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We present a camera-based method for automatically quantifying

the individual and social behaviors of fruit flies, Drosophila

melanogaster, interacting in a planar arena. Our system includes

machine-vision algorithms that accurately track many individuals

without swapping identities and classification algorithms that

detect behaviors. The data may be represented as an ethogram

that plots the time course of behaviors exhibited by each fly

or as a vector that concisely captures the statistical properties

of all behaviors displayed in a given period. We found that

behavioral differences between individuals were consistent

over time and were sufficient to accurately predict gender and

genotype. In addition, we found that the relative positions

of flies during social interactions vary according to gender,

genotype and social environment. We expect that our software,

which permits high-throughput screening, will complement

existing molecular methods available in Drosophila, facilitating

new investigations into the genetic and cellular basis

of behavior.

Drosophila has emerged as an important genetic model organism

for the study of neurobiology and behavior. Research on fruit flies

has led to insight into many behaviors of medical interest including

drug abuse1,2, aggression3,4, sleep deprivation5, aging6 and memory

loss7. The multitude of genetic manipulations possible in

Drosophila make it an ideal model system to study general princi-

ples of behavioral neuroscience. For example, toolkits have recently

been developed for altering the physiology of specific populations

of neurons in intact flies8–11. However, analysis of the behavioral

effects of these manipulations is hampered by the absence of

thorough and quantitative methods for measuring behavior12.

Machine vision has shown promise for automating tracking and

behavior analysis of Drosophila and other animals. Several algo-

rithms have been developed that can successfully track the trajec-

tories of single, isolated flies13–16. Although useful, tracking only a

single fly limits the types of behaviors that can be analyzed as well as

the throughput of the system. Several tracking systems can be used

to follow multiple, unmarked, interacting animals but fail when

the animals are in close proximity to one another, and thus

these systems cannot keep individual identities distinct17–22. The

commercially available Ethovision system (Noldus) can track the

identities of multiple interacting animals but requires tagging

the animals with colored markers. The problem of tracking

individuals in groups has been researched for studies of eusocial

insects (ants and bees)23,24, but robust implementations are not

publicly available. Recently, systems have been developed to auto-

matically detect components of aggression and courtship behavior

in flies4,25, in addition to tracking their positions. However, these

systems cannot be used with large populations or unmarked flies,

and detectors for new behaviors cannot be created without addi-

tional programming.

We propose a general-purpose, automated, quantitative and

high-throughput system for measuring the behavior of interacting

fruit flies. Our system uses machine vision techniques to auto-

matically track large groups of unmarked flies while maintaining

their distinct identities. We thus obtained trajectories: the position

and orientation of each fly in each frame of a recorded video. Our

system also includes automatic behavior detectors based on

machine learning, which condense these trajectories into etho-

grams: meaningful, quantitative statistics of social and individual

behavior. Because our system can be used to quickly measure many

detailed statistics of fly behavior, it can be used to discover and

quantify subtle behavioral differences between different popula-

tions of flies and between individuals within a population. We have

designed our tracker to be adaptable to other laboratory setups, and

our machine learning software can be used to specify new, auto-

matic behavior detectors without programming. We therefore

envision it will foster a more effective exploitation of genetic

tools in behavioral neuroscience.

RESULTS

System overview

The behavioral arena used initially to test and develop our system

consisted of a 24.5 cm diameter platform with an overhead Fire-

Wire camera and infrared lighting (Fig. 1). The software compo-

nent consisted of a tracker for computing fly trajectories from

captured digital video (Fig. 2) and a behavior detector, which may

be trained from examples (Fig. 3). The systemwas accurate: the x-y

position of a fly was estimated with a median error of 0.03mm (2%

of body length) and orientation with a median error of 41 (Fig. 2e

and Supplementary Figs. 1 and 2 online). Identity errors were
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absent with minimal user supervision and occurred every 1.5 h per

fly in fully automatic mode (Online Methods and Supplementary

Table 1 online).

To test the potential of using multiple fly trajectories for auto-

mated behavior analysis, we carried out three proof-of-concept

experiments. First, we defined automatic detectors for several

individual and social behaviors exhibited by flies walking in a

circular arena. Then, we used these detectors to produce ethograms

for flies in different gender groupings. To determine whether these

ethograms are useful descriptions of the flies’ behavior, we used

them to classify flies according to gender (male versus female) and

genotype (wild type versus fruitless). The Fruitless protein is a

transcription factor that plays a role in the sex determination

pathway in flies. Male fruitless mutants exhibit several behavioral

abnormalities, including inter-male courtship chains26. Second, we

quantified differences in the behavior of individuals within a

population and found that those differences were stable throughout

each trial. Third, we examined the spatial distributions of the

relative positions of flies during social interactions. We compared

the distributions for pairs of flies of the same and different sex as

well as for male fruitlessmutants. All analyses described below were

derived from seventeen 30-min trials, each comprising 20 flies, a

total of 170 fly-hours. In four trials we used only females; in six,

only males; in five, half male and half female; and in two trials, we

used male flies homozygous for the fru1 allele of fruitless (fru1/fru1).

Examples of each of the four trial types are available in Supple-

mentary Videos 1–4 online.

Automatic ethograms

We created automatic detectors for eight behaviors with a wide

range of sequence durations, velocities and accelerations (Fig. 3a,

Supplementary Video 5 and Supplementary Table 2 online).

These behaviors represented the majority

of the flies’ actions in our circular arena. We

trained most detectors from a few manually

segmented trajectories (Online Methods).

The software is user-friendly, and detectors

for new behaviors can be created without

additional programming. Six of the beha-

viors involve basic locomotor actions, and

two of the behaviors relate to social inter-

actions between flies. Most of the time the

flies either walked at a relatively constant

velocity (‘walk’) or stopped in place (‘stop’).

The next-most common behavior was

‘sharp turn’, in which a fly made a large,

rapid change in orientation. Other locomo-

tor classifications included ‘crabwalks’, in

which the fly walked with a substantial

sideways component, and ‘backups’, in

which the fly’s translational velocity was

negative. ‘Jumps’ consisted of rapid transla-

tions within the arena. A ‘touch’ occurred

when the head of one fly came in contact

with another fly. ‘Chases’ were cases in

which one fly (always a male) followed

another across the arena. An automatic

detector for a given behavior (for example,

the walk detector) input the trajectory for

an individual fly (Fig. 3b) (or for a pair of flies, for social

behaviors), derived per-frame statistics such as the translational

speed, angular speed or distance to the second fly (for social

behaviors), then segmented the trajectory into bouts in which the

fly was and was not performing the given behavior (Fig. 3c).

By collecting the statistics of these eight behaviors into a vector,

we created ethograms: rich, quantitative descriptions of each

individual fly’s behavior. For each fly, we computed one such

description, consisting of the frequency with which each individual

fly performed each behavior (we discuss other descriptions, the

fraction of time a fly performed a behavior and mean behavior

duration, in Supplementary Fig. 3 online). To visualize differences

among female, male andmale fru1/fru1 flies, we grouped the flies by

type and displayed the behavior frequency in pseudocolor

(Fig. 3d). Inspection of this ‘behavioral microarray’ suggested

that the behavioral vectors of female, male and fru1/fru1 male

flies differed consistently. We quantified these differences by com-

puting the mean and standard error behavior vectors for each type

of fly (Supplementary Fig. 4 online).

To determine whether these ethograms are powerful descriptors

of behavior, we tested whether we could predict the sex of a fly

(male versus female) and its genotype (wild-type males versus

fru1/fru1 male) based solely on components of the automatically

generated behavioral vector (Fig. 3e). We found that predictors

based on the statistics of each of the eight behaviors independently

distinguished sex with accuracies all better than chance, with touch

frequency performing best (96.8% accuracy) and sharp turn

frequency performing best of the locomotor behaviors (83.9%

accuracy). A predictor based on the combination of all behaviors

had an accuracy of 96.9%. Even a predictor based solely on

locomotor behaviors (excluding touches and chases) predicted

sex with an accuracy of 95.5%. We are not advocating using
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Figure 1 | Walking arena with sample trajectories. (a) Schematic diagram of the walking arena. A 24.5 cm
tall printed paper cylinder is backlit by an array of 8 halogen lights (only one is shown). At the top is a

1,280 � 1,024 pixel charge-coupled device (CCD) camera with an 8 mm lens and infrared pass filter, and

two arrays of 850 nm light–emitting diodes. The circular, 24.5 cm-diameter, 6 mm-thick aluminum base is

thermally controlled by four Peltier devices and heat exchangers mounted on the underside (only one is
shown) and is surrounded by a heat barrier composed of an insulating strip and a galvanized steel ring

heated by thermal tape. Flies are loaded into the chamber through a hole in the floor with replaceable

stopper. (b) The x-y position of a single fly or of 20 flies within the arena for 5 and 30 min of a trial.
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behavioral statistics for sexing flies. Our mixed-sex trials (Figs. 4

and 5) used a fly’s median image area for determining sex, a

technique that achieves 96.2% accuracy. Instead, these behavior

prediction accuracies are evidence that the ethograms were strongly

correlated with gender.

Predictors of genotype (wild-type versus fru1/fru1 males) were

even more robust (Fig. 3f). Frequency of backups achieved the best

performance (99.3% accuracy). Using all behaviors or all locomo-

tor behaviors, fruitless males could be classified with 100% accu-

racy. This technique of behavioral profiling could easily be

extended to include more behaviors or more features of each

behavior (Supplementary Note online).

Behavioral variation between and within individuals

We observed that the trajectories of individual flies looked qualita-

tively different (Fig. 4a). For example, some flies traveledmore than

others and some spent a larger fraction of time near the arena wall.

Because our algorithm kept track of each fly’s trajectory, we could

easily gather data on a large number of flies and explore statistical

differences in behavior across individuals. To this end, we com-

puted behavioral statistics separately for the first 15 min and the

second 15 min of each 30-min trial and calculated the correlation

between the two halves. We considered three statistics of locomotor

behavior: the mean speed during walking episodes, the fraction of

frames the fly was classified as walking and the mean duration of

walking episodes (Fig. 4b). The correlation between the first- and

second-half statistics was significant (Po 2.2� 10–16) and positive

for all three walkingmetrics, indicating that individuals maintained

behavioral tendencies throughout the 30-min trials. Thus, although

within the tested strain of wild-type flies we found substantial

differences in walking behavior, each individual fly walked con-

sistently over time.

We also investigated whether there were consistent differences in

chasing behavior across individual flies during a 30-min trial. For

the first and second half of each trial, we computed the frequency

with which a fly begins chasing another fly, the frequency with

which other flies begin chasing a given fly and the mean time

duration of chase sequences initiated by a given fly (Fig. 4c). As

with the walking experiments, we computed the correlation

between behavioral statistics gathered during the first and second

half of each trial. We found small, but significant, positive correla-

tions for frequency of chasing (P ¼ 3.89� 10–16) and frequency of

being chased (P ¼ 1.54 � 10–3) but no significant correlation for

duration of chase sequences (P ¼ 0.261).

Gender differences and fly-fly interactions

Because our data consisted of the location and orientation of all

individuals at all times, we could examine the spatial distributions

of the relative positions of flies during social interactions. We

compared the distributions of inter-fly distances for different

gender pairings in single-sex and mixed-sex trials (for example,

male-to-male distance inmixed-sex trial) (Fig. 5a). As a control, we

Figure 2 | Tracking algorithm and evaluation.

(a) Example frame of entire arena with the

foreground/background classification for pixels in
the inset. (b) Detection of individual flies involves

grouping foreground pixels. The purple component

corresponds to one fly; the large black component
corresponds to three. The tracker splits this large

component into 1–4 clusters. The penalty

based on cluster size is shown for each choice.

(c) Identity matching involves pairing predicted
and detected positions. Red dots indicate the

detected fly positions in frame t; triangles indicate

the tracked positions at frames t – 2 and t – 1 and

the predicted position (pred.) at frame t. Blue
lines indicate the lowest-cost match between

predicted and detected positions. (d) Identity

errors consist of swaps and lost identities. In
the first example, the fly (black) jumps near a

stationary fly (red), and identities are swapped.

Plotted are the correct and automatically

computed trajectories (left). Triangles indicate the
positions of the flies at the frame of the swap;

circles indicate their trajectories. In the second

example, a large connected component is split

incorrectly (middle); the trajectories are
superimposed on the frame in which the swap

occurred. In the third example, the lower left fly is

still during the majority of the trial, becoming part

of the background model (right); shown is the
frame in which the fly’s trajectory is lost as well as

the background model at that instant. (e) A

comparison of the center and orientation of a fly
manually labeled on a high-resolution image

(60 pixels mm–1) to those automatically computed from a low-resolution image (4 pixels mm–1). Quartiles of the sampled center position and orientation errors

plotted on an example high-resolution image. The median error was 0.0292 mm (0.117 pixels) for the center and 3.141 for the orientation. Scale bars, 2.5 mm

(a–d) and 0.5 mm (e).
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Figure 3 | Ethograms of eight automatically-detected behaviors. (a) Examples of behaviors detected (from the trajectory shown in b). Triangles indicate the fly’s
positions in every frame. Cyan and red triangles are plotted at the start and end of each behavior example, respectively; only the start of the walk example is

shown. For touching and chasing, we plotted in gray the position of the other fly. (b) Sample 2-min trajectory for a male fly in a mixed-sex arena. The colored

boxes indicate trajectory segments in a. (c) Behavior classifications for the 2 min trajectory (top). A mark at t ¼ 780 for the ‘chase’ row indicates that the

fly was chasing at that time. Plots of translational and angular speed for a 30-s span of the trajectory (t ¼ 780–810 s), superimposed over the behavior
classifications (bottom). (d) Example behavioral vectors for female, male and male fru1/fru1 flies in single-sex trials. Each column corresponds to a fly and each

row to a behavior (n ¼ 78 (female), 108 (male) and 40 (fru1/fru1). Color indicates the s.d. from the mean frequencies (onsets per minute) for each behavior.

(e) Accuracy of sex prediction from automatically detected behaviors. Black bars, cross-validation error of single-threshold classifiers based on frequency. Gray

bars, logistic regression classifiers from all eight and the six locomotor behaviors. White bar, accuracy of classifying sex based on the image area of the fly
(Online Methods). (f) Accuracy of genotype prediction (wild type versus fru1/fru1), as in e.
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created a semisynthetic dataset by artificially staggering in time all

20 trajectories relative to one another. We left the first fly’s

trajectory unchanged but shifted the second fly’s trajectory in

time so that it started at t ¼ 1.5 min, with the last 1.5 min of its

original trajectory wrapped around to fill the time from t ¼ 0 to

t¼ 1.5 min; we shifted the third fly’s trajectory by 3 min, the fourth

by 4.5 min and so forth. These data approximated trajectories in

which the flies do not interact.

The peaks in the male-to-male and male-to-female distributions

compared to the synthetic data indicated that males actively

approach other flies to a distance of 2.5–3.5 mm. In addition, the

relatively low frequency of close interactions (o4 mm) between

females suggested that they maintained a larger buffer between

themselves. These findings were robust across trial type (for exam-

ple, males approached other males as closely in mixed-sex arenas as

in single-sex arenas). We also observed that the flies’ centroids never

moved within 1.5 mm of each other, which is expected given this

distance roughly corresponds to a fly’s body width.

To explore spatial differences during social interactions,

we created a new behavioral classification termed ‘encounter’
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Figure 4 | Differences within and among individual flies. (a) The first and second halves of trajectories for three male and three female flies from the same trial.

(b) Scatter plots of walking statistics from each individual fly in the first 15 min of its trajectory against the same statistics from the last 15 min of its

trajectory for flies in all trial types (female, n ¼ 132 and male, n ¼ 159). Walking statistics examined were: mean speed in frames in which fly was classified as

walking: r ¼ 0.889, P o 2.2 � 10�16 (P, the probability that the null hypothesis of r non-positive is correct; left); fraction of frames fly is classified as walking:
r ¼ 0.689, P o 2.2 � 10�16 (middle); and mean duration of sequences of consecutive walking frames: r ¼ 0.765, P o 2.2 � 10�16 (right). (c) Chasing

behavior differences. We repeated the above procedure for chasing behavioral statistics: Frequency with which the fly begins chasing another fly: r ¼ 0.592,

P ¼ 3.89 � 10�16 (left), frequency with which a fly is chased by another fly: r ¼ 0.213, P ¼ 1.54 � 10�03 (middle), and mean duration of chases: r ¼ 0.054,
P ¼ 0.261 (right).
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describing those trajectory intervals in which the distance

between a pair of flies was less than 10 mm. For each encounter,

we computed the relative location of one fly in the coordinate

system of the other at the time when the distance between them

was minimal. We computed histograms of these relative loca-

tions over all encounters of each gender pairing and trial type

(Fig. 5b). These histograms were consistent with our qualitative

knowledge of courtship behavior. For interactions involving

males, the majority of the encounters occurred very near the

other fly, when the flies were almost in direct contact. In

contrast, the relative locations of the female-female encounters

were more diffuse. It is apparent from the hot spot near the head

of the flies in Figure 5b that males often took a position so that

another fly was right in front of them, an orientation that is

consistent with their chasing behavior. Conversely, a hot spot is

visible directly behind females in mixed-sex trials, indicating

that they are being chased by males. Notably, two hot spots

are apparent in the encounter histograms of fru1/fru1 males

(Fig. 5c), indicating a social phenotype that is inter-

mediate between that of males and females. The data in this

figure represent a quantitative and reproducible measure of

the chaining phenotype that is characteristic of many male

fruitless mutants26.

DISCUSSION

We developed software that allowed us to automatically track and

analyze up to 50 individual flies (a density of 0.1 fly cm–2 in

our arena) simultaneously for long periods of time. We estimate

that the behavioral analyses shown in Figure 3 would have taken a

human operator between 3,000 and 5,000 h to produce manually.

The observations on individual behavior would have taken

much longer. The software (Supplementary Software 1 and 2

online, updates available at http://www.dickinson.caltech.edu/

ctrax) is open-source and was developed to function in a wide

array of experimental contexts. Furthermore, it is easy for a

biologist to train the system to detect new behaviors by providing

a few examples using a graphical user interface designed for

this purpose.

The open arena used for most of our analysis required clipping

the flies’ wings, a manipulation that may affect aspects of their

behavior, for example, the production of courtship song. In

addition, although the open arena apparatus allowed us to perform

the rigorous groundtruthing presented, it is custom-built and

would not be instantly available to the research community.

However, we analyzed data that were collected in a much simpler

and easy-to-replicate chamber, consisting of a backlit plastic

chamber with a glass top (Jasper Simon and M.H.D.; unpublished

data). This analysis (Supplementary Videos 6 and 7 online)

demonstrated that our software works on data collected from

intact flies in an inexpensive and easily reproduced device.

Our method benefits from insight gained from previous

approaches to the study of behavior in Drosophila. The first,

inspired by a classic ‘countercurrent’ apparatus27, involves crafting

a simple mechanical contraption that isolates behavioral outliers in

a large population. This method is easy to perform and thus

amenable to high-throughput screens but does not provide detailed

measurements on individual flies. In addition, complex behaviors

(for example, courtship and aggression) are not easily screened by

these techniques. The second, exemplified by tethered flight

arenas28 and ‘Buridan’s paradigm’29, involves developing a sophis-

ticated apparatus that provides detailed, time-resolved measure-

ments of individual flies. This approach offers a rich view of

behavior but does not allow for high-throughput screens. In

addition, behavioral analyses that depend on elaborate, custom-

made instruments do not easily proliferate throughout the scien-

tific community. The third approach, exemplified by the use of

‘courtship wheels’30, provides detailed information on the complex
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Figure 5 | Spatial analysis of social interactions. (a) Normalized histogram of

inter-fly distances to the nearest fly for each fly in each frame. The frequency

was normalized both by the total number of counts and by the area of the
bin. Each encounter was counted only once by ignoring all but the first frame

in which both flies were stopped. The ‘synthetic’ condition shows a control in

which we decorrelated fly positions by staggering the trajectories in time and
collapsed data from all conditions. The lightly shaded regions indicate 1 s.d.

in normalized frequency, approximated by randomly splitting the flies into

five groups. For comparison, the pink and blue tick marks indicate the mean

fly widths and heights for female and male flies, respectively. (b) Histogram
of the x-y relative position of one fly in the coordinate system of another at

the closest point of an encounter. Each plot corresponds to a different social

condition, as indicated. The white triangle in each plot shows the fixed

position of the given fly. The pixel color indicates the frequency with which
the closest fly is in the corresponding location bin. (c) Histogram of the x-y

mutual position between fru1/fru1 males. Scale bar, 0.5 cm.
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behaviors of individual flies but relies onmanual scoring by human

observers and is labor-intensive and subjective.

Our system combines the key features of prior behavior analysis

methods and is thus a complementary tool to genetic manipulation

for the study of the neural bases of behavior. Because each fly is

tracked and measured individually, it is possible to quantify the

behavior of individual flies as well as fly-fly interactions. The

system’s flexibility allows many different individual and social

behaviors to be defined and automatically detected. The definitions

for these behaviors are interpretable and quantitative, allowing

researchers to easily reproduce experiments. Finally, the system

supports high-throughput screening, facilitating its use with genet-

ic manipulations.

METHODS

Methods and any associated references are available in the online

version of the paper at http://www.nature.com/naturemethods/.

Note: Supplementary information is available on the Nature Methods website.
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ONLINE METHODS

Flies. Wild-type flies used in these experiments were derived from

a laboratory population originating from a collection of 200 wild-

caught females. fru1/fru1 flies were derived from a fru1/TM3 stock.

In the open-arena experiments, flies were cold-anesthetized 24 h

before experiments to clip their wings to one-half their original

length so that they could not fly out of the arena. They recovered

overnight on food and were wet starved 6 h before experiments.

For more information, see the Supplementary Note.

Apparatus. The walking arena used in most of our experiments

consisted of a temperature-controlled 24.5 cm diameter platform

surrounded by a static backlit visual pattern (Fig. 1). Flies were

maintained in the arena by a thermal barrier around the outside

edge of the walking platform and by clipping the wings as

described above. The thermal barrier consisted of a rope heater

wrapped around a galvanized steel band insulated from the plat-

form by a layer of neoprene. Although some flies would occa-

sionally hop over the arena’s edge, most would avoid walking off

the platform due to the heat barrier. Above the arena were

mounted infrared light–emitting diodes and a 1,280 � 1,024 pixel

camera sensitive to near-infrared light. Images were recorded at 20

frames per second by a computer using the Motmot Python

camera interface package (Andrew Straw and M.D.; unpublished

data). For details, see the Supplementary Note. Although our

software was developed in conjunction with this set up, it is

adaptable to other arrangements with similar characteristics

(Supplementary Videos 6 and 7).

Tracking algorithm. Our purpose in developing both the algo-

rithm and the apparatus was to create a reliable system for

obtaining interesting behavioral statistics for use by behavioral

geneticists. Our tracking algorithm combined techniques from the

computer vision literature to achieve this goal. The tracking

algorithm input a stored video sequence and computed the

trajectory of each fly (center position and orientation in each

frame). Tracking was achieved by alternating two steps: fly detec-

tion and identity assignment. At each new frame, flies were first

detected and their positions and orientations were computed.

Next, each detected fly in frame t was associated with a fly tracked

in the previous frame t – 1. Example tracked trajectories are shown

in Figure 1b. Our tracking algorithm is described below; more

details are available in the Supplementary Note.

Detection. Detection was based on background subtraction31. In

our laboratory setting, we ensured that the camera was still and the

infrared lighting was constant, thus the only objects moving in the

video were flies. The appearance and variability of the arena

without flies (the background) was estimated before tracking as

the pixelwise median of a set of frames sampled from the entire

video sequence. The variability was estimated as the pixelwise

median absolute deviation from the background image. Using the

median made our algorithm tolerant to flies that did not move for

long periods of time. Note that it is good practice to estimate the

background model from video taken after the flies have been

added because the arena may be inadvertently jostled in the

process of introducing flies. Movement of the arena or camera

of just one pixel can cause large errors in background subtraction.

In our setup, the flies appeared bright and the background dark

(the tracker will also work with dark flies on a light background, as

shown in Supplementary Videos 6 and 7). Foreground pixels, that

is, pixels belonging to flies, were detected when the difference

between the pixel and background intensity exceeded a multiple of

the background variability (Fig. 2a). This step relied on the flies

(and only the flies) looking different from the background; poor

camera quality and excessive video compression can compromise

this step. Next, foreground pixels were grouped together into

single fly detections. Ideally, each connected component32 of

foreground pixels would correspond to exactly one fly. We thus

initially fit an ellipse to each connected component by fitting a

Gaussian to the locations of the corresponding foreground pixels.

Owing to flies sometimes coming into contact and inevitable

errors in pixel labeling, some connected components may have

corresponded to many, to part of one or to no flies. These errors

were corrected automatically by detecting connected components

that were too large or small and considering multiple splitting or

merging hypotheses (Fig. 2b).

Identity assignment. Each fly detected in frame t was associated

with a trajectory from frame t – 1. In the first frame, a unique

trajectory label was assigned arbitrarily to each detection. In

subsequent frames, assuming that each trajectory had been com-

puted up to frame t – 1, it was extended to frame t by assigning

each fly detection in t to the trajectory that best predicted its

position and orientation (Fig. 2c), where predictions were

computed by a constant-velocity model. This was a multiple-

assignment problem because trajectories and flies had to be in

one-to-one correspondence: two flies could not be associated to

the same trajectory and vice versa. Thus, the optimal solution

needed to be computed simultaneously for all flies. Occasionally, a

fly may have escaped or entered the arena or the detection stage

may have made an error. For this reason, our software algorithm

allowed a trajectory or a detection to be unmatched when the

distance was too large and paid a constant penalty. The best overall

assignment was computed using the Hungarian method for

minimum-weight perfect bipartite matching33,34. The assignment

step requires that the frame rate be sufficiently high relative to the

speed of the flies so that the optimal matching between observa-

tions and trajectories is easy for a human observer.

Hindsight. The detection step was performed using information

from only the current frame, and the matching step assumed that

these detections were correct. Errors in the detection step would

often result in births or deaths of tracks. After identity assignment,

the tracker determined whether each birth and death could be

prevented by temporarily splitting, connecting, merging or

deleting tracks. This step worked on the assumption that flies

rarely entered or left the arena.

Orientation ambiguity. The detection phase could not tell the

head from the tail of a fly. To resolve this ambiguity, at each frame,

our tracker determined whether to add 1801 to the orientation of

each fly. Using a variation of the Viterbi algorithm35, the sequence

of orientation offsets was computed that minimized the change in

orientation between consecutive frames and the difference between

orientation and velocity direction when the fly was moving.

NATURE METHODS doi:10.1038/nmeth.1328
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System evaluation. We measured the quality of our tracker by

comparing its measurements with groundtruth on a set of bench-

mark videos. We distinguished identity, position and sex assign-

ment errors. Identity errors included swapping flies’ identities,

losing flies’ tracks and spurious detections that did not correspond

to flies (Fig. 2d). Position errors were inaccuracies in the estimated

position and orientation of a fly (Fig. 2e). Sex assignment errors

were mistakes in determining whether a fly was male or female.

Identity errors. We evaluated the frequency of identity errors

made by our system on 18 manually annotated video sequences,

each containing 10, 20 or 50 wild-type flies, which were either all

female, all male or half male and half female. Two 5-min videos

were used as benchmarks for each condition. We show example

identity errors in Figure 2d. To find identity errors, a trained

operator examined those video frames in which tracking is hard-

est: when flies were near each other, there were large differences

between predicted and measured positions or at the births and

deaths of trajectories. These frames were inspected in slow motion,

zoomed in on the difficult-to-follow flies. The operator marked an

annotated frame as incorrect if there was an identity error and also

classified the type of error. The scoring took approximately 0.5 h

for each 10-fly video, 2 h for each 20-fly video and 8 h for each 50-

fly video. We observed an identity error on average once every 5

fly-hours in the 10-fly videos, once every 1.5 fly-hours in the 20-fly

videos and once every 40 fly-minutes in the 50-fly videos.

Supplementary Table 1 shows the counts per error type per video.

Fixing identity errors manually. Using simple heuristics, a small

number of suspicious frames and flies were automatically flagged.

An operator could then inspect these frames and manually fix any

errors using our graphical user interface. All manually determined

identity errors in the benchmark sequences were also flagged

automatically, and thus, error detection was 100% accurate with

this limited supervision.

Position errors. We simultaneously recorded high-resolution

video (15� standard resolution, corresponding to fly lengths of

120 pixels) of a portion of the arena with our standard lower-

resolution video of the entire arena (Fig. 2e). We labeled the

positions manually in the high-resolution video and compared

them to those computed by the tracker from the lower-resolution

video. The high-resolution labels were transformed into the lower-

resolution coordinate system for this comparison (Supplementary

Fig. 1 and Supplementary Note). A random sample of 100 flies

from 9 5-min video sequences was used. As above, each video

contained 10, 20 or 50 flies and each contained either all male, all

female or half male and half female flies. We chose frames in the

high-resolution video in which flies were fully visible and far from

other flies. The manual annotation consisted of a carefully drawn

bounding box of the fly and was used to estimate the center

position and orientation of the fly. We repeated the above

experiment on 50 samples in which the chosen fly was close to

another fly. The median error was 0.0292 mm (0.117 pixels) for

the center and 3.141 for the orientation (Fig. 2e and Supplemen-

tary Fig. 2). For touching flies, the median errors were slightly

larger: 0.0461 mm for the center position and 10.61 for the

orientation (Supplementary Table 3 online).

Gender assignment. As female flies are slightly larger than male

flies, a fly’s sex could be automatically predicted from its image

area. For each trajectory, the median area was computed and sex

was assigned by comparing this area to a threshold estimated from

single-sex experiments (correcting for biases from lighting varia-

tions in different parts of the arena). The hold-one-out error rate

was 4/77 ¼ 0.0519 for females and 3/106 ¼ 0.0283 for males.

Behavior definitions. All our behavior definitions had the follow-

ing structure. The fly was performing the defined behavior from

frames t1 to t2 if all of the following applied. (i) In each frame

t1,y,t2, properties of the fly (for example, speed, distance to

another fly) were within given ranges. (ii) In each frame t1,y,t2,

properties of the fly were temporally near (within a given number

of frames) frames in which the properties were within tighter

ranges. (iii) The summed properties (for example, total distance

traveled) of the fly’s trajectory in t1,yt2 were within given ranges.

(iv) The mean value of properties of the fly were within

given ranges.

Social behaviors operated on properties of pairs of flies rather

than individuals. Parameters of each behavior, including the

properties and ranges for each of the above rules, are given in

Supplementary Table 2.

For each behavior, each trajectory was segmented into intervals in

which the fly was and was not performing the behavior by

maximizing the sum-squared lengths of the positive sequences

using a globally optimal, dynamic programming algorithm. Note

that this one-versus-all set of behavior detectors resulted in some

frames of the trajectory not being labeled at all (our behavior voca-

bulary is incomplete), and that a fly may have been engaged in mul-

tiple behaviors at the same time (for example, chasing and walking).

Our software allowed us to define behavior detectors in two

ways. The quickest way was direct manual selection of the ranges

of property values defining a behavior. We found this approach

intuitive and easy for a couple of behaviors (‘back up’ and ‘touch’).

In all other cases, we used example-based training to learn the

ranges. Using the latter approach, a user manually segmented

sample trajectories to create training data. The parameter ranges

were then computed automatically so that the detected segmenta-

tions agreed with the manual segmentations (Supplementary

Note). In both cases, other scientists may inspect the parameter

ranges defining specific behaviors and thus reproduce exactly a

given experiment.
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