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ABSTRACT

Understanding the aspects of the cell functionality that account for disease 

or drug action mechanisms is a main challenge for precision medicine. Here we 

propose a new method that models cell signaling using biological knowledge 

on signal transduction. The method recodes individual gene expression values 

(and/or gene mutations) into accurate measurements of changes in the activity 

of signaling circuits, which ultimately constitute high-throughput estimations of 

cell functionalities caused by gene activity within the pathway. Moreover, such 

estimations can be obtained either at cohort-level, in case/control comparisons, or 

personalized for individual patients. The accuracy of the method is demonstrated 

in an extensive analysis involving 5640 patients from 12 different cancer types. 

Circuit activity measurements not only have a high diagnostic value but also can be 

related to relevant disease outcomes such as survival, and can be used to assess 

therapeutic interventions.

INTRODUCTION

Despite most phenotypic traits (including disease 

and drug response) are multi-genic, the vast majority of 

biomarkers in use are based on unique gene alterations 

(expression changes, mutations, etc.) Obviously, the 

determination of the status of a single gene is technically 

easier than multiple gene measurements. However, 

regardless of their extensive clinical utility, single gene 

biomarkers frequently lack any mechanistic link to the 

fundamental cellular processes responsible for disease 

progression or therapeutic response. Such processes are 

better understood as pathological alterations in the normal 

operation of functional modules caused by different 

combinations of gene perturbations (mutations or gene 

expression changes) rather than by alterations of a unique 

gene [1].

Of particular interest are signaling pathways, a 

type of functional module known to play a key role in 

cancer origin and progression, as well as in other diseases. 

Consequently, analysis of the activity of signaling 

pathways should provide a more informative insight 

of cellular function. Actually, the recent demonstration 

that the inferred activity of the c-Jun N-terminal kinase 

pathway, shows significantly higher association to 
neuroblastoma patients’ mortality than the activity of 

their constituent genes (including MICN, the conventional 

neuroblastoma biomarker) [2] constitutes an elegant 

confirmation of this concept. In a similar example 
drug sensitivity is shown to be better predicted using 

probabilistic signaling pathway models than directly using 

gene activity values [3].

However, conventional methods for pathway 

analysis, even the most sophisticated ones based on 

pathway topology, can only detect the existence of a 

significant level of gene activity within the pathway [4]. 
However, these methods ignore the obvious fact that many 

pathways are multifunctional and often trigger opposite 

functions (e.g. depending the receptor and the effector 

proteins involved in the transduction of the signal, the 

apoptosis pathway may trigger survival or cell death). 

Moreover, whether the level of gene activity detected by 
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conventional methods actually triggers cell functionalities 

or not and, if so, what genes are the ultimate responsible 

for the resulting cell activity is something that must be 

determined a posteriori, usually by heuristic methods. 

Thus, pathway activity analysis (PAA) emerges as an 

alternative way of defining a new class of mechanistic 
biomarkers, whose activity is related to the molecular 

mechanisms that account for disease progression or drug 

response. However, capturing the aspects of the activity of 

the pathway that are really related to cell functionality is 

not trivial. This requires of an appropriate description of 

the elementary sub-pathways and an adequate computation 

of the individual contributions of gene activities to 

the actual activity of the sub-pathway. Different ways 

of computing activity scores for diverse sub-pathway 

definitions using gene expression values [5–8], or even 
gene mutations [9], have been proposed (See Table 1). 

However, in most of them sub-pathway definition is either 
disconnected, or only collaterally related, to the functional 

consequences of pathway activity (See Table 1).

Here we propose a new method to estimate the 

activity within a pathway that uses biological knowledge 

on cell signaling to recode individual gene expression 

values (and/or gene mutations) into measurements that 

ultimately account for cell functionalities caused by the 

activity of the pathway. Specifically, we estimate the level 
of activity of stimulus-response sub-pathways (signaling 

circuits thereinafter) within signaling pathways, which 

ultimately trigger cell responses (e.g. proliferation, 

cell death, etc.) The activity values of these canonical 

circuits connected to the activation/deactivation of cell 

functionalities can be considered multigenic mechanistic 

biomarkers that can easily be related to phenotypes and 

provide direct clues to understand disease mechanisms 

and drug mechanisms of action (MoA). Therefore, we 

designate this method as canonical circuit activity analysis 

(CCAA).

RESULTS

Data pre-processing

RNA-seq counts for 12 cancer types listed in Table 

2 were downloaded from The Cancer Genome Atlas 

(TCGA) data portal (https://tcga-data.nci.nih.gov/tcga/). In 
order to detect possible batch effects, principal component 

analysis (PCA) were calculated. The samples were plotted 

in the PCA representation by sequencing center, plate, 

cancer type and project. Only a clear batch effect by 

sequencing center and cancer was found (Figure S1A to 

S1E, upper panel), that was corrected by the application 

of the COMBAT [10] method (Figure S1F to S1J, lower 

panels). Then, the 538 samples of the Kidney renal clear 
cell carcinoma (KIRC) dataset were further normalized 
using TMM [11] to account for RNA composition bias. 

Normalized data were used as input for the CCAA method.

Estimation of the specificity of the CCAA 
method

In order to estimate the false positive rate, we 
generated different sets of indistinguishable samples 

that were randomly divided into two groups which were 

compared to try to find differentially activated circuits. 
Given that the compared groups are composed of the 

same type of individuals, any significant difference in 
sub-pathway activity found in the comparisons would 

be considered a false positive of the method. Real and 

simulated samples were used for this purpose (see 

Methods) and the ratio of false positives was always very 

low, far below the conventional alpha value of 0.05 (see 
Figure S2).

Estimation of the sensitivity of the CCAA 
method

In order to obtain an estimation the true positive rate 
of the CCAA method, we compared cancer samples versus 

the corresponding healthy tissue in a series of contrasts 

with different sizes (N=50,100,200 and 400 samples; see 
Methods) from which we expect differences in cancer-

associated pathways. Two different cancer types, KIRC 
and BRCA, were used to avoid biases derived from 

using only a specific type of cancer. We have used two 
definitions of cancer associated pathways, one of them 
taken from KEGG (composed of 14 pathways belonging to 
the Cancer pathways category, see Table 3), and the other 

one that contains 49 pathways curated by experts (Table 
4). Figure S3 shows how, except in the case of very small 
datasets in which the statistical power of the method for 

detecting significant differences is limited, the proposed 
CCAA methodology clearly identifies significant changes 
for both cancers in the two cancer pathway definitions 
used.

Comparison to other available PAA methods

The performance of our method was compared to 

other PAA methods that provide different definitions of 
sub-pathways and distinct algorithms to calculate a score 

for them. From the list in (Table 1) we used eight methods 

that satisfy two basic conditions: they can be applied to 

RNA-seq data and there is software available for running 

them. These are: DEAP [12], subSPIA [13], using their 
own software, and topologyGSA [14], DEGraph [6], 
clipper [5], TAPPA [15], PRS [16], PWEA [17], using 
the implementation available in the topaseq package [18]. 
Figure 1 represents the true positive and true negative 

ratios obtained for any of the methods compared (See 

Methods). While most of the pathway activity definitions 
are reasonably specific, with true negative ratios over 
95% (except clipper, topologyGSA and PWEA, probably 
because they define sub-pathways unconnected with 
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Table 1: List of methods for Pathway Analysis

Method Date Code
Pathway 
modelled

Entity modelled Input Output Comparison Loops

MinePath[52] 2015
Web application
http://minepath.

org/

KEGG pathways Subpath 

identification MA

p-value per 

pathway

p-value per 

subpathway

binary value per 

sample

graphical 

visualization

Two 

conditions
NA

Qin et al.[53] 2015 NA
12 cancer-related 

KEGG pathways
signal 

quantification

Mutations

CNVs

Cancer 

drugs

Pathway 

activity
Personalized yes

subSPIA[13] 2015 R code KEGG pathways signal 

quantification

MA

RNAseq 

(via 

SPIA in 
ToPASeq)

p-value of DE 

per subpathway

p-value of PF 

per subpathway

global p-value 

(DE+PF)

Two 

conditions
no

Pathome[54] 2014 NA KEGG pathways signal 

quantification
MA

RNAseq

p-value per 

subpathway

Two 

conditions
NA

Pepe et al.[55] 2014 R code KEGG pathways subpath 

identification MA
p-value per 

subpathway

Two 

conditions
NA

ToPaSeq[18] 2014 R package

graphite gene-gene 

networks

user's pathways

integrates other 

methods:

TopologyGSA

DEGraph

Clipper

SPIA
TAPPA

PRS

PWEA

MA

RNAseq

Depends on the 

method

Two 

conditions

Depends 

on the 

method

DEAP[12] 2013 python code
user defined 

pathway structure

signal 

quantification
MA

RNAseq

Score and 

p-value per 

pathway

subgraph with 

the maximum 

absolute score

Two 

conditions
yes

CliPPER[5] 2013

R package

ToPASeq R 

package

graphite gene-gene 

networks

cliques

user's pathways 

(via ToPASeq)

subpath 

identification
MA

RNAseq

p-value at 

pathway level

Most affected 

subgraph per 

pathway

Gene-level 

statistics for DE 

of genes

Two 

conditions
no

GraphiteWeb[56] 2013

Web application:
http://graphiteweb.

bio.unipd.it/R 

package

KEGG pathways
Reactome 

pathways

integrates other 

methods:

Hypergeometric 

test

Global Test

GSEA

SPIA
CliPPER

MA

RNAseq

Significant 
pathways

Visualization 
of the pathways 

with nodes 

coloured 

according 

to their 

contribution to 

the analysis

Two 

conditions
no

TEAK[57] 2013

Code @ Google 

(Windows and 
Mac)

KEGG  
pathways

metabolism-

orientedsubpathway 

identification
MA

Ranked 

subpathways

Two 

conditions
no

 (Continued )
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Method Date Code
Pathway 
modelled

Entity modelled Input Output Comparison Loops

PRS[16] 2012
ToPASeq R 

package

graphite gene-

gene networks 

(ToPASeq)

user's pathways 

(via ToPASeq)

pathway 

identification
MA

RNAseq

p-value per 

pathway

gene-level 

statistics for DE 

of genes

Two 

conditions
yes

DEGraph[6] 2012

R 

packageToPASeq 

R package

subgraphs of 

a large graph 

(branch-and-

bound-like 

approach) 

graphite gene-

gene networks 

(ToPASeq)

user's pathways 

(via ToPASeq)

subpath 

identification
MA

RNAseq

p-value of DE 

per subpathway

p-value per 

pathway

Gene-level 

statistics for DE 

of genes

Two 

conditions
no

Rivera et al.[58] 2012 NA NetPathpathways
subpath 

identification MA

p-value of 

most perturbed 

subpathway

Two 

conditions
NA

Chen et al.[59] 2011 NA KEGG pathways subpath 

identification MA

p-value per 

subpathway

p-value of key 

genes

Two 

conditions
NA

PWEA[17] 2010
ToPASeq R 

package

Complete 

pathways (KEGG)
graphite gene-

gene networks 

(ToPASeq)

user's pathways 

(via ToPASeq)

pathway 

identification
MA

RNAseq

p-value of DE 

per pathway

Gene-level 

statistics for DE 

of genes

Two 

conditions
no

TopologyGSA[14] 2010
ToPASeq R 

package

Complete 

pathways (KEGG)
Cliques

graphite gene-

gene networks 

(ToPASeq)

user's pathways 

(via ToPASeq)

subpath 

identification
MA

RNAseq

p-value of DE 

per pathway

Gene-level 

statistics for DE 

of genes

Two 

conditions
no

DEGAS[60] 2010 Java (Windows) KEGG pathways
PPIs network

novel subpath 

identification MA
A subpathway 

per pathway

Two 

conditions
NA

TAPPA[15] 2007 ToPASeq R 

package

graphite gene-

gene networks 

(ToPASeq)

user's pathways 

(via ToPASeq)

pathway 

identification
MA

RNASeq

p-value of DE 

per pathway

Gene-level 

statistics for DE 

of genes

Two 

conditions
no

The first column (Method) contains the name or acronym of the method, if exists, otherwise, we refer to it as the fires author of 
the publication. The second column (Date) contains the publication date. The third column (code) informs on the availability of 

the code to run the method. The fourth column (Pathway modelled) indicates the pathway definition used in the method. The fifth 
column (Entity modelled) is the entity, within the pathway, used in the method (“subpath identification” methods obtain candidate 
sub-pathways usually by differential expression of its constituent genes, “signal quantification” methods provide, in addition, a 
quantification of the activation status of the sub-pathway). The sixth column (input) indicates the data type that inputs the method 
(MA: Expression Microarray; CNV: copy number variation; NA: not available). The seventh column (output) describes the results 
provided by the method. Some provide only a score (p-value, DE: differential expression matrix; PF: perturbation factor) for the 
whole pathway and other also provide scores for sub-pathways, that can be defined within the pathways in many different ways. 
The eight column (Comparison) indicates the type of comparison the method can deal with. It can be either a conventional two 
conditions (typically case/control) comparison or it can allow obtaining personalized results per individual. And the ninth column 
(Loops) indicates whether the method can handle loop structures in the topology of the sub-pathway analysed or not.
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cell functionality), the sensitivity is generally low (in 

most cases below 50%). When the curated list of cancer 
pathways (see Table 4) is used, the performance of some 
methods improves but still, the sensibility is in general low 

(clearly below 75%, see Figure S4).
From the technical standpoint, the CCAA method 

can handle loops in the pathway topology, a feature absent 

in most PAA methods (see Table 1) allowing a more 

comprehensive description of the circuit activity.

These results demonstrates that all the PAA methods 

analyzed, except ours, are not properly capturing the 
biological signal and consequently failed to detect cancer 

pathway activities when cancer and normal tissues were 

compared, across twelve different cancer types.

A case example with kidney renal clear cell 
carcinoma

To demonstrate the utility of this approach in defining 
the activity of canonical signaling circuits as highly 

reliable mechanistic biomarkers that, in addition, account 

for important disease outcomes such as survival, kidney 

renal clear cell carcinoma (KIRC) [19] data was used. In 
addition, survival data available on patients were used to 

Table 3: KEGG cancer pathways

KEGG identifier Name

hsa04010 MAPK signaling pathway
hsa04310 Wnt signaling pathway
hsa04350 TGF-beta signaling pathway

hsa04370 VEGF signaling pathway

hsa04630 Jak-STAT signaling pathway

hsa04024 cAMP signaling pathway

hsa04151 PI3K-Akt signaling pathway
hsa04150 mTOR signaling pathway

hsa04110 Cell cycle

hsa04210 Apoptosis

hsa04115 p53 signaling pathway
hsa04510 Focal adhesion

hsa04520 Adherens junction

hsa03320 PPAR signaling pathway

Table 2: Cancers used in this study with the number of samples sequenced of both tumour biopsy and normal 
adjacent tissue

TCGA 

Identifier Cancer Primary tumor Normal adjacent 

tissue
Ref.

BLCA Bladder Urothelial Carcinoma 301 17 [29]

BRCA Breast invasive carcinoma 1057 113 [30]

COAD Colon adenocarcinoma 451 41 [31]

HNSC
Head and Neck squamous cell 

carcinoma
480 42 [32]

KIRC Kidney renal clear cell carcinoma 526 72 [19]

KIRP Kidney renal papillary cell 
carcinoma

222 32 [33]

LIHC Liver hepatocellular carcinoma 294 48 -

LUAD Lung adenocarcinoma 486 55 [34]
LUSC Lung squamous cell carcinoma 428 45 [35]
PRAD Prostate adenocarcinoma 379 52 [36]
THCA Thyroid carcinoma 500 58 [37]

UCEC
Uterine Corpus Endometrial 

Carcinoma
516 23 [38]
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Table 4: Curated cancer pathways

KEGG identifier Name

hsa04014 Ras signaling pathway

hsa04015 Rap1 signaling pathway

hsa04010 MAPK signaling pathway

hsa04012 ErbB signaling pathway

hsa04310 Wnt signaling pathway

hsa04330 Notch signaling pathway

hsa04340 Hedgehog signaling pathway

hsa04350 TGF-beta signaling pathway

hsa04390 Hippo signaling pathway

hsa04370 VEGF signaling pathway

hsa04630 Jak-STAT signaling pathway

hsa04064 NF-kappa B signaling pathway

hsa04668 TNF signaling pathway

hsa04066 HIF-1 signaling pathway

hsa04068 FoxO signaling pathway

hsa04020 Calcium signaling pathway

hsa04024 cAMP signaling pathway

hsa04022 cGMP-PKG signaling pathway

hsa04151 PI3K-Akt signaling pathway

hsa04152 AMPK signaling pathway

hsa04150 mTOR signaling pathway

hsa04110 Cell cycle

hsa04114 Oocyte meiosis

hsa04210 Apoptosis

hsa04115 p53 signaling pathway

hsa04510 Focal adhesion

hsa04520 Adherens junction

hsa04530 Tight junction

hsa04540 Gap junction

hsa04611 Platelet activation

hsa04620 Toll-like receptor signaling pathway

hsa04621 NOD-like receptor signaling pathway

hsa04650 Natural killer cell mediated cytotoxicity

hsa04660 T cell receptor signaling pathway

hsa04662 B cell receptor signaling pathway

hsa04670 Leukocyte transendothelial migration

hsa04062 Chemokine signaling pathway

 (Continued )
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KEGG identifier Name

hsa04910 Insulin signaling pathway

hsa04920 Adipocytokine signaling pathway

hsa03320 PPAR signaling pathway

hsa04912 GnRH signaling pathway

hsa04915 Estrogen signaling pathway

hsa04914 Progesterone-mediated oocyte maturation

hsa04919 Thyroid hormone signaling pathway

hsa04916 Melanogenesis

hsa05200 Pathways in cancer

hsa05231 Choline metabolism in cancer

hsa05202 Transcriptional misregulation in cancer

hsa05205 Proteoglycans in cancer

demonstrate that the activity of many of the selected circuits 

is significantly related to the prognostic of the disease.
Firstly, 526 cancer samples were compared against the 

72 available controls of normal kidney tissue adjacent to the 
primary tumors (See Table 2). The comparison was made at 

the level of canonical circuits (see Methods), effector circuits 

and functions (using both Uniprot and GO annotations). As 

expectable, given the large number of differentially expressed 

genes between the cancer and the healthy tissue [19], a large 

number of signaling circuits present a significant differential 
activation between the compared conditions (4966 with 
a FDR-adjusted p-value < 0.01; See Table S1). Focusing 
on effector circuits, this signaling interplay is reduced to 

870 significant changes in the intensity of signal reception 
(with a FDR-adjusted p-value < 0.01; See Table S2). These 
effector nodes significantly trigger 71 cell functionalities 
(according to Uniprot general definitions, see Table S3, 
which summarize 320 more detailed cell functionalities 
according to GO definitions, see Table S4; both with a FDR-
adjusted p-value < 0.01). Figure 2 summarizes the different 
functions dysregulated by circuits in different KEGG cancer 
pathways (see Table 3) and the corresponding impact on 

patient’s survival. Figure S5 expands this summary to the 
set of curated cancer pathways listed in Table 4. Although 
some functionalities are quite general descriptions of cellular 

biological processes and others can be consequences of the 

extreme deregulation process occurring in cancer cells, 

a considerable number of them can be clearly linked to 

tumorigenic processes and can easily be mapped to cancer 

hallmarks [20].

Circuits that trigger cancer hallmarks determine 

patient survival

Since survival data was among the clinical 

information available survival analysis of the significant 

effector circuits, and functions listed in Tables S1, S2, 

S3 and S4) was carried out. This analysis provides an 
independent validation of the involvement of several cell 

functionalities, as well as several signaling circuits that 

trigger them, in cancer pathogenesis.

Survival analysis discovered a total of 310 effector 

circuits whose dysregulation is significantly associated to 
good or poor cancer prognostic (Table S5). These circuits 
trigger a total of 31 general cell functionalities, according 

to Uniprot definitions (Table S6) that can be expanded to 
108 more detailed GO definitions (Table S7), which are 
significantly related to patient’s survival.

The main cancer hallmark is sustained proliferation 

[20]. A clear example of effector circuit related to this 

hallmark is the CCNA2, from the AMPK signaling 
pathway, whose high levels of activity are significantly 
associated to bad prognostic in the patients in which 

triggers the Cell division function (Figure S6A). Actually, 
there is a significant increase in the activity of the CCNA2 

effector circuit as cancer stage progresses (Figure S6C). 
In fact, dysregulated genes were recently identified in this 
sub-pathway that might be potential biological markers 

and processes for treatment and etiology mechanism 

in KIRC [21]. Another similar example is the effector 
circuit ending in node CDK2, CCNE1 from the p53 
signaling pathway, and triggering the Cell cycle function, 

whose increased activity is significantly associated to 
bad prognostic in KIRC patients (Figure S7A and S7B). 
In addition, there is a significant increase in the activity 
of the CDK2, CCNE1 effector circuit as cancer stage 

progresses (Figure S7C). Recently, CDK2, CCNE1 genes 

were described as cancer prognostic factors [22]. When 
the association is carried out at the function level, there 

are two Uniprot functions (Table S6) representative of 
sustained proliferation hallmark: Mitosis (FDR-adjusted 

p-value 1.7x10-12) and DNA replication (FDR-adjusted 
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Figure 2: Circos plot that summarises the relationships between effectors within pathways and the functions triggered 
by them. Only cancer KEGG pathways (Table 3) related to functions significantly related to survival are represented here. On the right 
side appear the effector circuits grouped according to the pathway they belong to. There is a histogram per pathway that represents the 

proportion of effector pathways upregulated (red), downregulated (blue) and dysregulated in both directions (yellow). On the left side of 

the circo appear the functions triggered by the effector circuits divided into those which are significant when are up-regulated (red), when 
are down-regulated (blue) or when both situations occur (yellow). For each function there is a band that indicates the prognostic of its 

deregulation, which can be good (green) or bad (grey).

Figure 1: Comparison of performances of the different methods for defining pathways and calculating its activity. 
CCAA is compared to DEAP [12], subSPIA [13], using their own software, and topologyGSA [14], DEGraph [6], clipper [5], TAPPA [15], 
PRS [16], PWEA [17], using the implementation available in the topaseq package [18]. The true positive rate has been estimated averaging 
the proportion of significant cancer KEGG pathways (Table 3) across the 12 cancers analyzed and is represented in the Y axis. Vertical 
bars in each point represent 1 SD of the true positive rate for the corresponding method. The false positive rate was estimated from 100 

comparisons of groups (N=25) of identical individuals, randomly sampled from each cancer. The results obtained in the 12 cancers are used 
to obtain a mean value and an error. The X axis represents 1- the false positive rate. Horizontal bars represent in each point represent 1 SD 
of the false positive rate for the corresponding method.
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p-value=5.9x10-8), whose upregulation is significantly 
associated to bad prognostic (See Figures S7A and S7B).

Another cancer hallmark is the activation of 

metastasis and invasion, favored when the Uniprot 

function Cell adhesion decreases. Figure S7C depicts a 
clear association between the downregulation of Cell 

adhesion and the poorer prognostic in patients (FDR-

adjusted p-value=4.4x10-5).

The third classical cancer hallmark in solid tumors 

is the induction of angiogenesis. Angiogenesis appears as 

significantly associated to survival in both Uniprot and 
GO annotations (Tables S6 and S7). Figure S8D depicts 
a significant relationship between the upregulation of 
Positive regulation of angiogenesis and higher patient’s 

mortality (FDR-adjusted p-value=2.9x10-2). Actually, the 

downregulation of the opposite term, Negative regulation 

of angiogenesis, is also associated to bad prognostic, as 

expected, although with marginal significance (FDR-
adjusted p-value=0.055).

Finally, the CCAA method also detects the well-

known Warburg effect, the observed increased uptake and 
utilization of glucose, documented in many human tumor 
types [20, 23]. Our functional analysis clearly predicts 

a bad prognostic for reduced gluconeogenesis (FDR-

adjusted p-value = 8.96x10-6, see Table S6). Actually, it 
has recently been suggested a novel mechanism of cancer 

cell death by increasing the gluconeogenesis pathway 

activity via mTOR inhibitors [24].
In addition, the CCAA method detects several 

terms whose perturbed activity seem a consequence of 

the dedifferentiation process that occur in kidney cancer 

cells, such as the down-activation of Sodium/potassium 

transport (FDR-adjusted p-value=2.95x10-9), Sodium 

transport (FDR-adjusted p-value=8.96x10-6) and, the 

general term Transport (FDR-adjusted p-value= 6.52x10-5)  

(see Table S6).
Moreover, in some specific circuits triggering 

cancer hallmarks the association of the activity of the 

circuit to the mortality of the patient resulted to be 

higher than the individual association of any of the 

genes that form the circuit. Table 5 lists some circuits 
along with the general functional categories clearly 

related to proliferation (DNA replication and Cell 

division), metastasis (Cell adhesion) and Warburg effect 
(Gluconeogenesis and Lipid metabolism). Our results 

show that the initial observation made for the c-Jun 

N-terminal kinase pathway as a superior predictor of 

prognostic in neuroblastoma [2] can be generalized to 
other circuits that trigger cell functionalities related to 

cancer hallmarks.

Cancer progression driven by specific circuits 
instead of specific genes

An additional advantage of using CCAA is 

that the signaling circuits that trigger the functions in 

this particular cancer can be easily traced back. DNA 

replication is an example of function that can easily be 

mapped to the sustained proliferative signaling cancer 

hallmark [20]. The increase in the activity of this function 

is significantly related with poor prognostic (FDR-adjusted 
p-value=5.94x10-8). Three effector circuits belonging to 

the Cell cycle and the p53 pathways (See Figure 3 and 

Table S6) are the ultimate responsible for the activation 
of this function. Moreover, it has been described that 

dysregulation of different genes within the same pathway 

may have a similar impact on downstream pathway 

function [25, 26]. Figure 4 demonstrates how the CCAA 
method can detect the same functional consequence 

(activation of DNA replication) caused by distinct, non-

recurrent, differential gene expression patterns in two 

different cancers (BRCA and KIRC). The detection of the 
specific circuits and the particular gene activities involved 
in the tumorigenesis process has enormous therapeutic 

implications.

DISCUSSION

Models of pathway activity bridge the gap 

between conventional approaches based on single-gene 

biomarkers, or functional enrichment methods, and more 

realistic, model-based approaches. Models use biological 

knowledge available on relevant biological modules (such 

as signaling pathways) to explain how their perturbations 

ultimately cause diseases or responses to treatments. 

Therefore, such perturbations (initially gene expression 

changes) can be related to disease mechanisms or drug 

MoAs [27, 28].
A unique feature of the CCAA method is that, if 

the analysis is made at the level of cell functionality, the 

changes in the activity detected can be traced back to the 

circuits in order to discover which ones are triggering the 

action and what genes are the ultimate causative agents of 

such functional activity changes. Therefore, the resulting 

models can be used to suggest and predict the effect of 

interventions (KOs, drugs or over-expressions) on specific 
genes in the circuits so as to find suitable clinical targets, 
predict side effects, speculate off-target activities, etc. 

Depending on the scenario studied, such interventions can 

be more general or more personalized.
Another relevant feature missing in the rest of 

PAA methods (Table 1) is the possibility of obtaining 

individual values of circuit, effector or function activities 

for each sample. This opens the door to obtaining patient-

specific personalized functional profiles connected to the 
corresponding signaling circuits.

Since clinical data are available at the TCGA 

repository, we were able to find significant associations of 
specific pathway activities to patient survival, proving thus 
the validity of PAA methodology to capture cell processes 

involved in disease outcome.
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Table 5: Circuits which are most significantly associated to survival than their constituent genes

Circuit
Circuit

Status

Adjusted

p-value
Gene

Gene

Status

Adjusted

p-value

General 

functional 

category

Function

Status

Adjusted

p-value

Cell cycle: CDC45 
MCM7 MCM6 
MCM5 MCM4 
MCM3 MCM2

UP 6.08E-11 CDC7 UP 1.68E-07 DNA replication UP 5.94E-08

Cell cycle: ORC3 

ORC5 ORC4 ORC2 
ORC1 ORC6 
MCM7 MCM6 
MCM5 MCM4 
MCM3 MCM2

UP 1.26E-09 CDC7 UP 1.68E-07 DNA replication UP 5.94E-08

Glucagon signaling 

pathway: G6PC DOWN 6.57E-06 PPARGC1A DOWN 1.97E-05 Gluconeogenesis DOWN 8.96E-06

Glucagon signaling 

pathway: PCK1 DOWN 4.31E-07 PPARGC1A DOWN 1.97E-05 Gluconeogenesis DOWN 8.96E-06

PPAR signaling 

pathway: PCK1 DOWN 3.75E-05 PCK1 DOWN 6.39E-05 Gluconeogenesis DOWN 8.96E-06

PPAR signaling 

pathway: LPL
DOWN 0.00095506 LPL DOWN 0.00509595 Lipid metabolism DOWN 1.59E-05

PPAR signaling 

pathway: CYP7A1 UP 0.00209578 RXRA DOWN 0.00577708 Lipid metabolism DOWN 1.59E-05

Leukocyte 

transendothelial 

migration: CDH5
DOWN 4.81E-05 CDH5 DOWN 6.14E-05 Cell adhesion DOWN 4.46E-05

Adherens junction: 

CTNNA1 CTNNB1
DOWN 3.91E-05 CTNNA1 DOWN 0.00016432 Cell adhesion DOWN 4.46E-05

PPAR signaling 

pathway: CD36 DOWN 5.46E-05 CD36 DOWN 0.00030595 Cell adhesion DOWN 4.46E-05

Proteoglycans in 

cancer: ITGAV* DOWN 4.81E-05 ITGAV DOWN 0.0006759 Cell adhesion DOWN 4.46E-05

Leukocyte 

transendothelial 

migration: 

PECAM1

DOWN 0.00063309 PECAM1 DOWN 0.0009573 Cell adhesion DOWN 4.46E-05

Adherens junction: 

CDH1* DOWN 0.00637905 CDH1 DOWN 0.0078199 Cell adhesion DOWN 4.46E-05

AMPK signaling 
pathway: CCNA2

UP 1.04E-12 STRADA UP 1.34E-07 Cell division DOWN 0.00152171

Tight junction: 

PARD6A MPP5 DOWN 1.45E-05 CDC42 DOWN 0.00011452 Cell division DOWN 0.00152171

The circuits are defined as the pathway to which it belongs to and the final effector node that triggers the function. The 
status for circuits, genes and functions are UP or DOWN depending on the respective increase or decrease of their activities 
when the cancer is compared to the normal tissue. The gene column contains the gene with the best association to survival 

(lower adjusted p-value) among all the genes in the corresponding circuit.
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Figure 4: DNA replication is triggered by the same circuits in KIRC and BRCA, but using a different pattern of gene 
activation. The Hipathia program (http://hipathia.babelomics.org) detected a total of four effector circuits in two pathways, Cell Cycle and 

P53 signaling, that are used by both cancers to trigger DNA replication. Arrows in red represent activated circuits. Genes in red represent 
genes upregulated in the cancer with respect to the corresponding normal tissue; genes in blue represent downregulated genes and genes 
with no color were not differentially expressed. Squares at the end of the circuit represent the cell functions triggered by the circuits. A. Cell 

Cycle signaling pathway in KIRC with three effector circuits activated (highlighted), one of them ending in the node containing proteins 
CDC6, ORC3, ORC5, ORC4, ORC2, ORC1 and ORC6, the second one ending in node with proteins CDC45, MCM7, MCM6, MCM5, 

MCM4, MCM3 and MCM2 and the last one ending in node with proteins ORC3, ORC5, ORC4, ORC2, ORC1, ORC6, MCM7, MCM6, 

MCM5, MCM4, MCM3 and MCM2. B. P53 signaling pathway in BRCA with the effector circuit ending in protein RRM2B highlighted. C. 

Cell Cycle pathway in BRCA with the same effector circuits activated that in KIRC, but using a different set of gene activations. D. P53 
signaling pathway in BRCA with the same effector circuit activated that in KIRC, but using a different set of gene activations.

Figure 3: Increase of DNA replication activity is related to bad prognostic. Effector nodes in two pathways trigger DNA 

replication in KIRC, as detected by the Hipathia program (http://hipathia.babelomics.org). Genes in red represent genes upregulated in 
the cancer with respect to the corresponding normal tissue; genes in blue represent downregulated genes and genes with no color were not 
differentially expressed. A. Cell Cycle signaling pathway with three effector circuits highlighted, one of them ending in the node containing 

proteins CDC6, ORC3, ORC5, ORC4, ORC2, ORC1 and ORC6, the second one ending in node with proteins CDC45, MCM7, MCM6, 

MCM5, MCM4, MCM3 and MCM2 and the last one ending in node with proteins ORC3, ORC5, ORC4, ORC2, ORC1, ORC6, MCM7, 

MCM6, MCM5, MCM4, MCM3 and MCM2. B. p53 signaling pathway with the effector circuit ending in protein RRM2B highlighted. C. 

Survival Kaplan-Meier (K-M) curves obtained for Uniprot function DNA replication.
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Finally, it is worth mentioning that the integration 

of information on protein functionality in the model, 

if it is available, is straightforward. (See Methods for 

details). Other omic data (methylomics data, Copy 

Number Variation, etc.) could also be easily introduced 

in the model providing they could be coded as proxies of 

presence and/or integrity of the protein.

MATERIALS AND METHODS

Data source and processing

We used 12 cancer types from The Cancer 
Genome Atlas (TCGA) data portal (https://tcga-data.

nci.nih.gov/tcga/) in which RNA-seq counts for 

healthy control samples were available in addition to 

the cancer samples: Bladder Urothelial Carcinoma 

(BLCA) [29], Breast invasive carcinoma (BRCA) [30], 

Colon adenocarcinoma (COAD) [31], Head and Neck 

squamous cell carcinoma (HNSC) [32], Kidney renal 
clear cell carcinoma (KIRC) [19], Kidney renal papillary 
cell carcinoma (KIRP) [33], Liver hepatocellular 
carcinoma (LIHC), Lung adenocarcinoma (LUAD) [34], 
Lung squamous cell carcinoma (LUSC) [35], Prostate 
adenocarcinoma (PRAD) [36], Thyroid carcinoma 
(THCA) [37] and Uterine Corpus Endometrial 
Carcinoma (UCEC) [38] (Table 2).

Since TCGA cancer data has different origins 

and underwent different management processes, non-

biological experimental variations (batch effect) associated 

to Genome Characterization Center (GCC) and plate ID 
must be removed from the RNA-seq data. The COMBAT 

method [10] was used for this purpose. This method 

estimates the location and scale model parameters that 

represent batch effects and shrink them towards the overall 

mean of the batch effect estimates. Then, these estimates 

are used to adjust the data for batch effects. Then, we 

applied the trimmed mean of M-values normalization 
method (TMM) method [11] for data normalization. 
TMM is a very efficient normalization method that 
corrects a well-known artifact derived from the RNA-Seq 

technology: the RNA-composition bias. When comparing 
two different samples, the number of read counts of an 

equally expressed gene may vary depending on the level 

of expression of the other genes due to the fact that the 

library depth is fixed. The read counts of a gene represent 
the proportion of the gene with respect to the total RNA 

production of the sample, but this proportion is not a 

quantitative number which can be compared if the total 

RNA production is different between samples. TMM 

normalization estimates the ratio of RNA production 
between samples with a weighted trimmed mean of the log 

expression ratios (trimmed mean of M values or TMM). 

Then it uses this estimation to modify the observed library 

size of a sample to a comparable library size which 

follows the proportion of RNA production between the 

samples. The resulting normalized values were entered to 
the pathway activity analysis method.

Modelling framework

Modelling of pathway activity requires initially of 

a formal description of the relationships between proteins 

within the pathway, which can be taken from different 

pathway repositories. Here KEGG pathways [39] are 
used, but any other repository could be used instead, 

as Reactome [40] or others. It also requires of a way to 
estimate the activation status of each protein, which 

accounts for the intensity of signal they can transmit along 

the pathway.

A total of 60 KEGG pathways (see Table 6), 
which include the main KEGG categories related 
to signaling, such as: signal transduction pathways, 

Signaling molecules and interaction pathways, Cell 

growth and death, Cell Communication, endocrine 

system and immune system, as well as some other 

related pathways are used in this modelling framework. 

This selection of pathways includes a total of 2212 

gene products that participate in 3379 nodes. It must 
be noted that any gene product can participate in more 

than one node (even in different pathways) and a node 

can contain more than one gene product. Pathways are 

directed networks in which nodes (composed by one or 

more proteins) relate to each other by edges. Only two 

different kinds of relation between nodes are considered: 

activations and inhibitions. In KEGG pathways, edges 
define different types of protein interactions that include 
phosphorilations, ubiquitinations, glycosilations, 

etc., but they include a label indicating if they act as 

activations or inhibitions.

In order to transmit the signal along the pathway, 
a protein needs: first, to be present and functional, and 
second, to be activated by other protein. Preferably, 

the activity of the proteins should be inferred from 

(phospho) proteomic and chemoproteomic experiments 

[41], however, the production of these types of data still 
results relatively complex [42]. Instead, an extensively 
used approach is taking the presence of the mRNA 

corresponding to the protein as a proxy for the presence 

of the protein [5-8, 42, 43]. Therefore, the presence of 
the mRNAs corresponding to the proteins present in the 

pathway is quantified as a normalized value between 
0 and 1. Second, a value of signal intensity transmitted 

through a protein is computed, taking into account the 

level of expression of the corresponding mRNA and the 

intensity of the signal arriving to it. The net value of signal 

transmitted across the pathway corresponds to the signal 

values transmitted by the last proteins of the pathway 

that ultimately trigger the cell functions activated by the 

pathway.
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Table 6: KEGG pathways modeled in this study

KEGG identifier Name

hsa04014 Ras signaling pathway

hsa04015 Rap1 signaling pathway

hsa04010 MAPK signaling pathway
hsa04012 ErbB signaling pathway

hsa04310 Wnt signaling pathway
hsa04330 Notch signaling pathway

hsa04340 Hedgehog signaling pathway

hsa04350 TGF-beta signaling pathway

hsa04390 Hippo signaling pathway

hsa04370 VEGF signaling pathway

hsa04630 Jak-STAT signaling pathway

hsa04064 NF-kappa B signaling pathway

hsa04668 TNF signaling pathway

hsa04066 HIF-1 signaling pathway
hsa04068 FoxO signaling pathway

hsa04020 Calcium signaling pathway

hsa04071 Sphingolipid signaling pathway

hsa04024 cAMP signaling pathway

hsa04022 cGMP-PKG signaling pathway
hsa04151 PI3K-Akt signaling pathway
hsa04152 AMPK signaling pathway
hsa04150 mTOR signaling pathway

hsa04110 Cell cycle

hsa04114 Oocyte meiosis

hsa04210 Apoptosis

hsa04115 p53 signaling pathway
hsa04510 Focal adhesion

hsa04520 Adherens junction

hsa04530 Tight junction

hsa04540 Gap junction

hsa04611 Platelet activation

hsa04620 Toll-like receptor signaling pathway

hsa04621 NOD-like receptor signaling pathway

hsa04622 RIG-I-like receptor signaling pathway
hsa04650 Natural killer cell mediated cytotoxicity

hsa04660 T cell receptor signaling pathway

hsa04662 B cell receptor signaling pathway

hsa04664 Fc epsilon RI signaling pathway
hsa04666 Fc gamma R-mediated phagocytosis

hsa04670 Leukocyte transendothelial migration

hsa04062 Chemokine signaling pathway

hsa04910 Insulin signaling pathway
hsa04922 Glucagon signaling pathway

hsa04920 Adipocytokine signaling pathway

hsa03320 PPAR signaling pathway

hsa04912 GnRH signaling pathway

 (Continued )
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Decomposing pathways into circuits

Pathways are represented by directed graphs, 

which connect input (receptor) nodes to output (effector) 

nodes. The signal arrives to an initial input node and is 

transmitted along the pathway following the direction of 

the interactions until it reaches an output node that triggers 

an action within the cell. Thus, from different input nodes 

the signal may follow different routes along the pathway 

to reach different output nodes. Within this modelling 
context, a canonical circuit is defined as any possible route 
the signal can traverse to be transmitted from a particular 

input to a specific output node (see Figure 5, left).
Output nodes at the end of canonical are the ultimate 

responsible to carry out the action the signal is intended to 

trigger in the cell. Then, from a functional viewpoint, an 

effector circuit can be defined as a higher-level signaling 
entity composed by the collection of all the canonical 

circuits ending in an unique output (effector) node (see 

Figure 5, center). When applied to effector circuits, the 
method returns the joint intensity of the signal arriving to 

the corresponding effector node.

A total of 6101 canonical circuits and 1038 effector 
circuits can be defined in the 60 pathways modelled.

Computing the circuit activity

The methodology proposed uses gene expression 

values as proxies of protein presence values, and 

consequently of potential protein activation values 

[5-8, 42-44]. The inferred protein activity values are 
then transformed into node activity values using the 

information on node composition taken from KEGG. 
KEGG defines two types of nodes: plain nodes, which 
may contain one or more proteins, whose value is 

summarized as the percentile 90 of the values of the 
proteins contained in it, and complex nodes, for which 

the minimum value of the proteins contained (the 

limiting component of the complex), is taken as the node 

activity value.

Once the node activity values have been estimated, 

the computation of the signal intensity across the different 

circuits of the pathways is performed by means of an 

iterative algorithm beginning in the input nodes of each 

circuit. In order to initialize the circuit signal we assume 
an incoming signal value of 1 in the input nodes of any 

circuit. Then, for each node n of the network, the signal 

value is propagated along the nodes according to the 

following recursive rule:

S s s1 1 1
n n

s A

a

s I

i

a i

∏ ∏υ ( ) ( )= − − −

 

(1)

Where S
n
 is the signal intensity for the current node 

n, v
n
 is its normalized value, A is the total number of 

activation signals (s
a
), arriving to the current node from 

activation edges, I is the total number of inhibitory signals 

(s
i
) arriving to the node from inhibition edges.

The algorithm to compute the transmission of the 

signal along the network is a recursive method based on 

the Dijkstra algorithm [45]. Each time the signal value 
across a node is updated in a recursion and the difference 

with the previous value is greater than a threshold, all the 

nodes to which an edge arrives from the current updated 

node are marked to be updated. The recursion continues 

until the update in the values is below the threshold. The 

advantage if using an iterative method is that the signal 

becomes steady even in cases of loops in the pathway 

topology, allowing a more precise estimation of circuit 

activities. Many PAA methods simply cannot handle with 

loops and artificially disconnect them or even remove 
them from the calculations [5, 6, 8, 13-15, 17]. Figure 
6 represents the computation of the intensity of signal 
transmission across a node, and exemplifies in a simple 
scenario how the signal is transmitted across a circuit.

KEGG identifier Name

hsa04915 Estrogen signaling pathway

hsa04914 Progesterone-mediated oocyte maturation

hsa04921 Oxytocin signaling pathway

hsa04919 Thyroid hormone signaling pathway

hsa04916 Melanogenesis

hsa04261 Adrenergic signaling in cardiomyocytes

hsa04270 Vascular smooth muscle contraction

hsa04722 Neurotrophin signaling pathway

hsa05200 Pathways in cancer

hsa05231 Choline metabolism in cancer

hsa05202 Transcriptional misregulation in cancer

hsa05205 Proteoglycans in cancer

hsa04971 Gastric acid secretion

hsa05160 Hepatitis C
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Figure 5: Schema that illustrates the relationship between circuits, effector circuits and functions. Left: signaling circuits, 

which are canonical sub-pathways that transmit signals from a unique receptor to a unique effector node. Center: effector circuits that 

represent the combined activity of all the signals that converge into a unique effector node. Right: functional activity that represents the 

combined effect of the signal received by all the effectors that trigger a particular cell function.

Figure 6: Schematic representation of the signal propagation algorithm used. Upper part: the three types of activity 

transmitted: left) the combination of two activations, center) the combination of an activation and an inhibition and right) the combination 

of two inhibitions. Central part: the normalized values of gene expression are assigned to the corresponding nodes in the circuits. Lower 
part: the signal starts with a value of 1 in the receptor node A and is propagated by multiplying the weights assigned to each node in the 

central part following the rules depicted in the upper part.
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Effector circuits and functional analysis

Effector nodes at the end of the circuits trigger 

specific functions in the cell. These functions are defined 
here based on the annotations of the proteins contained 

in the effector node. Gene Ontology [46] (GO) terms 
corresponding to the biological process ontology 

(February 16, 2016 release) and molecular function 
keywords of Uniprot [47] (release of September 21, 2015) 
are used.

The signal intensity received by the effector node 

can be propagated to the functions triggered by them 

following the same rationale of signal propagation along 

the circuits. Figure 5 illustrates how effector circuits 
are composed by different canonical circuits and how 

functions can be triggered by several effector circuits.

Straightforward integration of transcriptomic 

and genomic data

Finally, the integration of genomic and 

transcriptomic data in the proposed modeling framework 

of signaling pathways is straightforward. In order to 
transmit the signal a protein needs to be present (gene 

expressed) and to be functional (harboring no impairing 

mutations). Genomic data can be integrated with 

transcriptomic data to infer combined gene activity and 

integrity (and consequently potential functionality). In 
the simplest approach [9] the normalized expression 
value of genes harboring mutations is multiplied by 0 if 

the pathogenicity (e.g. SIFT [48], PolyPhen [49]) and 
conservation indexes (e.g. phastCons [50]) are beyond a 
given threshold (taking into account the inheritance mode), 

or if the consequence type of the mutation (stop gain, stop 

loss, and splicing disrupting) is deleterious per se, because 

it is considered to produce a non-functional protein. The 

HiPathia program enables the analysis of mutations 

found in standard variant files (VCF) from whole exome/
genome sequencing experiments in combination with gene 

expression values.

Specificity of the method of canonical circuit 
activity analysis (CCAA)

To estimate the false positive rate, different groups 

of N identical individuals were generated and further 

divided into two datasets that were compared to each 

other for finding differentially activated circuits. This 
comparison was repeated 2000 times for different data 

sizes (N = 20, 50, 100, 200 and 400 individuals) in three 
different scenarios: i) N individuals were randomly 

sampled among KIRC patients; ii) For each gene g, an 

empirical distribution of gene expression values was 

derived from the patients of the KIRC dataset. Specifically, 
the mean μ

g
 and variance σ2

g
 was inferred for each gene g 

taking into account the gene expression values measured 

for these gene in all the samples. Then, N individuals were 

generated by simulating the gene expression values for 

each gene g as random numbers sampled from a normal 

distribution N(μ
g
,σ2

g
); iii) N individuals were generated 

by simulating their gene expression values as random 

numbers from a normal distribution N(0.5, 0.05) as above.
Since the individuals involved in the comparison 

were taken either from the same type of samples or were 

generated in the same way, any differential activation 

found can be considered a false positive. The comparisons 

were carried out for both, circuits and effector proteins.

Sensitivity of the Canonical Circuit Activity 
Analysis (CCAA) method

To estimate the true positive rate, we tested a 

scenario in which biological differences are expected. 

For this purpose, we used the two 2 cancers in Table 2 

with more individuals, BRCA [30] and KIRC [19]. For 
each of the two cancers we generated 100 datasets of 

N=50,100,200 and 400 samples by sampling randomly 
both the normal and tumor samples in such a way that 

the normal/tumor proportion remained the same as in 

the original dataset (Table 2). Specifically, for BRCA 
(with 113 normal tissue and 1057 tumor), N= 50, 100, 
200 and 400 correspond to normal/tumor proportions of 
5/45, 10/90, 19/181 and 39/361, respectively. In the case 
of KIRC (with 68 normal and 470 tumor) the respective 
proportions were 6/44, 13/87, 25/175 and 51/349. In 
total, we generated 2x100x4 = 800 datasets. CCAA was 
calculated at the level of signaling circuits and effector 

circuits for both datasets. The true positive rate was 

estimated as the number of cancer pathways containing 

one or more differentially activated circuits divided by the 

total number of cancer pathways. Although a gold standard 

is always difficult in this type of scenario, we can expect 
changes in the 14 cancer pathways, as defined in KEGG 
(Cancer pathways category, see Table 3). Additionally, 

we produced an extended table of 49 cancer pathways 
curated by expert collaborators from the Valencia Institute 
of Oncology (IVO) (Table 4).

Comparison with other available methods for 

defining and scoring pathway activity

We compared the reliability of the CCAA method 
proposed here to other proposals for defining sub-
pathways and for calculating an activity score for them. 

Among the methods listed in Table 1 only nine could be 

applied to RNA-seq data and have software available for 

running them. These are: DEAP [12], subSPIA [13], using 
their own software, and topologyGSA [14], DEGraph 
[6], clipper [5], TAPPA [15], PRS [16], PWEA [17], 
implemented in the topaseq package [18]. The relative 
performance of the methods compared was derived from 

the estimation of their ratios of false positives and false 
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negatives in a similar way than above. In order to estimate 
the false positives rate 12 cancer datasets (Table 2) were 

used. For each cancer, 50 patients were randomly sampled 
100 times. Any sampled set is divided into two equally 

sized subsets that are subsequently compared. Then, the 
100 values obtained for each cancer are used to determine 

a mean value and a SD for the false positives ratio. The 

same 12 cancers (Table 2) were used to estimate the 

true positive rates. For each cancer versus normal tissue 

comparison the number of significant cancer pathways 
was calculated and divided by the total number of cancer 

pathways. The ratios were calculated for both the 14 
cancer pathways as defined in KEGG (Cancer pathways 
category, see Table 3) and the extended list of 49 curated 
cancer pathways (Table 4).

Survival in cancer

The KIRC TCGA samples contain survival 
information among the clinical data available. These can 

be used to check whether the circuit or function activities 

estimated for each patient have a relationship with survival 

or not. Kaplan-Meier (K-M) curves [51] were estimated 
using the function survdiff from the survival R package 

(https://cran.r-project.org/web/packages/survival/) for 

each signaling circuit, each effector circuit and each 

cell function (either Uniprot or GO definitions) with 
a significant difference of activity when cancers were 
compared to the corresponding controls. Specifically, 
the 10% of individuals presenting the highest (or lowest) 
activity were compared to the rest of them.

Availability of data and materials

A user-friendly web server that runs the code for 

carrying out the CCAA method is freely available at http://

hipathia.babelomics.org.

The R code implementing the method is available at 

https://github.com/babelomics/hipathia.
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