables 1–2). For each possible outcome, we searched for the low
energy conformations and then minimised those structures using
DFT calculations at the PBE+D3/TZVP level, before calculating
the formation energy per imine bond formed, as shown in Fig. 3b.
This energy normalisation using formation energies, rather than
relative energies per sub-unit, allows us to directly compare the
energies of the cages regardless of their size or topology. We chose
the PBE+D3/TZVP level of theory as a compromise between
accuracy and the ability for us to run the large number of
calculations required in a high-throughput screen. Taken in
isolation, we did not expect these formation energies to be
generally predictive of experimental ‘hits’, due to the exclusion of
factors, such as solvation effects and phase behaviour, coupled
with the potential inaccuracies of DFT formation energies.
Rather, we calculated these formation energies to establish
whether they might play a more statistical role in guiding high-
throughput screening studies in combination with other compu-
tational and experimental information.

The calculated formation energy per imine bond was found to be
negative in all cases, although some hypothetical cages were much
more energetically favoured than others. The calculated energy per
imine bond ranged from ∼−1 to−58 kJ mol−1, and there was good
correlation between cages with a less energetically favoured
formation energy (dark red in Fig. 3b) and cages that did not
form experimentally (red in Fig. 3c). Outliers for this trend include
A16, B16, and C16, which had favourable formation energies
(average −34.7 kJmol−1), but yet were not observed. This could be
due to factors not considered in determining the formation energy
of the complete cage alone, for instance, a “kinetic bottleneck” in
the reaction pathway to that molecule37,43. On the other hand,
the formation energy for B and C combined with precursors from
23–26 was generally only weakly favoured (average formation
energy −11.0 kJ mol−1), but yet these molecules were all formed
experimentally. In this instance, these large, open molecules may
be particularly stabilised, relative to their precursors, by the
influence of solvent37.

Fig. 3 Cage precursors, target cage topologies, and results of high-throughput computation and synthesis screening. a Three triamines (A–C) were

combined with three types of aldehydes to target Tri2Di3 capsules (1–10), Tri4Di6 tetrahedrons (11–21), and Tri4Tri4 tetrapods (22–26). b DFT formation

energies per imine bond formed for the target cage topologies. These energies were not calculated for molecules that lacked shape persistence and

collapsed (grey boxes). Cross-hatched squares denote three molecules excluded from the calculations because the force field was unreliable. c Results of

the high-throughput synthesis screen. (i) light green squares—targeted cage topology was formed cleanly (31 examples); (ii) dark green squares—cage

product was formed cleanly, but with topology that was not targeted (two examples); (iii) yellow squares—target topology formed but product impure or

there was incomplete conversion (10 examples); (iv) orange squares—alternative topology formed and either impure or incomplete conversion (six

examples); (v) red squares—no cage was formed (29 examples; 18 of these for triamine A). Cages that went against our targeted topology assumptions

and formed an alternative topology are: A12, C12, C14, B20, C20, B21, and C21 (Tri2Di3 observed instead of targeted Tri4Di6) and B14 (formed a mixture

of Tri2Di3 and Tri4Di6). d Void diameters as calculated from a priori computational models for cages that were formed in the subsequent reaction screen.

White squares correspond to combinations where no cage was formed experimentally; squares filled with circles correspond to cages calculated to have no

void
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With the exception of three of the Tri4Di6 cages (A13, A14,
and A17, grey squares in Fig. 3b, structures in Supplementary
Fig. 3), all of the hypothetical cages were predicted to be shape
persistent in their target topologies. The average formation energy
per imine bond for the three series of cages built from amines A,
B, and C was predicted to be −12.5, −17.9, and −17.3 kJ mol−1,
respectively. A priori computation suggests, therefore, that
triamines B and C might be better choices for imine cage
formation than triamine A, possibly due to the increased flexibility
and lack of pre-organisation in triamine A44. This was reflected by
experiment: the failure rate for triamine A (red, yellow, and orange
squares in top row, Fig. 3c; only one system, A11, gave clean cage
conversion) is much higher than for triamines B and C.

The Tri2Di3 cages (1–10) were found to be generally similar in
energy, with the exception of cages containing aldehyde 10, which
were less favoured; we did not observe clean cage formation for
10 with any of the three triamines (Fig. 3c). Tri4Tri4 cages (22–
26) were in general somewhat less energetically favoured than
Tri2Di3cages (average formation energies per imine bond of −10
and −16 kJ mol−1, respectively), although the experimental ‘hit
rate’ for these two topologies across the array was rather similar
(Fig. 3c). For the Tri4Di6 (11–21) cages, the picture was more
complicated with a wide variety of formation energies; for
example, cages formed from aldehyde 12 were predicted to be
particularly favoured, most likely due to intramolecular H-
bonding41,45, although this did not translate into experiment
(Fig. 3c).

Overall, the high-throughput robotic synthesis screen (Supple-
mentary Fig. 5, Supplementary Table 3) yielded a total of 33 cages

(Fig. 4), where both 1H NMR spectroscopy and HRMS indicated
clean cage formation without additional work up (green squares in
Fig. 3c). There were a further 16 reactions (yellow/orange squares in
Fig. 3c) where partial cage formation was observed (Supplementary
Fig. 4). In some cases—for example, cage C20—the 1H NMR
spectrum indicated clean cage formation, but there was no clear
mass ion in the HRMS. For such systems, diffusion NMR was
particularly useful because it provides an alternative and rapid
method to determine the size (Supplementary Tables 4–9), and
hence the topology, of the cages directly from the reaction
mixtures46. We calculated the average size and maximum diameters
of the cages from the energy-minimised computed conformations
(Supplementary Note 5) and compared these values to the
experimentally determined solvodynamic diameters (Supplemen-
tary Tables 10–11), allowing us to determine the topology of the
cages. There was strong agreement between the measured size and
the computed average size (Supplementary Fig. 6), which provides a
rapid and direct measure of the success of our predictions without
the need to obtain single crystal structures.

We next computed the cavity sizes for cages that were formed
by experiment (Fig. 3d) by calculating the largest sphere that
could be placed in the central molecular cavity (Supplementary
Tables 1, 2, and 12). If we assume that a diameter of more than
2.89 Å (the kinetic diameter of H2)47 is required for the cages to
host any guest at all, then 21 cages in this screen (27% of the 78
combinations) met this criteria. Most Tri2Di3 cages had cavities
predicted to be smaller than 1.8 Å in diameter, making them too
small to host guests. The Tri4Di6cages had larger cavities with
diameters ranging from 2.3 to 11.2 Å, with the smaller cavities

B5 C5C1 B2 C2B1 B4 C4

B6 C6 B8 C8 B9 C9

C15A11 B11 C11 B13 C13 B15

C24 B25 C25 B26 C26

B23C21C20C18B18 C23 B24

Fig. 4 The 33 cages that formed cleanly in this high-throughput study. Tri2Di3 cages are shown with orange carbons, Tri4Di6 with maroon, and Tri4Tri4

with teal. Remaining atom colouring is as follows; oxygen (red), bromine (brown), boron (pink), silicon and sulphur (yellow), and nitrogen (blue).

Hydrogens are omitted. All structures are derived from computational predictions. For cages C20 and C21, Tri2Di3 cages were formed as shown, rather

than the predicted Tri4Di6 cages. All other cages formed the predicted, targeted topology. Supplementary Fig. 4 shows structures for cages that were

identified by solution analysis, but that were either impure or showed incomplete conversion of the starting materials. Supplementary Fig. 3 shows the

computed structures for cages that did not form by experiment (red squares in Fig. 3c)
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typically resulting from functionality present on the aldehyde
penetrating into the internal cavity, as for B13 and C13 (Fig. 4).
The largest predicted cavities across the library were calculated
for the Tri4Tri4 cages, with B26 having the largest cavity
diameter (12.3 Å).

Comparison of computed structures and crystal structures. For
cages where we could obtain single crystal X-ray structures
(Supplementary Figs. 7–27), we found an excellent geometric
match with the predicted low-energy conformation obtained by a
priori computation (Fig. 5a, Supplementary Table 13, and Sup-
plementary Fig. 28), even though these calculations do not take
into account crystal packing forces or solvent effects. The average

root-mean-square-deviation (RMSD) between the crystal struc-
ture and the simulations was 0.53, 1.07, and 1.26 Å for the
Tri2Di3, Tri4Di6, and Tri4Tri4 cages respectively. In all cases, the
RMSD decreases upon geometry optimisation of a molecule
extracted from the experimental crystal structure (to 0.24, 0.96,
and 1.15 Å respectively), which could be indicative of crystal
packing only having a minor influence on the structures.

C21, which formed a Tri2Di3 cage in the high-throughput
synthesis screen, gave a product mixture upon scale-up and direct
recrystallisation of the reaction solution: in this case, a crystal
structure of both a Tri2Di3 (Supplementary Fig. 24) and a
Tri4Di6 (Supplementary Fig. 25) cage was obtained. The
formation of different cage topologies from the same precursors

B11 B15C14 B23

B24C23 C26

C1 B2 C2 B9 C9B1

Catenane Bridged-catanane

Doubly bridged, triply interlocked
cage catenane

Triply interlocked
cage catenane

C21 Tri
4
Di

6
C21 Tri

2
Di

3

a

b

B26

Fig. 5 Crystal structures of cages and bridged cage catenanes. a Comparison of modelled and experimental cage structures—overlays of available single

crystal X-ray structures for each cage (red) with the computed lowest energy conformation (blue). b Crystal structures of the two unexpected [8+ 12]

covalently bridged, triply interlocked cage catenanes formed by re-equilibration of targeted cages, B13 and C13, and comparison of the unique topology

with previous catenanes, bridged catenanes, and triply interlocked cage catenanes. The [8+ 12] bridged cage catenane is triply interlocked (symmetry

equivalents coloured in yellow and green), but uniquely, it has two different shaped windows and is linked by two covalent bridges (blue). Hydrogens and

external functional groups have been removed for clarity. For the full crystal structures see Supplementary Figs. 12 and 22
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by simply changing reaction conditions has been observed
before48,49. When the reaction was carried out in chloroform at
reflux in the high-throughput screen, the Tri2Di3 cage domi-
nated. By contrast, the scaled-up reaction in dichloromethane at
reflux gave a mixture of the Tri2Di3 and Tri4Di6 cages
(Supplementary Figs. 29 and 30). C21 illustrates the potential
sensitivity of the cage topology to the precise experimental
conditions.

Discovery of a unique bridged cage catenane. A unique and
unpredicted cage topology was also discovered during recrys-
tallisation studies: a covalently bridged, triply interlocked cage
catenane (Fig. 5b). This topology can be formed upon crystal-
lisation by dynamic re-equilibration of two of the Tri4Di6 cages,
B13 and C13. They comprise an [8+ 12] stoichiometry and
are both triply interlocked (catenated) and di-covalently
linked (bridged); this topology seems to be stabilised by offset
π–π stacking interactions between the two sets of dimethoxy
substituted aromatic groups, which are stacked <4 Å apart in the
crystal structure (Supplementary Figs. 12 and 22). The formation
of simpler interlocked cage catenanes has been observed before,
either upon recrystallisation or by direct synthesis using an acid
catalyst50,51. Here, we found that the targeted, non-catenated
Tri4Di6 cages B13 and C13 re-equilibrated to form covalently
bridged cage catenanes during recrystallisation. Additional
simulations rationalised the formation of these unique structures
(Supplementary Note 6); the bridged catenated [8+ 12] species
was calculated to be more stable (>17 kJ mol−1 per imine bond or
215 kJ mol−1 per [4+ 6] unit) in comparison to the parent
Tri4Di6 cage, B13, which was initially formed in solution, as
targeted.

Comparison of experiment with computational predictions. In
the 33 cases where a single cage product was formed cleanly with
good conversion, 31 cages (94%) were formed with the predicted,
targeted topology. Of these, two cages (B13 and C13) were found
to re-equilibrate to form catenanes. Computed formation energies
were found to be useful at a coarse grain level—for example, in
suggesting correctly that reactions with triamine A were less
promising than for triamines B and C—but they are not an
unambiguous predictor of whether or not a given cage can be
synthesised. For example, cages with precursor 10 were found to
have the least favourable formation energies, with relatively high
strain around the imine bonds, and yet A10, B10, and C10 were
all formed by experiment, albeit with residual aldehyde starting
material and potential oligomeric side products. Cages compris-
ing aldehyde 12 were found to have particularly favourable for-
mation energies, yet B12 was not formed under these reaction
conditions and both A12 and C12 were formed (in impure form)
in a Tri2Di3 topology rather than Tri4Di6.

Some precursor combinations went against our targeted
topology assumptions and formed an alternative topology. All
of these examples were found in the Tri4Di6 series; where
Tri2Di3 and Tri4Tri4 topologies were targeted, all cages gave the
predicted topology. For A12, C12, C14, B20, C20, B21, and C21,
a Tri2Di3 cage was observed instead of the targeted Tri4Di6; B14
formed a mixture of both of these topologies (Supplementary
Fig. 31). Thus, of the 33 reactions predicted to form Tri4Di6

cages, only 9 formed the predicted Tri4Di6; 7 formed Tri2Di3, 16
did not form a cage, and 1 formed a Tri2Di3/Tri4Di6 mixture.
The energetic preference for the Tri4Di6 topology in the example
system, B11, was the smallest of the three systems investigated;
29 kJ mol−1 per [2+ 3] unit, compared to 43 kJ mol−1 per [2+ 3]
unit, and 118 kJ mol−1 per [1+ 1] unit for Tri2Di3 and Tri4Tri4

topologies, respectively. This may rationalise the poor

predictability for the Tri4Di6 systems; the lack of a strong
driving force for a particular topology might also help to explain
why so many of the Tri4Di6 targeted reactions failed to produce
any cage product at all (red squares, Fig. 3c, middle panel).

To try to explain the unexpected Tri2Di3 topologies (A12,
C12, B14, C14, B20, C20, B21, and C21), the energies for these
outcomes were calculated and compared to the targeted Tri4Di6

topology (Supplementary Tables 12 and 14, and Supplementary
Fig. 31). For B21 and C21, a preference was found for the
observed Tri2Di3 topology (by 24 and 35 kJ mol−1 per [2+ 3]
unit, respectively); in all the remaining cases, an energetic
preference was calculated for the Tri4Di6 topology rather than
the observed Tri2Di3 topology. This preference was often small:
around 5 kJ mol−1 per [2+ 3] unit for A12 and C20. We cannot
therefore rationalise the observed topologies for A12, C12, B14,
C14, B20 and C20 based upon the relative internal energies of the
isolated cage molecules alone. It is possible that the entropy of the
systems, solvent interactions, the stability and solubility of
reaction intermediates or competing reaction pathways play a
decisive role. Taken together, our results suggest that an energetic
preference of at least 30 kJ mol−1 per repeat unit is required to be
confident of a reliable computational prediction of a particular
cage topology.

Integrated experimental–computational workflow. While pre-
vious studies have compared computation and experiment for a
few closely related cage molecules36,37,52,53, this new study is
unique because we make this comparison across a broad array of
78 supramolecular systems. Based on the lessons learned, we
propose a more generalised workflow for supramolecular mate-
rials discovery that couples automated synthesis closely with
computational studies (Fig. 6). One goal of this hybrid approach
is to remove as many inferior targets as early as possible, to save
time and cost. By applying computation at the appropriate stages,
we can greatly streamline the materials discovery process and
target more effective reaction combinations: for example, removal
of the ‘unreliable’ triamine A from the array based on formation
energy calculations (Fig. 3b) would have reduced the number of
reactions by one third while missing only one of the 33 reactions
(A11) that were found by experiment to give clean cage con-
version (Fig. 3c). Likewise, the high success rate for the target
Tri4Tri4 topologies (80% if one excludes triamine A; Fig. 3c) was
anticipated by our relative energy calculations that showed a
more pronounced energy penalty for alternative cage topologies
(Fig. 2b).

Discussion. In conclusion, the combination of computational
modelling with robotic automation and high-throughput char-
acterisation techniques has led to the discovery of a range of new
organic cages. By investigating 78 building block combinations,
33 cages, 32 of which are new, were synthesised cleanly on a robot
synthesiser in one-pot reactions without work up, with 16 other
combinations showing evidence of cage formation along with side
products or unreacted starting material. The scale-up of these
experimental ‘hits’ was investigated, and crystallisation studies
were conducted; this yielded 18 single crystal structures and led to
the serendipitous discovery of two covalently bridged cage
catenanes.

From a computational perspective, it is beneficial to have a
strong energetic preference towards a topological outcome, as this
increases the chance of the target cage being formed. This study
shows how smaller energetic preferences can be overridden by
other experimental factors, such as solvent stabilisation. Our rule
of thumb is that a computed energetic preference of at least 30 kJ
mol−1 per repeat unit is required for confident predictive design.
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False negatives are also a possibility in high-throughput
screening: for example, in the case of C22 there was no indication
of the targeted Tri4Tri4 cage in the 1H NMR spectrum arising
from the robotic screen. Coupled with the formation of an
insoluble precipitate, this suggested the formation of oligomers or
polymer. However, Mastalerz et al. recently reported the
successful synthesis of this cage under different reaction
conditions, albeit in only 27% yield and with a considerable
amount of polymer formation too (68%)44. In the future, this
might be addressed by using higher capacity synthesis robots and
by investigating a broader range of reaction solvents.

Such high-throughput studies covering a broad range of
conditions stand to benefit particularly from computational
guidance; for example, by focussing the range of precursors that
is investigated. Coupled over many cycles, this hybrid discovery
approach promises to yield a large database of successful and failed
reactions, along with associated computational properties, that
should fuel machine learning approaches in the future54. Moreover,
this methodology could be combined with fast crystal structure
prediction methods to predict the likely packing motifs for new
cages27,55, thus allowing us to weight the selection of precursors
toward systems that are likely to deliver materials with specific
solid-state properties, such as adsorption selectivity for a particular
gas. Furthermore, this integrated experimental–computational
workflow could be applicable to other supramolecular assemblies,
such as metal-organic cages, and is not limited to reversible imine
chemistries.

Applications of these new cages are currently under investiga-
tion: for example, after purification some of the hits from this
study demonstrate gas uptakes that are comparable to other
porous cages in the literature; B11 and B23 demonstrate H2

uptakes of 2.31 and 3.15 mmol g−1 (77 K, 1 bar), respectively
(Supplementary Figs. 32–34). We are also considering some of
these molecules as tectons in other supramolecular assemblies,
such as hydrogen-bonded organic frameworks or other extended
crystalline frameworks56.

Methods
General synthetic and analytical methods. See Supplementary Methods for
further details.

Procedures for the synthesis of precursors. The synthesis and characterisation
of triamines A, B, and C, is described in the Supplementary Methods. Aldehydes 1,
3, 10, 11, 13–15, and 20–23 were commercially available, and the synthesis and
characterisation of aldehydes 2, 4–9, 12, 16–19, and 24–26 is included in
the Supplementary Methods. For spectra of novel precursors see Supplementary
Figs. 35–42.

Optimisation of model cage reactions. Terephthalaldehyde 11 (9.7 mg,
0.072 mmol, 3.0 eq.) and (2,4,6-trimethylbenzene-1,3,5-triyl)trimethanamine
B (2.0–3.0 eq.) were dissolved in CDCl3 (1–13 mL) and stirred at room tempera-
ture or 60 °C for 1–6 days (see Supplementary Table 15). The formation of inso-
luble precipitate was monitored, alongside reaction progress by 1H NMR
spectroscopy, to determine the optimal cage formation conditions (see Supple-
mentary Fig. 43). The optimised conditions were then investigated for scalability
with the Tri4Di6 cage B11, before confirming that the conditions were translatable
to both a Tri2Di3 (B1), and Tri4Tri4 (B23) topology—see Supplementary Methods
for the synthesis and characterisation details, and Supplementary Figs. 44–49 for
the corresponding spectra.

High-throughput synthetic screen general method. Synthetic screening was
carried out on a Chemspeed Accelerator SLT-100 synthesiser platform by liquid
dispensing stock solutions of the precursors (2.5–5 mgmL−1, Supplementary
Tables 16–19) into jacketed reactor vessels and heating for 3 days at 65 °C with
vortexing (800 rpm)—for ease of analysis the reactions were carried out in deut-
erated chloroform. The reactions were analysed directly, prior to isolation, using
high-throughput techniques including 1H NMR spectroscopy and high-resolution
mass spectrometry (HRMS) –see Supplementary Figs. 50–72. For each targeted
topology (Tri2Di3, Tri4Di6, and Tri4Tri4), a number of precursor combinations,
which afforded clean cage formation, were selected, and diffusion NMR conducted,
allowing the stoichiometry and sizes of the formed cages to be determined. For

Select building
block library

Assess ease of access to
building blocks

Assess assembly
outcomes

Rapid characterisation to
identify assembly

Detailed
computational analysis

Scale-up, characterisation
and property analysis

HT screen

Promising
Else

Else

Else

Hits

Promising

Computation

Experiment

Fig. 6 Proposed workflow for the fusion of high-throughput automated

synthesis with computation for the accelerated discovery of supramolecular

materials. Experimental stages are shown in red and computational stages

in blue. Approximate time cost for each step is indicated (1 clock= quick;

3 clocks= time-intensive). In this first study, all building block

combinations were investigated to validate the approach, but the future

goal is to remove low-value targets as early as possible, thus saving time

and cost. First, an initial building block library is selected, and their ease of

synthesis is assessed. Then, a judgement is made on a sliding scale as to

whether a very rapid computational assessment of properties is conducted

(e.g., test for shape-persistence in assumed topology), up to a full analysis

of multiple assembly outcomes, detailed energetic assessment of the likely

outcome and full property assessment. The basis for this judgement

revolves around the synthetic effort in obtaining a given building block. For

building blocks that are commercially available at low cost, there is less

benefit for full computational assessment of the outcomes, but for building

blocks that require custom, multi-step synthesis, there is great value in only

embarking on synthesis if computation suggests there is a strong likelihood

of forming supramolecular products of interest. After the synthetic screen,

rapid assessment of the reaction outcomes (e.g., via mass spectrometry

and diffusion NMR) are used to identify where ‘hits’ have occurred and

what the reaction outcome is. For ‘hits’, more detailed computational

analysis is performed and only those that are promising (e.g., possessing

shape persistent voids for porous solids) are selected for scale-up and

property measurements
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combinations that indicated cage formation, the reaction solutions were then fil-
tered, where necessary, to remove any insoluble precipitate (see Supplementary
Table 20), and the solvent removed under reduced pressure in a Combidancer
evaporator. The resulting isolated solids were analysed by powder X-ray diffraction
(PXRD); all samples were amorphous on direct isolation from the reaction solvent
(Supplementary Figs. 73–76). The stability to isolation was also investigated by re-
dissolving and re-analysing the samples by 1H NMR spectroscopy—in some
instances, the solid either did not fully re-dissolve suggesting some instability to
isolation, or decomposition was visible after comparing the pre-isolation and post-
isolation spectra—for a representative worked example of the high-throughput
characterisation see Supplementary Note 7, and for full details and a summary of
the results see Supplementary Methods and Supplementary Tables 21–26).

Representative procedure for the scale-up of the new cage series, as exem-

plified by B11. For ease of isolation, the solvent used in the scale-up reactions was
switched from chloroform to DCM where possible, as this allowed a simpler sol-
vent exchange to hexane with the resulting precipitated cages collected by filtration.
A solution of terephthalaldehyde 11 (194 mg, 1.45 mmol, 6.0 eq.) and (2,4,6-tri-
methylbenzene-1,3,5-triyl)trimethanamine B (250 mg, 1.21 mmol, 5.0 eq.) dis-
solved in DCM (260 mL) was heated at 40 °C for 2 days. The reaction was allowed
to cool to room temperature and the mixture filtered to remove any insoluble
precipitate before the addition of hexane (200 mL). The DCM was carefully
removed in vacuo to give a colourless precipitate which was collected by filtration
and dried in vacuo to yield pure cage product B11 (224 mg, 0.16 mmol, 65%). IR
(νmax (cm−1)) 3391 (br), 2868, 1636, 1566, 1449, 1374, 1315, 1218; 1H NMR
(500MHz, CDCl3) δH 8.30 (t, J= 1.6 Hz, 12H), 7.75 (s, 24H), 4.93 (s, 24H), 2.37 (s,
36H); 13C NMR (101MHz, CDCl3) δC 160.4, 138.3, 137.7, 133.2, 128.5, 59.2, 16.4;
HRMS (ES+) calc. for Tri4Di6 cage C96H96N12 1417.7912; found [M+H]+

1418.8056, [M+ 2 H]2+ 709.9087 and [M+H+Na]2+ 720.8998.
The synthesis and characterisation data of the other cage hits are described in

the Supplementary Methods—for the corresponding spectra, see Supplementary
Figs. 77–114. See Supplementary Methods for crystal structure refinement details
and notes for those cages and catenanes where single crystal X-ray structures could
be obtained.

Computational modelling. To determine the intrinsic structural preference for a
topology in the representative set of three systems (B1, B11, B23), models of the
most likely topologies were assembled: for B1 and B11—Tri2Di3, Tri4Di6, Tri6Di9

and Tri8Di12, and for B23—Tri1Tri1, Tri2
2
Tri2 and Tri4Tri4. Conformer searches

were carried out for each structure using high-temperature MD simulations, fol-
lowed by geometry optimisation, all with OPLS342. Low-energy structures were
then geometry optimised with DFT calculations at the PBE+D3/TZVP level57,58

and relative energies compared. The same computational approach was used to
find the low-energy conformations for the complete set of high-throughput cages,
assuming their targeted topology was realised. Precursor 7 was not included and
precursor 10 was simplified by removing alkyl groups. The void diameters of cages
were calculated by consideration of the distance between the centre of mass of a
cage and the edge of the closest atom; the maximum cage diameter as the largest
distance between the edges of any two atoms. The calculation of the average
molecular diameter is described in the supporting information. For the set of
molecules that unexpectedly formed Tri2Di3 rather than the targeted Tri4Di6

topology, the Tri2Di3 topology was modelled to compare the relative energies of
the two outcomes. To compare the relative energy of the bridged catenated
structure to the related Tri4Di6 topology, the structure of a single [8+ 12]
molecule was taken from the SC-XRD structure and geometry optimised at the
DFT level.

Data availability. Supplementary crystallographic files, which include structure
factors, have been deposited with the Cambridge Crystallographic Data Centre
(CCDC) as deposition numbers 1827867–1827887. These data files can be obtained
free of charge from http://www.ccdc.cam.ac.uk/data_request/cif.

All relevant data including full synthetic, characterisation, crystallographic, and
computational details are available in the Supplementary Information. Structures
for all the low-energy computed cages are also supplied as Supplementary Data 1.
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