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We have developed a high-throughput method for analyzing the methylation status of hundreds of preselected genes
simultaneously and have applied it to the discovery of methylation signatures that distinguish normal from cancer
tissue samples. Through an adaptation of the GoldenGate genotyping assay implemented on a BeadArray platform,
the methylation state of 1536 specific CpG sites in 371 genes (one to nine CpG sites per gene) was measured in a
single reaction by multiplexed genotyping of 200 ng of bisulfite-treated genomic DNA. The assay was used to obtain
a quantitative measure of the methylation level at each CpG site. After validating the assay in cell lines and normal
tissues, we analyzed a panel of lung cancer biopsy samples (N = 22) and identified a panel of methylation markers
that distinguished lung adenocarcinomas from normal lung tissues with high specificity. These markers were
validated in a second sample set (N = 24). These results demonstrate the effectiveness of the method for reliably
profiling many CpG sites in parallel for the discovery of informative methylation markers. The technology should
prove useful for DNA methylation analyses in large populations, with potential application to the classification and
diagnosis of a broad range of cancers and other diseases.

[Supplemental material is available online at www.genome.org.]

DNA methylation is widespread and plays a critical role in the
regulation of gene expression in development, differentiation,
and diseases such as multiple sclerosis, diabetes, schizophrenia,
aging, and cancers (Li et al. 1993; Laird and Jaenisch 1996; Egger
et al. 2004). Methylation in particular gene regions, for example
in promoters, can inhibit gene expression (Jones and Laird 1999;
Baylin and Herman 2000; Jones and Baylin 2002). Recent work
has shown that the gene silencing effect of methylated regions is
accomplished through the interaction of methylcytosine bind-
ing proteins with other structural components of chromatin
(Razin 1998), which, in turn, makes the DNA inaccessible to tran-
scription factors through histone deacetylation and chromatin
structure changes (Bestor 1998).

Changes in DNA methylation are recognized as one of the
most common forms of molecular alteration in human neoplasia
(Baylin and Herman 2000; Balmain et al. 2003; Feinberg and
Tycko 2004). Hypermethylation of CpG islands located in the
promoter regions of tumor suppressor genes is now firmly estab-
lished as the most frequent mechanism for gene inactivation in
cancers (Esteller 2002; Herman and Baylin 2003). In contrast, a
global hypomethylation of genomic DNA (Feinberg and Vogel-
stein 1983) and loss of IGF2 imprinting were observed in tumor

cells (Cui et al. 2003; Sakatani et al. 2005); and a correlation
between hypomethylation and increased gene expression was
reported for many oncogenes (Feinberg and Vogelstein 1983;
Hanada et al. 1993). In addition, monitoring global changes in
DNA methylation has been applied to molecular classification of
cancers (Huang et al. 1999; Costello et al. 2000). Most recently,
gene hypermethylation was associated with clinical risk groups
for neuroblastoma (Alaminos et al. 2004), as well as with hor-
mone receptor status and response to tamoxifen in breast cancer
(Widschwendter et al. 2004b; Martens et al. 2005). Therefore, it
should be feasible to use methylation markers to classify and
predict different kinds or stages of cancer, cancer therapeutic
outcomes, and patient survival. However, the analysis of large
sample sets will be required in order to discover such associa-
tions. Analysis of methylation on this scale—many target sites
per sample and many samples per study—still represents a sig-
nificant challenge (Jones and Baylin 2002; Dennis 2003; Rakyan
et al. 2004).

Here we describe an adaptation of a high-throughput single
nucleotide polymorphism (SNP) genotyping system (Fan et al.
2003) to DNA methylation detection, based on genotyping of
bisulfite-converted genomic DNA. This technology combines a
miniaturized bead-based array platform, a high level of assay
multiplexing, and scalable automation for sample handling and
data processing. We used this technology to analyze methylation
profiles of 1536 CpG sites from 371 genes in cell lines and in lung
cancers and normal tissues, and have identified a subset of candi-
date biomarkers that need to be validated in a prospective study.
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Results

Implementation of the methylation profiling assay on the SNP
genotyping platform

We adapted the GoldenGate SNP genotyping assay (Fan et al.
2003) for DNA methylation detection. Nonmethylated cytosines
(C) are converted to uracil (U) when treated with bisulfite, while
methylated cytosines remain unchanged (Wang et al. 1980). Be-
cause the hybridization behavior of uracil is similar to that of
thymine (T), the detection of the methylation status of a particu-
lar cytosine can be carried out following bisulfite treatment by
using a genotyping assay for a C/T polymorphism.

In this study, we designed assays for 1536 CpG sites from the
5�-regulatory region of 371 genes (one to nine CpG sites per
gene). These genes (Supplemental Table 1) were selected based on
their biological relevance. They include tumor suppressor genes
and oncogenes; genes that are indirectly involved in cancer de-
velopment, for example, DNA repair genes; metastasis-inhibitor
genes; genes regulated by various signaling pathways, and/or re-
sponsible for altered cell growth, differentiation and apoptosis;
genes considered to be targets for oncogenic transformation;
genes of innate host defense; genes involved in surfactant func-
tion of the lung; imprinted genes; and previously reported dif-
ferentially methylated genes (Adorjan et al. 2002; Esteller 2002;
Tsou et al. 2002).

The assay procedure is similar to that described previously
for standard SNP genotyping (Fan et al. 2003), except that four
oligonucleotides, two allele-specific oligonucleotides (ASOs), and
two locus-specific oligonucleotides (LSOs) are required for each
assay site rather than three (see the legend to Fig. 1). Briefly,
bisulfite-treated, biotinylated genomic DNA (gDNA) was immo-
bilized on paramagnetic beads. Pooled query oligonucleotides
were annealed to the gDNA under a controlled hybridization
program, and then washed to remove excess or mishybridized
oligonucleotides. Hybridized oligonucleotides were then ex-
tended and ligated to generate amplifiable templates. Requiring
the joining of two fragments to create a PCR template in this
scheme provided an additional level of locus specificity. It is un-
likely that any incorrectly hybridized ASOs and LSOs will be ad-
jacent, and therefore should not be able to ligate after ASO ex-
tension. A PCR reaction was performed with fluorescently labeled
universal PCR primers. The methylation status of an interrogated
CpG site was determined by calculating �, which is defined as the
ratio of the fluorescent signal from the methylated allele to the
sum of the fluorescent signals of both methylated and unmeth-
ylated alleles (see Methods for details). The �-value provides a
continuous measure of levels of DNA methylation in samples,
ranging from 0 in the case of completely unmethylated sites to 1
in completely methylated sites.

Development of internal controls for the methylation assay

In order to develop a robust methylation detection method, we
needed a set of reliable controls. We used plasmids pUC19 and
pACYC184 and phage �X174 as internal control DNAs. These
DNAs (unmethylated, in vitro methylated, or mixed at a 1:1 ra-
tio) were spiked into 200 ng of human genomic DNA at a 1:1
molar ratio (at ∼2–4 pg of plasmid DNA/1 µg of gDNA, depending
on the plasmid size), and were used in every experiment to moni-
tor both bisulfite conversion efficiency and accuracy of methyl-
ation detection (Supplemental Fig. 1).

To calibrate quantitative measurements of methylation, we

used “methylated” and “unmethylated” genomic templates. The
unmethylated templates were generated by genome-wide ampli-
fication of human genomic DNA using a Repli-g DNA amplifica-
tion kit (Molecular Staging). After amplification, endogenous
DNA methylation was diluted at least 100- to 1000-fold, effec-
tively rendering the amplified genomic DNA “unmethylated.”
The methylated templates were generated by in vitro methyl-
ation using a CpG-methylase, SssI (New England BioLabs).

We obtained very low methylation values for most of the
1536 CpG sites in the unmethylated reference DNA sample as
expected, with ∼95% of the CpG sites showing methylation lev-
els lower than 50% (data not shown). In contrast, we found that
∼93% of the CpG sites were methylated to >50% of completion in
the in vitro methylated reference DNA. In general, these results
indicate that our assay is specific, and faithfully reports the meth-

Figure 1. DNA methylation assay scheme. (A) Bisulfite conversion of
DNA. (B) For each CpG site, two pairs of probes were designed to inter-
rogate either the top or bottom strand: an allele-specific oligonucleotide
(ASO) and locus-specific oligonucleotide (LSO) probe pair for the meth-
ylated state of the CpG site and a corresponding ASO-LSO pair for the
unmethylated state. Each ASO consists of a 3�-portion that hybridizes to
the bisulfite-converted genomic DNA, with the 3�-base complementary
to either the “C” or “T” allele of the targeted CpG site, and a 5�-portion
that incorporates a universal PCR primer sequence P1 or P2. The LSOs
consist of three parts: At the 5�-end is a CpG locus-specific sequence; in
the middle is an address sequence, complementary to a corresponding
capture sequence on the array; and at the 3�-end is a universal PCR
priming site (P3). Pooled assay oligonucleotides were first annealed to
bisulfite-converted genomic DNA. An allele-specific primer extension step
was then carried out; ASOs were extended only if their 3�-base was
complementary to their cognate CpG site in the gDNA template. Allele-
specific extension was followed by ligation of the extended ASOs to their
corresponding LSOs, to create PCR templates. The ligated products were
then amplified by PCR using common primers P1, P2, and P3�, and
hybridized to a microarray bearing the complementary address se-
quences. P1 and P2 were fluorescently labeled, each with a different dye,
and associated with the “T” (unmethylated) allele or the “C” (methyl-
ated) allele, respectively.
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ylation status of most of the targeted CpG sites in tested samples.
Some degree of cross-hybridization may explain those outlier
CpG sites where elevated methylation was observed in the un-
methylated reference DNA and the sites that were undermethyl-
ated in the in vitro methylated reference DNA, as may be ex-
pected by the reduced complexity of bisulfite-converted DNA. All
such unvalidated sites were still included and monitored in the
assay reactions, but excluded from consideration for methylation
marker development (see below).

Bisulfite conversion efficiency

Methylation detection in bisulfite-converted DNA is based on the
different sensitivity of cytosine and 5-methylcytosine to deami-
nation by bisulfite (Wang et al. 1980). Under acidic conditions,
cytosine undergoes conversion to uracil, while methylated cyto-
sine remains unreactive. An effective bisulfite conversion proto-
col is a necessary prerequisite for a robust methylation profiling
assay. Incomplete conversion of cytosine to uracil can result in
appearance of false-positive methylation signals, and can reduce
the overall quality of the assay data. To estimate the conversion
efficiency, we analyzed 7097 cytosines in 173 independent DNA
fragments derived from eight genomic regions by bisulfite se-
quencing (Frommer et al. 1992). To avoid ambiguity, only the
cytosines from non-CpG sites were counted. The sequence data
indicated that the DNA conversion rate was 99.7% with our cur-
rent protocol (see Methods for details).

Methylation assay reproducibility

For each sample, 1 µg of genomic DNA was used for each bisulfite
conversion, and 20% of the converted DNA (corresponding to
200 ng of starting gDNA) was then used to assay the 1536 CpG
sites simultaneously on an array. Technical replicates were done
for each sample using the same converted DNA. We obtained
highly reproducible DNA methylation profiles between these
technical replicates (Fig. 2, left and center panels), with an aver-
age R2 of 0.98 � 0.02 when the �-values were compared (Supple-
mental Table 2). When �-values for matching normal and carci-
noma clinical samples were compared, differential methylation
was readily detected (Fig. 2, right panel).

Methylation status of housekeeping genes located on the X
chromosome

DNA methylation is involved in transcriptional inactivation of
genes on one of the two X chromosomes in female somatic cells

(i.e., X chromosome silencing), which compensates for the dos-
age of functional X-linked genes between male and female (Car-
rel and Willard 2005). We measured the methylation status of six
X-linked housekeeping genes—EFNB1, ELK1, FMR1, G6PD,
GPC3, and GLA—together with the rest of the 371 genes in male
and female genomic DNAs. In general, methylation levels of
these genes correlated well with the gender of the sample source,
that is, no or very low methylation was detected in male DNA
samples and hemimethylation was detected in female DNA
samples.

We then selected the best 18 “gender-specific” CpG sites
from these X-chromosomal genes (with � < 0.1 in male genomic
DNA) to estimate the assay’s ability for detecting difference of
methylation levels between samples. We diluted female genomic
DNA into male genomic DNA at ratios of 5:95, 10:90, 20:80, and
50:50, prior to bisulfite conversion. Two independent sets of mix-
tures were made and measured in parallel (Fig. 3A); and four
replicates were done for each mixture. We observed that the stan-
dard deviation of the �-value obtained for all the 1536 CpG sites
across the four replicates was <0.06 in 99% of cases, and the
average slope of � versus the expected methylation level for the
selected X-chromosomal sites was equal to 1. Therefore, we esti-
mate that our method can discriminate levels of methylation
(�-values) that differ by as little as 0.17 (1.96 � √2 � 0.06). Since
the tails of their respective signal distributions did not have large
overlapping areas (<16% assuming Gaussian error), there is a
high probability that the response produced at one methylation
level will be significantly different from the expected signal pro-
duced at another. It is worth noting that the standard deviation
of these measurements was not uniform across the range of �-val-
ues. It had a parabolic shape with the maximum peak around
� = 0.5. Therefore, the absolute performance of the assay de-
pends on the methylation level itself. For example, for 16 out of
the 18 CpG sites, methylation levels from 5:95 and 0:100 mix-
tures could be unambiguously distinguished from each other
(i.e., the maximum �-value in the 0:100 mixtures was less than
the minimum �-value in the 5:95 mixtures) (Fig. 3B). This indi-
cates that our assay can detect as little as 2.5% methylation for
well-performing CpG sites in the optimal range of the response
curve.

Methylation profiling in cancer cell lines

To demonstrate the applicability of our method for studying
DNA methylation in cancer, we applied the assay developed for

the 1536 CpG sites to a panel of 17 co-
lon, breast, lung, and prostate cancer cell
lines, as well as seven DNA samples de-
rived from different normal tissues. Six-
teen CpG sites distinguishing cancer
from normal samples were selected
based on a Mann-Whitney tes t
(P < 0.00001) and an additional filter of
mean change of methylation level >0.34
(0.17 � 2). Forty-eight CpG sites distin-
guishing individual cancer types were
selected based on a Kruskal-Wallis test
(P < 0.035) and a standard deviation
across cancer samples >0.34. This gave
us a balanced list of 16 cancer-specific
markers and 48 cancer type-specific
markers. Using these markers, all cancer

Figure 2. Methylation assay reproducibility and differential methylation detection. Comparison of
methylation profiles between lung cancer and matching normal tissue. The �-value (i.e., the methyl-
ation ratio measured for all 1536 CpG sites) obtained from one replicate experiment is plotted against
that obtained from another technical replicate experiment. The left and center panels show the repro-
ducibility of replicated assays on DNAs derived from lung adenocarcinoma G12022 (center) and its
matching normal tissue (left). The right panel shows the comparison between the normal and the
matching adenocarcinoma samples.
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samples were correctly separated from normal samples by hier-
archical clustering, with Ward’s linkage method and correlation-
based distance metric. This separation of cancer samples was not
sensitive to the choice of distance metric or linkage method (data
not shown). Figure 4 shows the differential methylation profiles
in normal versus cancer samples as well as specific methylation
signatures that were obtained for individual cancer types. In gen-
eral, our data correlate well with previous cell line methylation
profiling results (Paz et al. 2003; Melnikov et al. 2005). For ex-
ample, GSTP1 was completely methylated in the LNCaP prostate
cancer cell line and semimethylated in the PC3 cell line (data not
shown), as previously reported (Singal et al. 2001). The overall
methylation level in colon cancer cell lines appears to be higher
as compared to the other cell lines, also consistent with previous
results (Paz et al. 2003).

Validation of microarray data by methylation-specific PCR

Methylation-specific PCR (MSP) has been widely used to monitor
the methylation status of individual genes (Herman et al. 1996;

Eads et al. 2000). We used MSP to con-
firm the methylation status of CpG sites
from five genes that were identified by
our microarray analysis as showing dis-
tinct methylation profiles in normal
lung tissue and lung cancer cell lines.
MSP primers that are specific to either
methylated or unmethylated DNA were
designed to target corresponding CpG
sites within the promoter regions of
CFTR, DBC1, DLK1, EYA4, and NPY
genes (Table 1). In addition, a pair of
primers recognizing a non-CpG-
containing region of the �-actin gene
(ACTB) was used to measure DNA input.
The specificity of each set of MSP prim-
ers was first tested using in vitro meth-
ylated and unmethylated reference
DNAs described above. MSP conditions
were optimized to maximize the dis-
crimination between the two methyl-
ation states. Bisulfite-treated genomic
DNAs derived from one normal lung tis-
sue and six lung cancer cell lines were
analyzed using real-time MSP. The
methylated and unmethylated alleles in
each genomic DNA sample were ampli-
fied in separate reactions. Each reaction
was performed in duplicate, and the av-
erage of the crossover threshold (Ct) val-
ues was used to calculate the concentra-
tion of the methylated or unmethylated
allele at the target site. Of the 35 MSP
data points, 34 were highly concordant
with the methylation status determined
by the genotyping-based microarray
analysis, with a Spearman correlation
coefficient r = 0.89 (Fig. 5). These results
confirm the overall validity of our
method.

Methylation marker identification in lung adenocarcinomas

We measured the methylation status of the 1536 CpG sites in 23
lung adenocarcinoma and 23 normal lung tissue samples. We
used a data matrix of �-values to identify CpG sites that showed
differential methylation in cancers. Using a Mann-Whitney test,
we first compared 11 normal samples to 11 adenocarcinoma
samples (a training set of samples obtained from Philipps-
University of Marburg, Germany). We used a false discovery rate
(FDR) approach (Benjamini and Hochberg 1995) to select a list of
differentially methylated CpG sites. At an FDR = 0.001 cutoff, we
identified 207 differentially methylated sites. To select markers
that had the largest difference between cancer and normal tis-
sues, we applied an additional filter that required a minimum
difference of 0.15 in � between the two groups. We thus obtained
a list of 55 differentially methylated markers for lung adenocar-
cinoma (Supplemental Table 3). Among these markers, more
were hypermethylated in adenocarcinoma, including the genes
ASCL2, CDH13, HOXA11, HOXA5, NPY, RUNX3, TERT, and TP73,
which were selected for validation by bisulfite sequencing (see
below). Of these genes, methylation of CDH13 (Toyooka et al.

Figure 3. Methylation detection in gDNA mixtures. (A) Female genomic DNA was diluted with male
genomic DNA at ratios of 5:95, 10:90, 20:80, and 50:50. Two sets of mixtures were made and
measured: M1 (male NA10923)/F1 (female NA10924) and M2 (male NA07033)/F2 (female
NA06999). Methylation levels of six X chromosome-linked genes were calculated as the average of
several (one to five) CpG sites for each gene. (B) Methylation profiles of individual CpG sites (only four
are shown). Error bars represent the standard deviation of �-values calculated from four replicate
experiments, done with the first set of mixtures (NA10923/NA10924).
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2001; Ogama et al. 2004), HOXA5 (Chen et al. 2003), RUNX3 (Li
et al. 2004), and TP73 (Lomas et al. 2004) is known to be asso-
ciated with tumor progression in various types of cancer. The
human telomerase reverse transcriptase gene (TERT) was shown
to be inactivated in most differentiated cells, but reactivated in
the majority of cancer cells (Liu et al. 2004). However, a recent
study (Widschwendter et al. 2004a) reported methylation of TERT
in cervical cancer and its correlation with poor prognosis. One of
the markers on the list, neuropeptide Y (NPY), which was shown
to be hypermethylated in 19 out of the 23 analyzed adenocarci-
noma samples and had no or very low methylation in the normal
samples, was not previously reported as a cancer marker. NPY

may influence lipid metabolism and is potentially associated
with hypertension (Tomaszewski et al. 2004). It would be inter-
esting to test if NPY plays any role in lung surfactant-related
function.

Clustering of independent sample sets based on the identified
methylation markers

We used agglomerative nesting with the Ward method and cor-
relation-based distance to cluster the training set samples (the
German samples mentioned above) based on the methylation
profiles of the 55 selected markers. Cancer samples were clearly

Figure 4. Methylation profiling in cancer cell lines. Seven DNA samples derived from different normal tissues and 17 colon, breast, lung, and prostate
cancer cell lines were profiled. All cancer samples were correctly separated from normal samples using agglomerative clustering based on 64 cancer-
specific methylation makers, and highly specific methylation signatures were obtained for each cancer type. Green, yellow, and red colors represent low,
medium, and high methylation levels, respectively.
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distinguishable from normal samples with one error—cancer
sample G12029 coclustered with the normal samples (Fig. 6A).

To assess the power of the selected methylation markers for
reliable classification of prospective cancer and normal samples,
we clustered an independent test set of samples based on the
methylation profiles of these markers. This test set contained 12
normal and 12 adenocarcinoma samples, collected from The
Pennsylvania State University College of Medicine Tumor Bank.
We obtained a 100% specificity (12/12) and 92% sensitivity (11/
12). The specificity was calculated as (TN, true negative; FP, false
positive; TP, true positive; FN, false negative) TN/(TN + FP), and
the sensitivity was calculated as TP/(TP + FN). One cancer sample
D12162 was coclustered with the normal samples in this test set
(Fig. 6B). This analysis indicates that the differential methylation
pattern for the identified markers was preserved in the two com-
pletely unrelated training and test sample sets and that methyl-
ation profiling of these markers allows the identification of can-
cer samples with high specificity and sensitivity.

Methylation marker validation by bisulfite sequencing

We validated eight CpG sites that showed elevated methylation
in the adenocarcinoma samples using bisulfite sequencing
(Frommer et al. 1992). We chose this method over other meth-
ylation detection methods for several reasons: (1) this would pro-
vide another validation of our method, in addition to the MSP
method; (2) we had only limited amount of DNA from the clini-
cal samples, and bisulfite sequencing required less input DNA as
compared to other methods; and (3) we wanted to use the bisul-
fite sequencing data to estimate the bisulfite conversion rate (see
above).

PCR primers were designed flanking the CpG sites of interest
(Table 2). DNAs from two normal and four adenocarcinoma
samples were treated with bisulfite, and regions of interest were
amplified by PCR. PCR fragments were cloned, and individual
colonies were picked for sequencing (see Methods for details).
Twelve cloned fragments were sequenced for each CpG site in
selected samples. In all cases we observed an increase in methyl-
ation in cancer samples compared to normal samples. Even
though the absolute levels of methylation detected by the two
different methods were somewhat different (Table 3), a strong
correlation was obtained between these two data sets, with a
Spearman correlation coefficient r = 0.70. Overall, these results
suggest that our assay can reliably detect methylation differences
in clinical samples for more than 1000 CpG sites and that the
assay can be used for both marker discovery and validation.

Discussion
DNA methylation detection methods include methylation-
specific enzyme digestion (Singer-Sam et al. 1990), bisulfite DNA
sequencing (Frommer et al. 1992; Dupont et al. 2004), methyl-
ation-specific PCR (MSP) (Herman et al. 1996) and MethyLight
(Eads et al. 2000; Cottrell et al. 2004), methylation-sensitive
single nucleotide primer extension (MS-SnuPE) (Gonzalgo and
Jones 1997), restriction landmark genomic scanning (RLGS)
(Kawai et al. 1994; Akama et al. 1997), MALDI mass spectrometry
(Tost et al. 2003), and differential methylation hybridization
(DMH) (Huang et al. 1999). However, none of these methods
combines random access to specific sequences in the genome
with high throughput and low cost, which is needed for analyz-
ing methylation profiles at high resolution in large sample sets.
In addition, many of these methods are insensitive to low levels
of methylation changes in diseased tissues, for example, 10% or
20% hypermethylation.

In this study, we developed and characterized a highly re-
producible and multiplexed method for high-throughput quan-
titative measurement of DNA methylation. The method provides
not just a discrete measure of positive versus negative DNA meth-
ylation, but a continuous measure of levels of DNA methylation.
For a 17% difference in absolute methylation level (e.g., 10% vs.
27%), signals are expected to have largely nonoverlapping distri-
butions. The assay can detect as little as 2.5% of methylation for
some CpG sites. Unlike restriction enzyme-based methods, assay
probes can be specifically designed for most of the CpG sites in
the genome, and assay oligonucleotides can be designed to in-
terrogate either the Watson or Crick strand or both at each CpG
site (Fig. 1). Assay results are read out on a universal array. As a

Table 1. Methylation-specific PCR primer sequence and amplicon size

Primer set Forward primer, 5� → 3� Reverse primer, 5� → 3� Size (bp)

ACTB TGGTGATGGAGGAGGTTTAGTAAGT AACCAATAAAACCTACTCCTCCCTTAA 130
CFTR-M GTTTTGGGTTTGGCGGATTTTGACGC CCCGCAAATAAACGACAATCGCGAC 142
CFTR-U GGTTTTGGGTTTGGTGGATTTTGATGT CATCCCACAAATAAACAACAATCACAAC 146
DBC1-M ACGCGATCCCTTTAAATACTCGTACG GAGGAGAGACGGGAGGTCGTTTCG 131
DBC1-U ATATACACAATCCCTTTAAATACTCATACA GGAGGAGAGATGGGAGGTTGTTTTG 136
DLK1-M TCCGAAAAAATCTACGACCCAAATTCG AGACGGGTATAGGTATTTCGCGAGC 132
DLK1-U TCTCCAAAAAAATCTACAACCCAAATTCA GTTAGATGGGTATAGGTATTTTGTGAGT 137
EYA4-M TACGGAGATTACGGCGGCGTTATTC AACGCGAAAAACGACGACGCGCGA 150
EYA4-U GGGTATGGAGATTATGGTGGTGTTATTT CCAAAAACACAAAAAACAACAACACACAA 158
NPY-M TTAAAACCCTCTAACCGAAAACTTCCG ACGATTAGCGCGGTATTTTCGTCGG 131
NPY-U CTTTAAAACCCTCTAACCAAAAACTTCCA TTTTTATGATTAGTGTGGTATTTTTGTTGG 138

Figure 5. Comparison of methylation-specific PCR and array-based
methylation data. MSP was used to confirm the methylation status of
CpG sites within the promoter regions of five genes that showed distinct
methylation profiles in one normal lung tissue and six lung cancer cell
lines from array-based methylation analysis (1: normal lung tissue; 2:
NCI-H69; 3: NCI-H526; 4: NCI-H358; 5: NCI-H1299; 6: NCI-H1395; and
7: NCI-H2126). The methylation level is represented as bars, blue for
microarray data and red for MSP data.
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result, gene (or CpG) sets can be refined iteratively, if desired,
because no custom arrays need to be developed. The method can
detect changes in methylation status at up to 1536 different CpG
sites simultaneously using only 200 ng of genomic DNA.

We applied this technology to the high-throughput discov-
ery and validation of potential biomarkers of lung cancer. Lung
cancer is the second most common cancer among both men and
women and is the leading cause of cancer death in both genders.
There is no established early detection test for the disease, and
only 15% of lung cancer cases are diagnosed when the disease is

localized. The ability to accurately detect malignant cells in a
wide range of clinical specimens including sputum, blood, or
tissue has significant implications for screening high-risk indi-
viduals for this cancer. In this study, we first analyzed the meth-
ylation status of 1536 CpG sites (derived from 371 genes) in 11
lung adenocarcinomas and 11 matching normal tissue samples.
A panel of 55 adenocarcinoma-specific methylation markers was
identified by combining P-value and magnitude of change
thresholds (Fig. 6A). Furthermore, we validated the adenocarci-
noma markers in an independent sample set (N = 24) with high

Figure 6. Cluster analysis of lung adenocarcinoma samples. (A) Eleven cancer and 11 normal tissue samples were used as a training set to identify a
list of 55 CpG sites that are differentially methylated in cancer versus normal tissues with high confidence level (adjusted P-value < 0.001) and significant
change in absolute methylation level (|��| > 0.15). Cancer sample G12029 was mistakenly coclustered with normal samples. (B) The selected 55 CpG
sites were used for classification of an independent test sample set of 12 lung adenocarcinoma and 12 normal tissue samples, collected from a different
institute. All the normal and cancer samples were separated into two distinguished groups with a single error—cancer sample D12162 was coclustered
with normal samples. Normal samples are underlined in green, cancer in red. The asterisks indicate misclassified samples.

Table 2. Bisulfite sequencing primer sequence and amplicon size

Primer set Forward primer, 5� → 3� Reverse primer, 5� → 3� Size (bp)

ASCL2 GTAGTTTATTTTTATTTTTAGTAGATTAA AAAACCAAAATCTCAACCAATC 260
CDH13 ATTTTTTGGAAAAGTGGAATTAGTT CCAAATAAATCAACAACAACATCAC 241
HOXA11 TAGTTTTTGTGTTTTTGTTTTTGT ATAACTTAATTACACTCTCTCATTCATAAT 272
HOXA5 GTTGTAGGGAGTTTGGGTTTATT CCTAAAAAATCTTCATCACAAAATC 102
NPY GAGAAGGGGTAGAAGTTTTTGAAAT ATCTCCTACCAACAAAACTACCAAC 267
RUNX3 TTTTGTAGTTATTGTTGTTTTTTTT CAAATTTCAAAATCTTACAAACCTC 187
TERT TTTGAGAATTTGTAAAGAGAAATGA AATATAAAAACCCTAAAAACAAATAC 290
TP73 AGTAAATAGTGGGTGAGTTATGAAGATG TACACCAAACCCTAACTAAAAAACC 287
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sensitivity and specificity (Fig. 6B). These results demonstrate the
utility of our method for marker identification and validate the
robustness of the markers identified.

Because methylation detection interrogates genomic DNA,
rather than RNA or protein, it offers several technological advan-
tages in a clinical diagnostic setting: (1) readily available source
materials, particularly important for prognostic research, because
DNA can be more reliably extracted than RNA from archived
biological samples for study; (2) capability for multiplexing, al-
lowing simultaneous measurement of multiple targets to im-
prove assay specificity; (3) easy amplification of assay products to
achieve high sensitivity; and (4) the ability to detect a positive
signal in tumors that arises from methylation inactivation of one
allele of tumor-suppressor genes (Balmain et al. 2003). Detecting
the appearance of a positive signal should be a more robust and
reliable measurement than detecting a twofold gene expression
change at the mRNA level in these tumors. We are currently
modifying our method and prospectively collecting three types
of samples from lung cancer patients at the time of bronchos-
copy: bronchoaveolar lavage (BAL) fluid, sputum, and whole
blood, with the aim of developing a highly multiplexed, sensi-
tive, and minimally invasive methylation analysis system that
can be applied to early and noninvasive diagnosis of lung cancer,
and to monitor cancer progression and response to treatment. In
general, this technology should prove useful for comprehensive
DNA methylation analyses in large populations, with potential
application to the classification and diagnosis of a broad range of
cancers and other diseases.

Methods

Assay probe design
A 1.5-kb sequence from the 5�-regulatory region was extracted for
each target gene based on human genome RefSeq build 34, ver-
sion 3 (released on March 10, 2004). CpG islands of interest from
this 1.5-kb region were selected and “bisulfite-converted” com-
putationally. We adapted an automated SNP genotyping assay
probe design program (Fan et al. 2003) for this methylation
study. For each CpG site, four probes were designed: two allele-
specific oligonucleotides (ASO) and two locus-specific oligo-
nucleotides (LSO). Each ASO-LSO oligonucleotide pair corre-

sponded to either the methylated or unmethylated state of the
CpG site (Fig. 1). The gap size between the ASO and LSO oligo-
nucleotides varied from 1 base to 20 bases, which allowed diffi-
cult sequences or ambiguous bases in CpG islands of interest to
be avoided. This flexibility is particularly important for methyl-
ation studies because of a decrease in sequence complexity as a
result of bisulfite treatment. If other CpG sites were present in
close vicinity of the target CpG site, we made the assumption
that they had the same methylation status as the site of interest.
This design hypothesis was based on previously reported bisulfite
sequencing results, in which a majority (>90%) of the adjacent
CpG sites was shown to be co-methylated or co-demethylated
(Bird 2002; Grunau et al. 2002; Tost et al. 2003; Rakyan et al.
2004). This assumption was also confirmed by our own bisulfite
sequencing results. It is worth pointing out that this design strat-
egy is used in methylation-specific PCR primer design (Herman
et al. 1996) and other microarray-based DNA methylation analy-
sis (Adorjan et al. 2002). While there were many CpG sites within
each CpG island, we only selected those for which robust assays
could be designed. The sequence information for the 1536 de-
signed CpG sites is included in Supplemental Table 4.

DNA samples for methylation analysis
DNA from breast cancer cell lines MCF-7, MDA-MB-435, MDA-
MB-468, and T-47D; colon cancer cell lines Fet, HT29, HCT116,
LS174, and SW480; and prostate cancer cell lines PC3 and LNCaP
was extracted using a modified Trizol method according to the
manufacturer’s recommendations (Invitrogen). DNA from lung
cancer cell lines NCI-H69 (HTB-119D), NCI-H526 (CRL-5807D),
NCI-H358 (CRL-5811D), NCI-H1299 (CRL-5803D), NCI-H1395
(CRL-5868D), and NCI-H2126 (CCL-256D) was purchased from
ATCC. DNA from normal lung, ovary, breast, colon, and prostate
tissues was purchased from Clinomics Biosciences. DNA samples
NA06999, NA07033, NA10923, and NA10924 were purchased
from the Coriell Institute for Medical Research.

Samples of lung tissue classified as cancerous and samples
adjacent to the cancerous tissue but classified as normal were
used in this study, under Human Subjects Institutional Review
Board approved protocols. After pathological classification upon
resection, the tissues were frozen and stored at �80°C. Twenty-
two samples (the training set) were obtained from Philipps-
University of Marburg, Germany, and 24 samples (the test set)
were from The Pennsylvania State University College of Medicine
Tumor Bank. Specifically, 23 lung adenocarcinoma and 23 nor-
mal tissues were used, of which 11 were matched pairs (Supple-
mental Table 2). The samples were pulverized under liquid nitro-
gen. DNA was extracted from the tissue powder by the QIAamp
DNA Mini Kit (Qiagen) according to the manufacturer’s instruc-
tions. The DNA was eluted from the column with dH2O, and
stored at �80°C until use.

Plasmid DNA controls
Plasmids pUC19 and pACYC184 and phage �X174 were used as
control DNAs. Unmethylated plasmid DNAs were purchased
from New England BioLabs and then methylated in vitro using
SssI (CpG) methylase (NEB). The completion of in vitro methyl-
ation was checked by restriction enzyme digestion using a meth-
ylation-sensitive enzyme, HpaII, and its isoschisomer, MspI,
which is not sensitive to methylation. When assayed on an
agarose gel, no digestion was detected in methylated pUC19,
pACYC184, and �X174 after incubation with HpaII for 2 h at
37°C, while the unmethylated DNAs were completely digested.
Both methylated and unmethylated DNAs were completely di-
gested by MspI.

Table 3. Methylation results generated from microarray analysis
and bisulfite sequencing

CpG site Sample ID
% methylation,

bisulfite sequencing
% methylation,
array analysis

ASCL2_1038 nD12209 0.00 0.09
D12155 0.67 0.79

CDH13_1358 nD12195 0.00 0.11
D12170 0.40 0.71

HOXA11_802 nD12209 0.17 0.09
D12155 0.92 0.92

HOXA5_576 nD12209 0.20 0.60
D12163 0.75 0.75

NPY_1009 nD12209 0.00 0.12
D12165 1.00 0.88

RUNX3_368 nD12195 0.90 0.27
D12170 1.00 0.67

TERT_900 nD12209 0.00 0.60
D12165 0.44 0.92

TP73_377 nD12195 0.09 0.05
D12170 0.46 0.62
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Bisulfite conversion of DNA and methylation assay
The EZ DNA methylation kit (Zymo Research) was used for bi-
sulfite conversion of all DNA samples used in this study, accord-
ing to the manufacturer’s recommendations. For each conver-
sion, 1 µg of genomic DNA was used. Bisulfite-converted ge-
nomic DNA from one conversion was then used for up to five
array experiments. After bisulfite treatment, the remaining assay
steps were identical to the GoldenGate genotyping assay (Fan et
al. 2003), using Illumina-supplied reagents and conditions (Fan
et al. 2006). Single-stranded PCR products were prepared by de-
naturation, then hybridized to a Sentrix Array Matrix (Fan et al.
2003). The array hybridization was conducted under a tempera-
ture gradient program, and arrays were imaged using a BeadArray
Reader scanner (Barker et al. 2003). Image processing and inten-
sity data extraction software were as described previously (Galin-
sky 2003).

BeadArray technology
Microarrays were assembled by loading pools of glass beads (3 µm
in diameter) derivatized with oligonucleotides onto the etched
ends of fiber-optic bundles (Barker et al. 2003). About 50,000
optical fibers were hexagonally packed to form an ∼1.4-mm di-
ameter bundle. The fiber optic bundles were assembled into a
96-array matrix (Sentrix Array Matrix), which matched the di-
mensions of standard microtiter plates. This arrangement al-
lowed simultaneous processing of 96 samples using standard ro-
botics (Fan et al. 2003). Because the beads were positioned ran-
domly, a decoding process was carried out to determine the
location and identity of each bead in every array location (Gun-
derson et al. 2004). Decoding is a part of array manufacture and
provides quality control for all elements of every array.

Methylation data analysis
Each methylation data point is represented by fluorescent signals
from the M (methylated) and U (unmethylated) alleles. Back-
ground intensity computed from a set of negative controls was sub-
tracted from each analytical data point. The ratio of fluorescent
signals was then computed from the two alleles � = (max(M, 0))/
(�U� + �M� + 100). The �-value reflects the methylation level of
each CpG site. An absolute value was used in the denominator of
the formula, as a compensation for any “negative signals” that
may arise from global background subtraction (i.e., oversubtrac-
tion; a constant bias of 100 was added to regularize � when both
U and M values were small). For cluster analysis, a matrix of
correlation coefficients between calculated methylation signals
was computed. Agglomerative nesting was applied using the
Agnes function in the R package with Ward’s method.

Methylation-specific PCR
After bisulfite treatment, the methylation status of particular
CpG sites in genomic DNA was analyzed by methylation-specific
PCR (Herman et al. 1996). In brief, the bisulfite-converted ge-
nomic DNA was amplified by real-time quantitative PCR using
two sets of locus-specific MSP primers, which recognize methyl-
ated or unmethylated DNA, respectively. The MSP primers (Table
1) were designed using CpGWare, software provided by Chemi-
con. Real-time PCR analysis was performed on an ABI Prism
7900HT Sequence Detection System (Applied Biosystems).

The PCR reaction was performed using a 384-well optical
tray in a final volume of 10 µL. The reaction mixture consists of
5 µL of 2� SYBR Green PCR master mix (Applied Biosystems)
and 250 nM each primer and bisulfite-converted DNA template
(∼50 ng, measured prior to bisulfite treatment). The real-time

PCR cycling conditions were as follows: 50°C for 2 min, 95°C for
12 min, followed by 40 cycles at 95°C for 20 sec, 56°C for 30 sec,
and 72°C for 1 min. After PCR, a thermal melt profile was per-
formed to examine the homogeneity of PCR amplicons. Each
DNA sample was analyzed in duplicate, and the mean was used
for further analysis. The difference of the threshold cycle number
(the Ct-values) between the methylated and unmethylated al-
leles, �Ct = Ct (unmethylated) � Ct (methylated), was first deter-
mined. The percentage of methylated DNA, designated as the
methylation level “c,” can be correlated to the �Ct value through
the equation �Ct = log2[c/(1 � c)] (Zeschnigk et al. 2004; Mar-
tens et al. 2005). The resulting methylation level thereby equals
2�Ct/(1 + 2�Ct).

Bisulfite sequencing
Methylation status of selected CpG sites was examined by bisul-
fite sequencing. Primers were designed flanking the CpG sites of
interest (Table 2). The primer landing sites did not contain CpG
dinucleotides, and therefore the nucleotide sequences remained
unchanged after bisulfite treatment. As a result, the methylated
and unmethylated alleles would be equally amplified in the same
reaction with the designed primer pair. The PCR-amplified frag-
ments were cloned into the pCR4-TOPO vector (Invitrogen) fol-
lowed by transformation into Escherichia coli TOP10-competent
cells (Invitrogen). Transformants containing recombinant plas-
mids were selected by blue/white colony screening. PCR inserts
were directly amplified from the white colonies in the reaction
mixture (35 µL) containing 3.5 µL of GeneAmp 10� PCR buffer
(Applied Biosystems), 1.5 units of AmpliTaq Gold (Applied Bio-
systems), 1.5 mM MgCl2, 200 nM dNTP, and 200 nM each of M13
forward (5�-GTAAAACGACGGCCAGT-3�) and reverse primer (5�-
CAGGAAACAGCTATGAC-3�). The reaction was subjected to the
following cycling conditions: 94°C for 10 min, followed by 35
cycles of 94°C for 30 sec, 50°C for 30 sec, 72°C for 30 sec, and a
final cycle of 72°C for 5 min. The PCR products were sequenced
by Agencourt Bioscience Corporation.
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