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In contrast to the rapid advances made in plant genotyping, plant phenotyping is considered a bottleneck in
plant science. This has promoted high-throughput plant phenotyping (HTP) studies, resulting in an exponen‐
tial increase in phenotyping-related publications. The development of HTP was originally intended for use as
indoor HTP technologies for model plant species under controlled environments. However, this subsequently
shifted to HTP for use in crops in fields. Although HTP in fields is much more difficult to conduct due to
unstable environmental conditions compared to HTP in controlled environments, recent advances in HTP
technology have allowed these difficulties to be overcome, allowing for rapid, efficient, non-destructive, non-
invasive, quantitative, repeatable, and objective phenotyping. Recent HTP developments have been acceler‐
ated by the advances in data analysis, sensors, and robot technologies, including machine learning, image
analysis, three dimensional (3D) reconstruction, image sensors, laser sensors, environmental sensors, and
drones, along with high-speed computational resources. This article provides an overview of recent HTP
technologies, focusing mainly on canopy-based phenotypes of major crops, such as canopy height, canopy
coverage, canopy biomass, and canopy stressed appearance, in addition to crop organ detection and counting
in the fields. Current topics in field HTP are also presented, followed by a discussion on the low rates of
adoption of HTP in practical breeding programs.
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Introduction

While plant genotyping has rapidly outperformed Moore’s
law of computational power, low-throughput plant pheno‐
typing is seen as a bottleneck of plant science, promoting
an intensification of studies on high-throughput pheno‐
typing (HTP) in the last decade. Costa et al. (2019) ana‐
lyzed trends in publications on plant phenomics between
1997 and 2017 and found that the number of these publica‐
tions increased much more rapidly after 2007 than in other
plant science categories. As shown in Fig. 1, this trend ac‐
celerated again after 2017. During this period, several plant
phenotyping research centers have been founded, including
the Australian Plant Phenomics Facility in Australia
(APPF) (https://www.plantphenomics.org.au), Jülich Plant
Phenotyping Center (JPPC) in Germany (https://www.fz-
juelich.de/ibg/ibg-2/EN/Research/ResearchGroups/JPPC/
JPPC_node.html), National Plant Phenomics Center in the
United Kingdom (NPPC) (https://www.plant-phenomics.ac.
uk), Plant Phenotyping and Imaging Research Center in
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Canada (P2IRC) (https://p2irc.usask.ca), and Plant Pheno‐
mics Research Center in Chine (PPRC) (http://pprcen.
njau.edu.cn). Alongside these initiatives, a platform for
international research collaboration and networking, Inter‐
national Plant Phenotyping Network (IPPN) (https://www.
plant-phenotyping.org), was also established.

This boom initially began with the development of in‐
door HTP technologies for some crops such as maize and
soybean as well as model plant species under controlled en‐
vironments, which subsequently shifted to HTP for crops in
fields, also known as field HTP. Although HTP in fields is
much more difficult to conduct compared to HTP under
controlled environments due to the unstable environmental
conditions of the latter, including varying light, shadows,
wind, and more complex crop backgrounds, advances in
HTP technology have been able to overcome these diffi‐
culties, resulting in speedy, efficient, non-destructive,
non-invasive, quantitative, repeatable, and objective pheno‐
typing. As a result of these advances, HTP has not only
attained the capacity to replace human visual judgments
in a much faster and more objective manner, but is also
able to evaluate new traits, such as a comparison of time
series canopy growth curves (Guo et al. 2017) among
thousands of genotypes.

Recent advances in HTP have been supported by advances
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in data analysis, sensors, and robot technologies (Roitsch
et al. 2019). Machine learning approaches represented by
convolutional neural networks (CNN) (Jiang and Li 2020)
have also contributed to advances in newly emerged image-
analyzing technologies, such as 3D reconstruction by SfM-
MVS (structure from motion and multi-view stereo) (Guo
et al. 2021), which reconstruct 3D structures of objects
based on stereo photogrammetry using multiple images of
the target objects. Sensor hardware and computer resources
have markedly improved, and prices have decreased, mak‐
ing them more popular. The resolution of commercial RGB
cameras now stands at 100 million pixels. Similarly, multi‐
spectral cameras and light detection and ranging (LiDAR)
systems, which are extremely expensive, are now also
available at reasonable prices (Guo et al. 2021). LiDAR
(Guo et al. 2021) allows for distance scanning to recon‐
struct the 3D structures of objects by detecting the dis‐
tances to the target objects. Even the price of hyperspectral
cameras, which exceeded 100,000 USD some years ago, is
falling rapidly (Guo et al. 2021).

In addition, advances in sensor platforms within the field
of robotics have supported the progress of HTP (Zhao et al.
2019). Particularly, the recent contribution of advances in
unmanned aircraft systems (UASs), also often called un‐
manned aerial vehicles (UAVs), has been outstanding for
HTP, along with several types of UAS-mountable image
sensors, such as RGB, multispectral, hyperspectral, and
thermal cameras (Guo et al. 2021). Similarly, advances in
IoT environment sensors, such as Field Server (Hirafuji
et al. 2013), have been also supported HTP, particularly
when considering the importance of understanding G×E
(genotype and environment interaction).

This article provides an overview of recently developed
HTP technologies, focusing on the canopy-based architec‐
tural phenotypes of major crops, such as canopy height,
canopy coverage, canopy biomass, canopy stressed appear‐

ance, and canopy level crop organ detection and counting.
This article does not discuss root phenotyping, which is as
important as above-ground phenotyping (Atkinson et al.
2019, Uga 2021), since it is reviewed in the same issue
(Teramoto and Uga 2022). Instead, current topics in field
HTP are discussed, including the challenges associated
with promoting the use of machine learning approaches in
HTP.

The dynamic and rapid advances being made in HTP has
lead stakeholders to expect breeders to adopt HTP in their
breeding programs (Fasoula et al. 2020, Rebetzke et al.
2019, Watt et al. 2020). However, the adoption of HTP in
practical breeding programs is stagnant (Awada et al. 2018,
Deery and Jones 2021). In the final part of this review, we
briefly discuss the reasons for the low rate of adoption of
this technology.

Canopy height, canopy coverage, and biomass

The estimation of biomass-related traits has been widely
studied in satellite remote sensing (Liu et al. 2019a). How‐
ever, considering the current resolution of satellite images,
satellite-based biomass estimation models cannot be ap‐
plied to the average scale of breeding plots. However,
UAS-based monitoring is currently the best fit for the scale
of the plots. Moreover, the comparatively easy usability
and the reasonable cost of UAS promote its use in plant
breeding (Guo et al. 2021).

Canopy height
The efficiency of canopy height estimation, which used

to be highly laborious, has been dramatically improved by
two types of 3D reconstruction technologies: SfM-MVS
and LiDAR. SfM-MVS is mainly used with UAS-based
RGB (UAS RGB) and/or UAS-based multispectral (UAS
multispectral) images, whereas LiDAR systems are usually

Fig. 1. Search results at Web of Science (https://www.webofscience.com/wos/woscc/basic-search) with shown keywords between 1991 and
2020 (access on June 1st, 2021). The number of the hits for “plant” was divided by 200 for the comparison of the growth curves.
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either fixed obliquely looking down fields or mounted on
mobile platforms, such as vehicles and gantries. Currently,
the 3D reconstruction of canopies using SfM-MVS with
UAS images is more scale-efficient than that using ground-
based LiDAR. However, 3D reconstructions by SfM-MVS
at times fail, depending on the quality of the acquired im‐
ages and the complexity of the canopy structures. This
method also requires more computational resources than
LiDAR. Considering that reasonably priced UAS-mountable
LiDAR systems are becoming increasingly available, we
expect LiDAR to take the lead in 3D reconstruction in the
near future (Guo et al. 2021).

Examples of canopy height estimation by SfM-MVS
have been provided for wheat (Cai et al. 2018, Hassan et al.
2019, Khan et al. 2018,Yue et al. 2018b), barley (Wilke
et al. 2019), rice (Kawamura et al. 2020), maize (Wang
et al. 2019, Ziliani et al. 2018) and sorghum (Hu et al.
2018, Watanabe et al. 2017), while examples of canopy
height estimation by LiDAR have been provided for wheat
(Friedli et al. 2016, Jimenez-Berni et al. 2018, Walter et al.
2019a, 2019b), rice (Phan et al. 2016, Tilly et al. 2014),
corn (Friedli et al. 2016), soybean (Friedli et al. 2016),
cotton (Sun et al. 2018), and peanut (Yuan et al. 2019). Hu
et al. (2018) proposed a method to calibrate the estimated
values by using small number of manually observed values.
Note that the estimation of canopy heights from 3D point
clouds constructed by SfM-MVS or LiDAR differ among
these studies.

Canopy coverage, senescence, and seedling emergence
Canopy coverage is a good indicator of crop growth, par‐

ticularly when it is obtained sequentially to obtain a growth
curve. While it was almost impossible to obtain this type of
curve easily, high-throughput imaging by UASs or ground
vehicles has made this a reality.

Image-based canopy coverage estimation requires accu‐
rate crop segmentation from the background. Historically,
simple thresholding based on a value determined by maxi‐
mum likelihood classification or color indices, such as ExG
(Woebbecke et al. 1995), have been used for such segmen‐
tations. Guo et al. (2013) raised questions about the robust‐
ness of existing methods under varying illumination with
heavily shadowed patches of outdoor fields, and proposed
a machine learning based segmentation method, DTSM
(decision tree segmentation model), the accuracy and the
robustness of which have been confirmed in wheat, rice,
cotton, sugarcane, and sorghum (Duan et al. 2017, Guo
et al. 2013, 2017), and which is now widely used as a pub‐
lished application, EasyPCC (Guo et al. 2017), in plant sci‐
ence. The canopy coverages of wheat (Jimenez-Berni et al.
2018) and cotton (Sun et al. 2018) have also been estimated
using ground-based LiDAR observations. Similarly, the
senescence or stay-green of wheat, maize, and sorghum has
been evaluated by UAS RGB or multispectral images
(Hassan et al. 2018, Liedtke et al. 2020, Makanza et al.
2018). Using UAS-RGB images, the emergence of wheat,

rice, maize, and potato was evaluated (Li et al. 2019, Liu et
al. 2017, Velumani et al. 2021, Wu et al. 2019). In a unique
study, Bruce et al. (2021) assessed the variation of soybean
pubescence using UAS multispectral images.

Biomass and LAI
Unlike the majority of height and canopy coverage esti‐

mations, the estimations of aboveground biomass (AGB)
and leaf area index (LAI) usually require some regression
to estimate the target trait values. There are two types of
estimation. The first type uses vegetation indices, such as
normalized difference vegetation index (NDVI), calculated
based on spectral reflectance values from multispectral or
hyperspectral images captured by UAS cameras or ground
cameras, while the second type uses the architectural values
of plants, such as the height and volume of plants obtained
from 3D reconstruction data. The AGB and LAI estima‐
tions of wheat (Hu et al. 2021, Khan et al. 2018, Lu et al.
2019, Yao et al. 2017, Yue et al. 2018a) and rice (Shu et al.
2021, Tanger et al. 2017, Wang et al. 2021c) are examples
of the first type, while estimations of wheat (Deery et al.
2020, Jimenez-Berni et al. 2018, Walter et al. 2019b), soy‐
bean (Herrero-Huerta et al. 2020), and cotton (Sun et al.
2018) are examples of the second type. There are also ex‐
amples where both types are mixed, such as rice (Jiang et
al. 2019) and corn (Michez et al. 2018). Riera et al. (2021)
used a completely different approach to estimate soybean
yield, choosing to count the number of pods from images
captured by a ground robot cart.

Crop stress assessments
Methods for the high-throughput phenotyping of abiotic

and biotic stresses on crops, including drought, pests, and
diseases, have also advanced rapidly, making use of ad‐
vances in machine learning technologies (Singh et al. 2016,
2018, 2021). The scope of these works vary from the leaf-
scale level to the field level.

Disease assessments
CNN has played an important role in the identification of

biotic stress, particularly at the leaf or individual plant level
(Boulent et al. 2019). For example, nine different stress-
induced phenotypes in soybean leaves (four different dis‐
eases, two nutritious deficiencies, herbicide injury, sudden
death syndrome, and normal) of soybean single leaves were
highly accurately classified and quantified (Ghosal et al.
2018) using CNN, and ten different stressed appearances
on tomato leaves (gray mold, canker, leaf mold, plague,
leaf miner, whitefly, low temperature, nutritional excess or
deficiency, powdery mildew) were accurately classified us‐
ing CNN (Fuentes et al. 2017, 2018). Furthermore, an ac‐
curate and qualitative assessment of disease at the leaf level
can help in the identification of efficient resistant genes, as
was done for Septoria tritici blotch (STB) in wheat (Yates
et al. 2019). Technologies that utilize intact leaf images
taken under natural conditions have also seen advances for
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use in the accurate recognition of diseases (Fuentes et al.
2017, 2018, Johnson et al. 2021).

While studies at the leaf-level could be used to replace
observations by experts and provide objective and repeat‐
able evaluations, improvements in assessment efficiency
when applied in the field have yet to be achieved. Thus,
canopy-level stress high-throughput phenotyping, mainly
by UASs, has also been studied, which is expected to see a
dramatic acceleration of its application in the assessment of
stress in plant breeding (Barbedo 2019). Following the suc‐
cess of disease assessment using ground mobile platforms,
including for sugar beet cercospora leaf spot (Atoum et al.
2016) and wheat STB (Walter et al. 2019a), field level dis‐
ease assessment by UAS has been widely performed using
RGB and/or multispectral images with CNN (Guo et al.
2021): northern corn leaf blights (DeChant et al. 2017,
Wiesner-Hanks et al. 2019), wheat yellow rust (Su et al.
2018), wheat stripe rust (Schirrmann et al. 2021), rice
sheath blight (Zhang et al. 2018), potato late blight
(Duarte-Carvajalino et al. 2018, Sugiura et al. 2016), soy‐
bean foliar diseases (Tetila et al. 2017), sugar beet cospora
leaf spot (Altas et al. 2018, Jay et al. 2020), peanut tomato
spot wilt (Patrick et al. 2017), radish Fusarium wilt (Dang
et al. 2020, Ha et al. 2017), and soybean iron-deficient
chlorosis (Dobbels and Lorenz 2019). Taking into account
the falling prices of hyperspectral cameras, we can expect
this technology to be widely applied for disease assessment
in the coming years. Thomas et al. (2018) used this tech‐
nology for barley powdery mildew at a ground-based pheno‐
typing facility, while Joalland et al. (2018) used the same
technology to assess tolerance to sugar beet cyst nematode
(SBCN).

Water stress
Canopy surface temperature (CT) is a good indicator of

stomatal conductance (Moller et al. 2007, Seguin et al.
1991) because plant surfaces are cooled in proportion to the
evaporation rate. Recently, several different types of ther‐
mal cameras mounted on UAS have become commercially
available (Guo et al. 2021), and their use in monitoring CT
has been confirmed (Deery et al. 2019, Sagan et al. 2019).

The CT is constantly and rapidly changing according to
the environmental conditions, including light, temperature,
and wind. As a result, consistent and repeatable measure‐
ments over crop canopies are difficult (Perich et al. 2020).
However, several ideas have been proposed by researchers
to achieve reliable CT measurements for maize (Zhang et
al. 2019), fruit trees (Han et al. 2021), wheat (Perich et al.
2020), soybean (Crusiol et al. 2020), and barley (Hoffmann
et al. 2016). For example, Perich et al. (2020) used the her‐
itability of CT to identify the optimal timing of the mea‐
surement.

Structural changes in plants, such as leaf wilting, which
is detectable by image analysis, can also be an indicator of
water stress (Srivastava et al. 2017, Wakamori and Mineno
2019). Another way to estimate water stress is to use mod‐

els or indices based on hyperspectral or multispectral im‐
ages (Asaari et al. 2019, Romero et al. 2017, 2018, Thorp
et al. 2018). Flooding stress on soybeans has also been pre‐
viously assessed using UAS multispectral and thermal im‐
ages (Zhou et al. 2021).

Salinity stress
Salinity stress usually causes growth deficiencies. As a

result, phenotyping methods for biomass-related traits can
be used to identify salinity stress by comparing with control
plants. This method was used by Johansen et al. (2019),
who evaluated the response of wild tomato genotypes to
salinity stress by comparing growth curves based on canopy
coverage estimated from the UAS RGB and multispectral
time-series images. Similarly, Ivushkin et al. (2019) showed
that the hyperspectral physiological reflectance index (PRI,
Gamon et al. 1992) obtained from hyperspectral images
could be used to identify the stress of treated quinoa plants
compared to control plants.

Lodging
UAS canopy monitoring provides an opportunity for the

high-throughput and quantitative measurement of canopies
to evaluate the extent of lodging. The canopy height esti‐
mation methods based on SfM-MVS or LiDAR can be
directly used for lodging assessments (Singh et al. 2019,
Wilke et al. 2019), whereas lodging assessment based on
image features, canopy coverage, and NDIV from UAS
multispectral images (Han et al. 2018, Sun et al. 2019) or a
combination of selected bands of hyperspectral images
(Wang et al. 2021c) have also been proposed.

Weed identification
Although weed detection using ground vehicles is well

documented, particularly for localized precision herbicide
applications, few studies have reported on UAS-based
weed detection (Singh et al. 2020). UAS-based weed detec‐
tion is particularly important when crop traits, such as
biomass and canopy coverage, are estimated from fields
contaminated by weeds. De Castro et al. (2018) proposed a
method to segment weeds in sunflower and cotton fields
using random forest classification based on features derived
from UAS RGB and multispectral images and crop height
estimated from UAS RGB images. This study aimed to
identify broad-leaf weeds and grass weeds (Torres-Sánchez
et al. 2021). Huang et al. (2018) demonstrated that rice and
weeds can be classified based on UAS RGB images using a
CNN model, fully convolutional network (FCN) and trans‐
fer learning (Jiang and Li 2020). While the current methods
are not applicable to complex fields where weeds of vari‐
ous species are intermingled, Skovsen et al. (2021) demon‐
strated that CNN models can classify white clover, red
clover and weed from rather complicated canopy images,
using synthetic training data which is discussed in the later
part of this paper. Variations in hyperspectral reflectance
among certain weeds and crops have been reported (Singh

BS Breeding Science
Vol. 72 No. 1 Ninomiya

6



et al. 2020), indicating that UAS hyperspectral images can
be used to segment weeds from crops.

Canopy-level crop organ detection and counting

The development of automatic crop organ detection and
counting technologies in outdoor fields has been a newly
emerging area in the last 5 years, occurring alongside ad‐
vances in image analyzing technologies, mainly based on
machine learning. Crop organ detection and counting in
fields is hindered by the variations in the environmental
conditions, such as light, shadows, wind, rain, and heavy
occlusion of the organs, in contrast to controlled indoor
conditions. In breeding fields, the intraspecific variations in
shape, size, and color among different genotypes accelerate
these difficulties. Despite such difficulties, recent studies
on crop organ detection and counting have reported great
success, as exemplified below.

Rice panicle detection and counting
A pioneering study (Guo et al. 2015) performed an accu‐

rate automatic detection of rice flowering panicles based on
time series RGB images captured by ground-based cam‐
eras, using the scale-invariant feature transform (SIFT)
(Lowe 2004), bag of visual words (BoVWs) (Csurka et al.
2004), and a support vector machine (SVM). The study
showed that, visually, very small events, such as rice flow‐
ering (anthesis), which occurs at particular times on partic‐
ular days on particular parts of the panicles, could be
automatically detected from images taken under varying
natural conditions. Similarly, Desai et al. (2019) used a
CNN model, ResNet-50 (Jiang and Li 2020), to detect rice
flowering panicles instead of image feature extractions,
such as SIFT, and showed that the heading date of the rice
canopy could be estimated using the daily cumulative dis‐
tribution of the detected number of flowering panicles.

Methods to automatically detect and count rice panicles
in paddy rice canopies were proposed using CNN (Lyu et
al. 2021, Xiong et al. 2017, Zhou et al. 2019). Lyu et al.
(2021) used UAS RGB images captured at comparatively
low altitudes (1.2 m) with a CNN model, Mask R-CNN
(Jiang and Li 2020), and achieved a counting precision of
0.82 (precision = Tp/Tp + Fp while recall = Tp/Tp + Fp, where
Tp, Fp, and Fp are the numbers of true-positive, false-
positive, and false-negative in the detections, respectively).
The panicle annotation dataset (38,799 patches) used by
Lyu et al. (2021) was expanded to 50,730 by filtering the
results of the automatic detection of panicles (Wang et al.
2021b).

Wheat spike detection and counting
The detection and counting of wheat spikes has been

widely performed using CNN models, challenging several
of the difficulties experienced under natural conditions
(Alkhudaydi et al. 2019, Fernandez-Gallego et al. 2018,
Hasan et al. 2018, Madec et al. 2019, Sadeghi-Tehran et al.

2019, Xiong et al. 2019, Zhao et al. 2021a).
Sadeghi-Tehran et al. (2019) proposed DeepCount to

detect and count wheat spikes from ground-based RGB
images by combining an image segmentation method, SLIC
(Achanta et al. 2012), and a CNN model, VGG (Jiang and
Li 2020), while Madec et al. (2019) used a CNN model,
Faster-R-CNN (Jiang and Li 2020), to detect and count
wheat spikes based on ground-based high-resolution RGB
images to estimate the ear density, achieving R2 = 0.91 in
spike counting. Hasan et al. (2018) also used Faster R-
CNN, achieving R2 = 0.93 in spike counting regardless of
spike growth stage with RGB images captured from a
hand-pushed cart. Xiong et al. (2019) developed a large an‐
notation dataset of wheat spikes and developed a CNN
model, TasselNetv2, to count wheat spikes and improve the
structure of TasselNet (Lu et al. 2017). TasselNetv2 achieved
not only good spike counting accuracy, even for lower reso‐
lution ground-based RGB images than those used by Madec
et al. (2019), but also a faster performance than TasselNet.
Lu and Cao (2020) proposed TasselNetV2+, adding several
modifications to the algorithm of TasselNetV2 to improve
the computational efficiency of wheat spike detection and
counting while retaining the accuracy.

Using the UAS-RGB images captured at altitudes be‐
tween 7 and 15 m, Zhao et al. (2021a) achieved a wheat
spike detection accuracy (IoU) of 0.94 using a CNN model,
YOLOv5 (Jiang and Li 2020). In another study, Zhao et al.
(2021b) proposed a method for automatically determining
the heading date of wheat spikes. Instead of directly detect‐
ing the emergence of spikes, they used the inflection points
of the canopy growth curves estimated from UAS RGB im‐
ages as an indicator of heading. The mean absolute error of
the estimated heading date was 2.81 days. Jin et al. (2019)
estimated the stem density of wheat using RGB images of
stem cross-sections left on the ground after the harvest us‐
ing Faster R-CNN, and found that the value was a good
proxy of ear density.

David et al. (2020, 2021) provided a large-scale open
benchmark dataset of wheat images through a multilateral
international collaboration. The dataset created in 2020
(David et al. 2020) included 4,700 high-resolution wheat
images of various genotypes and various growth stages col‐
lected from several countries around the world and 190,000
wheat spike annotations, to accelerate the development of
spike detection algorithms. The dataset was used at a global
competition, Global Wheat Head Detection (https://www.
kaggle.com/c/global-wheat-detection), in which 2,245 teams
from around the world participated. The dataset was up‐
dated by adding 1722 images from 5 additional countries
with 81,553 additional wheat heads (David et al. 2021)
where the dataset was reexamined and relabeled to improve
the dataset quality.

Other cereal crops
Lu et al. (2017) developed a CNN model, TasselNet,

to count maize tassels using ground-based RGB images
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captured in outdoor fields, whereas Mirnezami et al. (2021)
developed a method to detect maize tassels and track the
development of each individual tassel regardless of the
shape variations among several genotypes, combining sev‐
eral models, such as a CNN model, RetinaNet (Jiang and Li
2020), based on time-series ground-based RGB images.
Guo et al. (2018) developed a sorghum head detection and
counting algorithm from UAS RGB images captured at an
altitude of 20 m. They used a machine learning-based plant
segmentation algorithm, DTSM (Guo et al. 2013), to detect
sorghum heads of various colors. Because some of the re‐
gions detected as sorghum heads contained more than one
head, they estimated the number of heads in each of the
detected head regions by SVM with the eleven image fea‐
tures, such as area, perimeter, and roundness of the regions,
and achieved a precision/recall of 0.87/0.98 for the detec‐
tion and R2 = 0.84 for head counting. TasselNetV2+ (Lu
and Cao 2020) achieved improved computational efficiency
also for maize tassel and sorghum head detections.

Fruit detection and counting
A CNN model named Deepfruits (Sa et al. 2016) based

on Faster R-CNN was one of the first studies to demon‐
strate the power of CNN for fruit detection. Deepfruit em‐
ployed both RGB and NIR images as multimodal inputs
and was successfully applied to fruits of seven different
crop species: sweet pepper, melon, apple, avocado, mango,
orange, and strawberry. Kang and Chen (2020) proposed a
CNN model, LedNet, to detect apples in orchards, achiev‐
ing an accuracy (IoU) of 0.85. To promote fruit detection
studies, Häni et al. (2020) published a benchmark dataset
for apple detection and segmentation that contained 1,000
images and 41,000 annotated instances of apples.

Mu et al. (2020) succeeded in detecting highly occluded
immature green tomatoes using CNN models (R-CNN and
ResNet-101, Jiang and Li 2020), achieving R2 = 0.87. Yeom
et al. (2018) estimated the number of open cotton balls us‐
ing image feature extraction on the UAS RGB images at an
altitude of 15 m. Riera et al. (2021) estimated the number
of soybean pods in each breeding plot as the basis for yield
estimation using CNN models (VGG and RetinaNet),
wherein the images were captured using a video camera
mounted on a small field robot that moved between the
rows of the plot.

New challenges in high-throughput field pheno‐
typing

Model-assisted phenotyping
Model-assisted phenotyping is an approach used to esti‐

mate phenotypes that cannot be directly observed using
crop models parameterized by observable phenotypes. Sim‐
ple examples have already been introduced in the biomass
estimation section of this article. Occlusion is an unavoid‐
able issue when phenotyping canopy structures, particularly
in the late growth stage, when the foliage architecture be‐

comes complex. For example, one study found that the ac‐
curacy of the total leaf area and leaf number of soybean
plants estimated from UAS images was much worse in the
late growing stage than in the early growing stage (Liu et
al. 2021a). To overcome this issue, Liu et al. (2019b) pro‐
posed a modeling workflow called the digital plant pheno‐
typing platform (D3P) for wheat, coupling an L-system-
based wheat architectural model (ADEL-wheat, Fournier
et al. 2003) and observations by HTP. They conducted a
simulation study to estimate the model parameters and a
green area index (GAI, green plant area per ground area)
by the assimilation data from the green fraction estimated
from RGB images of the canopy to D3P. As a result, they
demonstrated that some architectural parameters, such as
phyllochron, lamina length of the first leaf, rate of elonga‐
tion of leaf lamina, number of green leaves at the start of
leaf senescence, and minimum number of green leaves, and
GAI were accurately estimated. Data assimilation, in which
model parameters are dynamically updated using observed
data, is commonly used in satellite-based crop monitoring
studies, such as yield estimation (Zhang et al. 2016).

Similar data assimilation has been used in several stud‐
ies, such as Blancon et al. (2019), Roth et al. (2020), and
Peng et al. (2021), to estimate directly unobservable trait
values. Blancon et al. (2019) estimated the parameters of
a green leaf area index (GLAI) dynamic model of maize
using the estimated GLAI from the empirical relationship
between multispectral reflectance obtained from UAS multi‐
spectral images at an altitude of 60 m and GLAI manually
measured at the ground level. They found that the GLAI
dynamic was accurately estimated (R2 = 0.9), as well as the
model parameters, including the maximum leaf area and leaf
longevity. Additionally, they found that the model parameters
and GLAI dynamics were highly heritable (0.65 ≤ H 2 ≤ 0.98).
Similarly, Roth et al. (2020) estimated the beginning of stem
elongation, the rate of plant emergence, and the number of
tillers of wheat seedlings by SVM and crop modelling
based on timeseries multi-view angle UAS RGB images at
an altitude of 18 m, achieving a tiller number estimation ac‐
curacy of R2 = 0.86.

Latent space phenotyping
Ubbens et al. (2020) proposed the latent space phenotype

(LSP) to evaluate time-course phenotypic changes caused
by abiotic stress factors, such as drought, nitrogen defi‐
ciency, and salinity. These phenotypic changes can be very
complicated and depend on many factors. As such, it is not
easy to quantify the changes, and humans are not always
able to easily identify the different phenotypic responses to
different treatments. The authors first obtained abstract
low-dimensional vectors that discriminate between time-
series images captured under stressed and control condi‐
tions by encoding the original images using CNN and an
extension to recurrent neural network (RNN) (Jiang and Li
2020) and long short-term memory (LSTM) (Jiang and Li
2020). The encoding process was not different from the
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widely used CNN-based phenotypic discrimination, such as
disease identification (Singh et al. 2016, 2018, 2021). How‐
ever, Ubbens et al. (2020) added a decoding process to re‐
cover low-dimensional vectors from the original images by
CNN training. The outputs of the decoding process repre‐
sented the image expressions of the different responses to
treatment. They defined the distance between two decoded
images and used the sum of the distances from the first
image to the last image of the decoded time-series images
as the LSP, which represents the difference in time-course
responses to the treatments. Then, they demonstrated some
use cases of LSPSs. For example, a QTL analysis based on
the LSPs obtained from the C4 model plant, Setaria RILs,
subjected to water stress treatments, was used to identify
the same QTLs related to water stress, as reported by
Feldman et al. (2018).

Gage et al. (2019) also used the concept of LSP for the
point cloud data acquired by a LiDAR mounted on a
phenotyping rover in maize fields to evaluate variations in
plant architectures among 698 hybrid genotypes, as 3D
point cloud data cannot be directly parameterized to under‐
stand variation. First, they created a 2D marginal frequency
distribution of the 3D point cloud of maize crops in each
plot. Then, they used two methods of dimension reduction
to map the original 2D distribution to LSPs: an autoencoder
and principal component analysis (PCA). They trained the
CNN encoder and decoder so that the original 2D distribu‐
tion images (input) were encoded to 16-dimensional vec‐
tors as LSPs, and the vectors were decoded back to 2D
distribution images (output), minimizing the loss based on
the mean square error between the input and the output.
They also used PCA to obtain 16 principal component
scores as the LPSs. Some of the LSPs showed high heri‐
tability as manually measured architectural traits. In other
words, extremely complicated 3D point clouds were sum‐
marized to a few latent variables using either a CNN auto‐
encoder or PCA on 2D frequency distributions of the 3D
point clouds, and the latent variables were linked to heri‐
tability. Their results also showed that the partial least
squares (PLS) regression model based on the LSPs was
able to predict some of the manually measured traits well.

One possible way to understand the relationship between
the latent variables and observable phenotypes is to inten‐
tionally fluctuate the latent variables and decode them back
to images to see how the fluctuation changes the images. A
similar approach of dimension reduction from images and
image recovery was successful in previous simpler image
analysis studies on plant phenotyping, such as Yoshioka et
al. (2004) and Furuta et al. (1995). We also expect the con‐
cept of LSP to be readily applied to hyperspectral images
where a tremendously large number of dimensions need to
be handled, and in which it is difficult to intuitively infer
the data structure.

Leaf segmentation and reconstruction in canopy
Leaves and roots are important organs for maintaining

photosynthesis. Although leaf canopies have historically
been evaluated as a mass of leaves, the automatic segmen‐
tation of individual leaves has been recently challenged in
crops, such as sugar beet (Xiao et al. 2020), barley (Paulus
et al. 2014), maize (Miao et al. 2020), and wheat (Srivastava
et al. 2017), based on 3D-point clouds constructed by SfM-
MVS or LiDAR. Once such organ segmentations are suc‐
cessful from the point clouds, surface reconstruction of the
segmented point clouds for each organ becomes necessary,
as described by Ando et al. (2021). However, these studies
focused on the individual plant level and cannot be directly
linked to canopy performance, such as light interception ef‐
ficiency, in the field. Understanding the leaf canopy foliage
structure in a crop population is directly linked to the evalu‐
ation of photosynthesis through the ability to intercept light
and the productivity of the canopy, expecting to identify
genes in the architectural structure.

Leaves are often heavily occluded in the crop canopy. As
shown by Isokane et al. (2018), the detailed 3D architec‐
tural structure of an individual plant can be reconstructed
using CNN and multiview images, even if some parts of the
plant are not visible from the outside. This highlights the
possibility of using virtual crop populations constructed
based on the detailed 3D architectural information acquired
at the individual plant level for the comparison of photo‐
synthetic performances among the virtual canopies with
different plant architectures, as attempted by Liu et al.
(2021b).

Interoperable data integration and data management
platform

Alongside the rapid advances of HTP, the amount of data
accumulated, including image data, is enormous. Building
data management platforms for phenotypic data, as well as
other omics data and environmental data, is tremendously
important for plant science research, in combination with
the development of data analysis technologies (Coppens
et al. 2017). Because most of the data ever accumulated are
managed in a proprietary format within a research organi‐
zation, or even by a person who generates the data, data
sharing among different organizations is rather inefficient.
To accelerate collaborative research and realize interoper‐
ability, it is strongly recommended to integrate various types
of data generated by different organizations.

To accelerate such interoperable data management and
the development of data platforms, several international
standards, such as Crop Ontology (Shrestha et al. 2012),
which defines the relationships among crop-related vocabu‐
laries, MIAPPE (Minimum Information About a Plant
Phenotyping Experiment) (Ćwiek-Kupczyńska et al. 2016),
which proposes metadata standards for the data related to
plant phenotyping, and BrAPI (Breeding API) (Selby et al.
2019), which efficiently bridges the breeding-related data
and software developments, have been proposed. Utilizing
these international standards, GnpIS, a data repository for
plant phenomics, was developed (Pommier et al. 2019).
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This repository allows for long-term access to datasets ac‐
cording to the FAIR principles (Findable, Accessible, Inter‐
operable, and Reusable) (Wilkinson et al. 2016), covering
phenotypic and environmental data, and ensures interopera‐
ble data integration between phenotypic and genotypic
datasets. The use of GnpIS also guarantees interoperability
with other data repositories by using international standards
that enable such data links.

Many phenotyping studies using machine learning have
published training data on paper publications. We have
learned that compiling image data sets of wheat spike de‐
tection from several organizations around the world has ac‐
celerated related studies (David et al. 2020) and expect this
activity should move across species aiming at a similar im‐
age archive as ImageNet (https://image-net.org/index.php)
(Russakovsky et al. 2015). This archive has been funda‐
mental in supporting the rapid development of general ob‐
ject recognition. As mentioned several times in this paper,
3D reconstruction technologies have been widely used in
plant phenotyping to generate 3D information. Griffiths
(2020) proposed a 3D print repository for plant data with
data standardization, discussing the future perspective of
3D printing technologies in plant phenomics.

Easing training data provisions in machine learn‐
ing approaches

As mentioned above, image analyses with machine learning
technologies, including CNN, have been successfully ap‐
plied to plant phenotyping, replacing human visual assess‐
ments with even higher accuracy. However, the machine
learning approach requires the provision of training datasets.
In general, the development of training datasets requires
human visual annotations to manually label target objects,
costing both labor and time. Moreover, a machine learning-
based model developed in a domain cannot be applied to
other domains. To ease such annotation costs, several solu‐
tions have also been proposed in plant phenomics.

Acceleration of annotation process
Ghosal et al. (2019) proposed a weakly supervised deep

learning approach inspired by active learning for the detec‐
tion and counting of sorghum heads in UAS RGB images
using CNN models (RetinaNet and ResNet-50). In the
weakly supervised approach, a CNN model was first
trained with a small number of images. Then, false nega‐
tives and false positives generated during the validation
process of the model were added to the original training
data set repeatedly until a good detection performance is
achieved. These authors showed that a model trained with
40 images by the weakly supervised approach achieved the
same detection performance (R2 = 0.88) as a model trained
with 283 images. Although the proposed method still re‐
quires human interaction to identify false-negative and
false-positive results after the validation process, the anno‐
tation time was roughly four times faster on average. Usu‐

ally, the annotation process requires labeling objects by
drawing bounding boxes around objects, and the process
performed visually by humans is time-consuming. To sim‐
plify this process, Chandra et al. (2020) proposed a point
supervision approach, where the first step of the annotation
was performed by clicking the inside of each object instead
of drawing bounding boxes, followed by the automatic pro‐
posals of object regions for the next cycle of the weakly
supervised training, resulting in a significant reduction in
the annotation time.

Domain adaptation
A machine learning-based model, such as a CNN model

trained in a particular domain, cannot be usually applied in
another domain. For example, an orange fruit detection
model from orange trees, which is supervised by the man‐
ual annotation of orange fruits, may not perform well or
may even be totally useless in apple fruit detection. There‐
fore, a new training process based on images obtained from
apple fruits is usually required. This approach is rather ad
hoc, requiring the building of domain-specific models un‐
limitedly. In this context, expanding the coverage of a
model trained in a domain to another domain without pro‐
viding the training data set for the new domain, called
domain adaptation, has been a hot topic in machine learning
studies. Zhang et al. (2021) proposed a domain adaptation
method for fruit detection using a CNN model, CycleGAN
(Zhu et al. 2017), based on GAN (Generative Adversarial
Networks) (Goodfellow et al. 2014). CycleGAN is often
used to transform images in a domain to those in another
domain to learn the relationship between the two domains.
Zhang et al. (2021) applied this feature of CycleGAN to
automatically transform the training images manually anno‐
tated for orange fruit detection to the training images for
fruits of other crops, such as apple and tomato fruits, with‐
out conducting the annotation process for those new crops.
They trained a CycleGAN model to transform single or‐
ange images into single apple images, and the orange im‐
ages of orange trees taken in an orchard were transformed
into fake apple images using the trained CycleGAN. The
fake images were used to train a CNN model, the Improved-
Yolov3 (Jiang and Li 2020) model, to detect apples using
the annotation information made on the original orange tree
images, such as locations and bounding-box sizes, as
pseudo-labels. The proposed method also included filtering
out improper pseudo-labels to increase the accuracy of the
detection. The results showed that the precision and recall
of the detections by the models trained based on the
pseudo-labels were as high as 0.89/0.92 and 0.91/0.94 for
apples and tomatoes, respectively.

Data augmentation and synthetic data
Image data augmentation is comparatively a simple idea

to stretch the scale of training data using existing training
images. This stretch is expected to improve the robustness of
the trained model preventing overfitting without additional
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costs for time-consuming processes, such as manual anno‐
tation. The simplest data augmentations are geometric trans‐
formations, such as flipping, rotation, cropping, shifting,
zooming, and noise injection, randomly given to the original
training images to increase the volume of training data.
Color space transformation on the original training images
is another example of augmentation. In addition to widely
used image augmentations, the concept of synthetic data,
sometimes called domain randomization, has been applied
to plant phenomics to unload the annotation process and
construct even more robust models. For example, (https://
arxiv.org/abs/1807.10931) successfully trained a leaf in‐
stance segmentation model based on Mask R-CNN for
Arabidopsis by combining existing real training images
with artificially generated images from a 3D rendering
model. Shete et al. (2020) developed TasselGAN, which
could synthesize maize tassel images to be used as training
data for tassel detection and segmentation, by merging arti‐
ficial tassel images and sky images generated.

Toda et al. (2020) demonstrated a successful case of arti‐
ficial data synthesis in their segmentation of crop seeds.
First, they provided 20 single-seed images of 20 barley cul‐
tivars and manually annotated a bounding box for each of
the seed images. Then, they repeated the process to locate
randomly selected single seed images on a background with
random rotations, allowing for a certain level of seed over‐
lap to ensure that an image of the seed pool of a genotype
was synthesized. Then, they generated 1,200 similar seed
pool images and trained Mask R-CNN for the segmentation
of barely seeds in barley seed pool images, where some of
the seeds were overlapped and occluded, achieving very
good segmentation performance against real-world seed
pool images. They also showed that the segmented seed im‐
ages were useful for seed morphological characterization,
and that the proposed method was generally applicable to
seed segmentations of other crops, such as wheat, rice, oat,
and lettuce.

Understanding CNN black boxes
While CNN has shown great success in plant pheno‐

typing, sometimes overperforming human visual judgment,
they were left as black boxes in many of the cases. Under‐
standing black boxes sometimes provides useful knowl‐
edge. For example, Ghosal et al. (2018) built a CNN model
to accurately classify several leaf diseases in soybean and
identify a key layer for classification. The heatmap pattern
of the key layer was then used for the quantification (grad‐
ing) of the diseases. Toda and Okura (2019) attempted to
understand the inside functions of the black boxes of CNN
disease classifiers trained with publicly available plant dis‐
ease images by visualizing the status of neurons and layers.
As a result, they discovered that CNN identified the disease
in a manner similar to human visual judgment. With these
findings, they demonstrated that some of the layers that did
not contribute to the classifications could be eliminated
without degrading the classification performance.

Discussion

This paper provides a summary of the current status and
challenges of HTP, focusing mainly on the technologies
used in outdoor fields for architectural crop traits, leaving the
topic of root phenotyping uncovered. Based on our findings,
we expect HTP to replace methods that are tedious, low-
throughput, subjective, destructive, invasive, subjective, and
qualitative, by covering a broader breeding field in a shorter
time, thereby contributing to more efficient plant breeding.

Some studies, such as Tanger et al. (2017) and Walter et
al. (2019a), have discussed the usability of HTP in practical
breeding. Tanger et al. (2017) compared the usability of
HTP in rice breeding, targeting a new mapping population
of over 1,500 RILs. They were able to scan over 4,500 plots
of a 1.5 ha experimental field within two hours using a
boom-sprayer-based ground vehicle with multispectral
reflectance sensors, ultrasonics canopy height sensors, and
infrared sensors. As a result, they estimated the vegetation
index and height, and discovered that the QTLs identified
for the traits obtained by HTP, even during the flowering
stage, corresponded to the QTLs of the manually observed
yield-related traits. They concluded that HTP could acceler‐
ate breeding, allowing researchers to estimate the breeding
values and the effect of QTLs at a much earlier stage, in ad‐
dition to very efficient data collection. Walter et al. (2019b)
estimated the biomass and canopy height of wheat breeding
fields using LiDAR mounted on a ground vehicle, scanning
7,400 plots/h, and showed that the heritability of those
estimated values was highly repeatable and as high as the
heritability of the corresponding ground observations,
proposing a practical application in their breeding program.

HTP can also generate new traits that used to be fairly
difficult to obtain in the past, such as time series canopy
coverage growth patterns over time, providing new ap‐
proaches to the study of crops. Furthermore, this method
may allows to eliminate the need for tedious yield pheno‐
typing after harvest by predicting yield and other desired
traits with models based on traits that are more easily ob‐
tainable before harvest (Parmley et al. 2019), as previously
discussed for model-assisted phenotyping.

Despite the recent technological success of HTP, which
is promising in the acceleration of crop breeding, few have
practically adopted this method or demonstrated its results
in plant breeding programs (Awada et al. 2018, Deery and
Jones 2021). Deery and Jones (2021) emphasized the im‐
portance of targeting the needs of breeders rather than pur‐
suing the technologies through the collaboration between
phenomics researchers and breeders, while Awada et al.
(2018) found that how to integrate and utilize enormous
amount of data generated by HTP in breeding programs was
unclear for plant breeders. In summary, existing HTP tech‐
nologies are not breeder-oriented but technology-oriented.

Although breeders need an integrated pipeline or tool,
most of the HTP technologies that are currently available
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are segmented, including data management. Thus, it is not
easy for breeders to employ them. For example, several
UAS applications have been introduced in this paper. Read‐
ing the original articles of those applications, although the
usage of UAS seems straightforward, in reality it is rather
difficult to capture quality images and to process the im‐
ages before data analysis for phenotyping. As summarized
by Guo et al. (2021), several complex steps are required to
properly acquire and process field images by UAS prior to
image processing for phenotyping, making the expected
end users hesitate to adopt UAS for their breeding pro‐
grams.

To solve these issues, the enrichment of easy-to-use
phenotyping tools to handle these processes is necessary.
EasyIDP (Wang et al. 2021a) for intermediate data process‐
ing for UAS images, EasyMPE (Tresch et al. 2019) for
microplot extraction, EasyPCC (Guo et al. 2017) for crop
segmentation, and EasyDCP (Feldman et al. 2021) for 3D
phenotyping are good examples. Then, we would need to
integrate these tools as a pipeline on a common data ex‐
change platform with standardized application program‐
ming interfaces (APIs) and access to genotypic data.

In addition, many of the traits obtained by HTP are given
in the estimated values or newly defined ones, and breeders
hesitate to replace traditionally obtained values with the es‐
timated values or the values of the newly defined traits.
Regarding this issue, discussions of the estimated values
for the newly defined traits by HTP are needed among crop
scientists, including breeders. For example, there is a need
to understand that a widely used index, LAI, is a compro‐
mised index that cannot exactly reflect canopy foliage ar‐
chitecture because the light interception of a canopy with
the same LAI with different leaf angles should not be the
same. Alternatively, NDVI, the most popular vegetation in‐
dex, has the same background as it was defined when a
very limited number of reflectance bands was available.
Now that hyperspectral images are becoming available at
reasonable prices, we may be able to develop new models
to monitor crop physical and physiological status with a
much higher dimension and accuracy.

In this review, phenotyping of non-architectural traits,
such as nutritious conditions and photosynthetic activities,
has not been discussed despite their importance in crop pro‐
ductivity. It is well known that chlorophyll content can be
estimated well by using spectral reflectance as commonly
used in SPAD measurements, and can be estimated from
UAS hyperspectral images (Shu et al. 2021). Fu et al.
(2019) also showed the possibility of estimating the photo‐
synthetic capacity of six tobacco genotypes using a model
based on hyperspectral reflectances. Furthermore, the use of
light-induced fluorescence transients (LIFT) has been used
to estimate photosynthetic activities in open canopies. For
example, Keller et al. (2019) used LIFT to evaluate photo‐
synthesis in the soybean canopy. A totally different ap‐
proach was used by Liu et al. (2021b), who compared the
photosynthetic performances using the virtual canopies of

different foliage architectures, as introduced above. Al‐
though these technologies look great, they are still far from
being practically applied in HTP in the field.

Author Contribution Statement

S.N. wrote the manuscript.

Acknowledgments

The author thanks Dr. Guo Wei of the University of Tokyo
for his valuable comments and feedback on this work.
This work was partially funded by the CREST Program
“Knowledge discovery by constructing AgriBigData”
(JPMJCR1512), the SICORP Program “Data science-based
farming support system for sustainable crop production
under climatic change” (JPMJSC16H2), and the aXis B
type project “Development and demonstration of high-
performance rice breeding support pipeline for semiarid
area” of the Japan Science and Technology Agency (JST).

Literature Cited

Achanta, R., A. Shaji, K. Smith, A. Lucchi, P. Fua and S. Süsstrunk
(2012) SLIC superpixels compared to state-of-the-art superpixel
methods. IEEE Trans Pattern Anal Mach Intell 34: 2274–2282.

Alkhudaydi, T., D. Reynolds, S. Griffiths, J. Zhou and B. de la Iglesia
(2019) An exploration of deep-learning based phenotypic analysis
to detect spike regions in field conditions for UK bread wheat.
Plant Phenomics 2019: 7368761.

Altas, Z., M.M. Ozguven and Y. Yanar (2018) Determination of sugar
beet leaf spot disease level (Cercospora Beticola Sacc.) with im‐
age processing technique by using drone. Current Investigations in
Agriculture and Current Research 5: 621-631.

Ando, R., Y. Ozasa and W. Guo (2021) Robust surface reconstruction
of plant leaves from 3D point clouds. Plant Phenomics 2021:
3184185.

Asaari, M.S.M., S. Mertens, S. Dhondt, D. Inzé, N. Wuyts and P.
Scheunders (2019) Analysis of hyperspectral images for detection
of drought stress and recovery in maize plants in a high-
throughput phenotyping platform. Comput Electron Agric 162:
749–758.

Atkinson, J.A., M.P. Pound, M.J. Bennett and D.M. Wells (2019) Un‐
covering the hidden half of plants using new advances in root
phenotyping. Curr Opin Biotechnol 55: 1–8.

Atoum, Y., M.J. Afridi, X. Liu, J.M. McGrath and L.E. Hanson (2016)
On developing and enhancing plant-level disease rating systems in
real fields. Pattern Recognit 53: 287–299.

Awada, L., P.W.B. Phillips and S.J. Smyth (2018) The adoption of
automated phenotyping by plant breeders. Euphytica 214: 148.

Barbedo, J.G.A. (2019) A review on the use of unmanned aerial vehi‐
cles and imaging sensors for monitoring and assessing plant
stresses. Drones 3: 40.

Blancon, J., D. Dutartre, M.H. Tixier, M. Weiss, A. Comar, S. Praud
and F. Baret (2019) A High-throughput model-assisted method for
phenotyping maize green leaf area index dynamics using unmanned
aerial vehicle imagery. Front Plant Sci 10: 685.

Boulent, J., S. Foucher, J. Théau and P.L. St-Charles (2019) Convo‐
lutional neural networks for the automatic identification of plant

BS Breeding Science
Vol. 72 No. 1 Ninomiya

12



diseases. Front Plant Sci 10: 941.
Bruce, R.W., I. Rajcan and J. Sulik (2021) Classification of soybean

pubescence from multispectral aerial imagery. Plant Phenomics
2021: 9806201.

Cai, J., P. Kumar, J. Chopin and S.J. Miklavcic (2018) Land-based
crop phenotyping by image analysis: Accurate estimation of
canopy height distributions using stereo images. PLoS One 13:
e0196671.

Chandra, A.L., S.V. Desai, V.N. Balasubramanian, S. Ninomiya and
W. Guo (2020) Active learning with point supervision for cost‑
effective panicle detection in cereal crops. Plant Methods 16: 34.

Coppens, F., N. Wuyts, D. Inze and S. Dhondt (2017) Unlocking the
potential of plant phenotyping data through integration and data-
driven approaches. Curr Opin Syst Biol 4: 58–63.

Costa, C., U. Schurr, F. Loreto, P. Menesatti and S. Carpentier (2019)
Plant phenotyping research trends, a science mapping approach.
Front Plant Sci 9: 1933.

Crusiol, L.G.T., M.R. Nanni, R.H. Furlanetto, R.N.R. Sibaldelli, E.
Cezar, L.M. Mertz-Henning, A.L. Nepomuceno, N. Neumaier and
J.R.B. Farias (2020) UAV-based thermal imaging in the assess‐
ment of water status of soybean plants. Int J Remote Sens 41:
3243–3265.

Csurka, G., C.R. Dance, L. Fan, J. Willamowski and C. Bray (2004)
Visual categorization with bags of keypoints. Proceedings European
Conference on Computer Vision Workshop on Statistical Learning
in Computer Vision 2004: 59–74.

Ćwiek-Kupczyńska, H., T. Altmann, D. Arend, E. Arnaud, D. Chen,
G. Cornut, F. Fiorani, W. Frohmberg, A. Junker, C. Klukas et al.
(2016) Measures for interoperability of phenotypic data: Minimum
information requirements and formatting. Plant Methods 12: 44.

Dang, L.M., S. Ibrahim Hassan, I. Suhyeon, A. kumar Sangaiah, I.
Mehmood, S. Rho, S. Seo and H. Moon (2020) UAV based wilt
detection system via convolutional neural networks. Sustainable
Computing: Informatics and Systems 28: 100250.

David, E., S. Madec, P. Sadeghi-Tehran, H. Aasen, B. Zheng, S. Liu,
N. Kirchgessner, G. Ishikawa, K. Nagasawa, M.A. Badhon et al.
(2020) Global wheat head detection (GWHD) dataset: A large and
diverse dataset of high-resolution RGB-labelled images to develop
and benchmark wheat head detection methods. Plant Phenomics
2020: 3521852.

David, E., M. Serouart, D. Smith, S. Madec, K. Velumani, S. Liu, X.
Wang, F. Pinto, S. Shafiee, I.S.A. Tahir et al. (2021) Global wheat
head detection 2021: An improved dataset for benchmarking
wheat dead detection methods. Plant Phenomics 2021: 9846158.

De Castro, A.I., J. Torres-Sánchez, J.M. Peña, F.M. Jiménez-Brenes,
O. Csillik and F. López-Granados (2018) An automatic random
forest-OBIA algorithm for early weed mapping between and within
crop rows using UAV imagery. Remote Sens (Basel) 10: 285.

DeChant, C., T. Wiesner-Hanks, S. Chen, E.L. Stewart, J. Yosinski,
M.A. Gore, R.J. Nelson and H. Lipson (2017) Automated iden‐
tification of northern leaf blight-infected maize plants from field
imagery using deep learning. Phytopathology 107: 1426–1432.

Deery, D.M., G.J. Rebetzke, J.A. Jimenez-Berni, W.D. Bovill, R.A.
James, A.G. Condon, R.T. Furbank, S.C. Chapman and R.A.
Fischer (2019) Evaluation of the phenotypic repeatability of
canopy temperature in wheat using continuous-terrestrial and air‐
borne measurements. Front Plant Sci 10: 875.

Deery, D.M., G.J. Rebetzke, J.A. Jimenez-Berni, A.G. Condon, D.J.
Smith, K.M. Bechaz and W.D. Bovill (2020) Ground-based
LiDAR improves phenotypic repeatability of above-ground
biomass and crop growth rate in wheat. Plant Phenomics 2020:

8329798.
Deery, D.M. and H.G. Jones (2021) Field phenomics: Will it enable

crop improvement? Plant Phenomics 2021: 9871989.
Desai, S.V., V.N. Balasubramanian, T. Fukatsu, S. Ninomiya and W.

Guo (2019) Automatic estimation of heading date of paddy rice
using deep learning. Plant Methods 15: 76.

Dobbels, A.A. and A.J. Lorenz (2019) Soybean iron deficiency
chlorosis high-throughput phenotyping using an unmanned aircraft
system. Plant Methods 15: 97.

Duan, T., B. Zheng, W. Guo, S. Ninomiya, Y. Guo and S.C. Chapman
(2017) Comparison of ground cover estimates from experiment
plots in cotton, sorghum and sugarcane based on images and
ortho-mosaics captured by UAV. Funct Plant Biol 44: 169–183.

Duarte-Carvajalino, J.M., D.F. Alzate, A.A. Ramirez, J.D. Santa-
Sepulveda, A.E. Fajardo-Rojas and M. Soto-Suárez (2018) Evalu‐
ating late blight severity in potato crops using unmanned aerial
vehicles and machine learning algorithms. Remote Sens (Basel)
10: 1513.

Fasoula, D.A., I.M. Ioannides and M. Omirou (2020) Phenotyping
and plant breeding: Overcoming the barriers. Front Plant Sci 10:
1713.

Feldman, M.J., P.Z. Ellsworth, N. Fahlgren, M.A. Gehan, A.B.
Cousins and I. Baxter (2018) Components of water use efficiency
have unique genetic signatures in the model C4 Grass Setaria.
Plant Physiol 178: 699–715.

Feldman, A., H. Wang, Y. Fukano, Y. Kato, S. Ninomiya and W. Guo
(2021) EasyDCP: An affordable, high-throughput tool to measure
plant phenotypic traits in 3D. Methods Ecol Evol 12: 1679–1686.

Fernandez-Gallego, J.A., S.C. Kefauver, N.A. Gutiérrez, M.T. Nieto-
Taladriz and J.L. Araus (2018) Wheat ear counting in-field condi‐
tions: High throughput and low-cost approach using RGB images.
Plant Methods 14: 22.

Fournier, C., B. Andrieu, S. Ljutovac and S. Saint-Jean (2003) ADEL-
wheat: A 3D architectural model of wheat development. In: Hu,
B.-G. and M. Jaeger, M. (eds.) Plant growth modeling and applica‐
tions, Springer Verlag, Berlin, pp. 54–63.

Friedli, M., N. Kirchgessner, C. Grieder, F. Liebisch, M. Mannale and
A. Walter (2016) Terrestrial 3D laser scanning to track the increase
in canopy height of both monocot and dicot crop species under
field conditions. Plant Methods 12: 9.

Fu, P., K. Meacham-Hensold, K. Guan and C.J. Bernacchi (2019)
Hyperspectral leaf reflectance as proxy for photosynthetic capaci‐
ties: An ensemble approach based on multiple machine learning
algorithms. Front Plant Sci 10: 730.

Fuentes, A., S. Yoon, S.C. Kim and D.S. Park (2017) A robust deep-
learning-based detector for real-time tomato plant diseases and
pests recognition. Sensors (Basel) 17: 2022.

Fuentes, A.F., S. Yoon, J. Lee and D.S. Park (2018) High-performance
deep neural network-based tomato plant diseases and pests diag‐
nosis system with refinement filter bank. Front Plant Sci 9: 1162.

Furuta, N., S. Ninomiya, N. Takahashi, H. Ohmori and Y. Ukai (1995)
Quantitative evaluation of soybean (Glycine max L. Merr.) leaflet
shape by principal component scores based on elliptic Fourier
descriptors. Breed Sci 45: 315–320.

Gage, J.L., E. Richards, N. Lepak, N. Kaczmar, C. Soman, G.
Chowdhary, M.A. Gore and E.S. Buckler (2019) In-field whole-
plant maize architecture characterized by subcanopy rovers and
latent space phenotyping. The Plant Phenome Journal 2: 190011.

Gamon, J.A., J. Peñuelas and C.B. Field (1992) A narrow-waveband
spectral index that tracks diurnal changes in photosynthetic effi‐
ciency. Remote Sens Environ 41: 35–44.

Status of high-throughput field crop phenotyping
Breeding Science
Vol. 72 No. 1 BS

13



Ghosal, S., D. Blystone, A.K. Singh, B. Ganapathysubramanian, A.
Singh and S. Sarkar (2018) An explainable deep machine vision
framework for plant stress phenotyping. Proc Natl Acad Sci USA
115: 4613–4618.

Ghosal, S., B. Zheng, S.C. Chapman, A.B. Potgieter, D.R. Jordan,
X. Wang, A.K. Singh, A. Singh, M. Hirafuji, S. Ninomiya et al.
(2019) A weakly supervised deep learning framework for sorghum
head detection and counting. Plant Phenomics 2019: 1525874.

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville and Y. Bengio (2014) Generative adversar‐
ial nets. In: Advances in Neural Information Processing Systems,
Proc. 27th Int. Conf. Neural Info. Proc. Sys. Vol. 2 (NIPS’14), MIT
Press, Cambridge, MA, USA, pp. 2672–2680.

Griffiths, M. (2020) A 3D print repository for plant phenomics. Plant
Phenomics 2020: 8640215.

Guo, W., U.K. Rage and S. Ninomiya (2013) Illumination invariant
segmentation of vegetation for time series wheat images based on
decision tree model. Comput Electron Agric 96: 58–66.

Guo, W., T. Fukatsu and S. Ninomiya (2015) Automated characteriza‐
tion of flowering dynamics in rice using field-acquired time-series
RGB images. Plant Methods 11: 7.

Guo, W., B. Zheng, T. Duan, T. Fukatsu, S. Chapman and S.
Ninomiya (2017) EasyPCC: Benchmark datasets and tools for
high-throughput measurement of the plant canopy coverage ratio
under field conditions. Sensors (Basel) 17: 798.

Guo, W., B. Zheng, A.B. Potgieter, J. Diot, K. Watanabe, K. Noshita,
D.R. Jordan, X. Wang, J. Watson, S. Ninomiya et al. (2018) Aerial
imagery analysis—Quantifying appearance and number of
sorghum heads for applications in breeding and agronomy. Front
Plant Sci 9: 1544.

Guo, W., M.E. Carroll, A. Singh, T.L. Swetnam, N. Merchant, S.
Sarkar, A.K. Singh and B. Ganapathysubramanian (2021) UAS-
based plant phenotyping for research and breeding applications.
Plant Phenomics 2021: 9840192.

Ha, J.G., H. Moon, J.T. Kwak, S.I. Hassan, M. Dang, O.N. Lee and
H.Y. Park (2017) Deep convolutional neural network for classify‐
ing Fusarium wilt of radish from unmanned aerial vehicles. J Appl
Remote Sens 11: 042621.

Han, L., G. Yang, H. Feng, C. Zhou, H. Yang, B. Xu, Z. Li and X.
Yang (2018) Quantitative identification of maize lodging-causing
feature factors using unmanned aerial vehicle images and a nomo‐
gram computation. Remote Sens (Basel) 10: 1528.

Han, Y., B.A. Tarakey, S.-J. Hong, S.-Y. Kim, E. Kim, C.-H. Lee and
G. Kim (2021) Calibration and image processing of aerial thermal
image for UAV application in crop water stress estimation. J Sens
2021: 5537795.

Häni, N., P. Roy and V. Isler (2020) MinneApple: A benchmark
dataset for apple detection and segmentation. IEEE Robot Autom
Lett 5: 852–858.

Hasan, M.M., J.P. Chopin, H. Laga and S.J. Miklavcic (2018) Detec‐
tion and analysis of wheat spikes using convolutional neural net‐
works. Plant Methods 14: 100.

Hassan, M.A., M. Yang, A. Rasheed, X. Jin, X. Xia, Y. Xiao and Z.
He (2018) Time-series multispectral indices from unmanned aerial
vehicle imagery reveal senescence rate in bread wheat. Remote
Sens (Basel) 10: 809.

Hassan, M.A., M. Yang, L. Fu, A. Rasheed, B. Zheng, X. Xia, Y. Xiao
and Z. He (2019) Accuracy assessment of plant height using an
unmanned aerial vehicle for quantitative genomic analysis in bread
wheat. Plant Methods 15: 37.

Herrero-Huerta, M., A. Bucksch, E. Puttonen and K.M. Rainey (2020)

Canopy roughness: A new phenotypic trait to estimate above‐
ground biomass from unmanned aerial system. Plant Phenomics
2020: 6735967.

Hirafuji, M., H. Yoichi, Y. Miki, T. Kiura, T. Fukatsu, K. Tanaka, K.
Matsumoto, N. Hoshi, H. Nesumi, Y. Shibuya et al. (2013) Devel‐
opment of an open Field Server and sensor cloud system.
Agricultural Information Research 22: 60–70 (in Japanese with
English summary).

Hoffmann, H., R. Jensen, A. Thomsen, H. Nieto, J. Rasmussen and T.
Friborg (2016) Crop water stress maps for an entire growing sea‐
son from visible and thermal UAV imagery. Biogeosciences 13:
6545–6563.

Hu, P., S.C. Chapman, X. Wang, A. Potgieter, T. Duan, D. Jordan, Y.
Guo and B. Zheng (2018) Estimation of plant height using a high
throughput phenotyping platform based on unmanned aerial vehi‐
cle and self-calibration: Example for sorghum breeding. Eur J
Agron 95: 24–32.

Hu, P., S.C. Chapman, H. Jin, Y. Guo and B. Zheng (2021) Compari‐
son of modelling strategies to estimate phenotypic values from an
unmanned aerial vehicle with spectral and temporal vegetation in‐
dexes. Remote Sens (Basel) 13: 2827.

Huang, H., J. Deng, Y. Lan, A. Yang, X. Deng and L. Zhang (2018) A
fully convolutional network for weed mapping of unmanned aerial
vehicle (UAV) imagery. PLoS One 13: e0196302.

Isokane, T., F. Okura, A. Ide, Y. Matsushita and Y. Yagi (2018) Proba‐
bilistic plant modeling via multi-view image-to-image translation.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2018:
2906–2915.

Ivushkin, K., H. Bartholomeus, A.K. Bregt, A. Pulatov, M.H.D.
Franceschini, H. Kramer, E.N. van Loo, V. Jaramillo Roman and
R. Finkers (2019) UAV based soil salinity assessment of cropland.
Geoderma 338: 502–512.

Jay, S., A. Comar, R. Benicio, J. Beauvois, D. Dutartre, G. Daubige,
W. Li, J. Labrosse, S. Thomas, N. Henry et al. (2020) Scoring cer‐
cospora leaf spot on sugar beet: Comparison of UGV and UAV
phenotyping systems. Plant Phenomics 2020: 9452123.

Jiang, Q., S. Fang, Y. Peng, Y. Gong, R. Zhu, X. Wu, Y. Ma, B. Duan
and J. Liu (2019) UAV-based biomass estimation for rice-
combining spectral, TIN-based structural and meteorological fea‐
tures. Remote Sens (Basel) 11: 890.

Jiang, Y. and C. Li (2020) Convolutional neural networks for image-
based high-throughput plant phenotyping: A review. Plant
Phenomics 2020: 4152816.

Jimenez-Berni, J.A., D.M. Deery, P. Rozas-Larraondo, A.G. Condon,
G.J. Rebetzke, R.A. James, W.D. Bovill, R.T. Furbank and X.R.R.
Sirault (2018) High throughput determination of plant height,
ground cover, and above-ground biomass in wheat with LiDAR.
Front Plant Sci 9: 237.

Jin, X., S. Madec, D. Dutartre, B. de Solan, A. Comar and F. Baret
(2019) High-throughput measurements of stem characteristics to
estimate ear density and above-ground biomass. Plant Phenomics
2019: 4820305.

Joalland, S., C. Screpanti, H.V. Varella, M. Reuther, M. Schwind, C.
Lang, A. Walter and F. Liebisch (2018) Aerial and ground based
sensing of tolerance to beet cyst nematode in sugar beet. Remote
Sens (Basel) 10: 787.

Johansen, K., M.J.L. Morton, Y.M. Malbeteau, B. Aragon, S.K.
Al-Mashharawi, M.G. Ziliani, Y. Angel, G.M. Fiene, S.S.C.
Negrão, M.A.A. Mousa et al. (2019) Unmanned aerial vehicle-
based phenotyping using morphometric and spectral analysis can
quantify responses of wild tomato plants to salinity stress. Front

BS Breeding Science
Vol. 72 No. 1 Ninomiya

14



Plant Sci 10: 370.
Johnson, J., G. Sharma, S. Srinivasan, S.K. Masakapalli, S. Sharma, J.

Sharma and V.K. Dua (2021) Enhanced field-based detection of
potato blight in complex backgrounds using deep learning. Plant
Phenomics 2021: 9835724.

Kang, H. and C. Chen (2020) Fast implementation of real-time fruit
detection in apple orchards using deep learning. Comput Electron
Agric 168: 105108.

Kawamura, K., H. Asai, T. Yasuda, P. Khanthavong, P. Soisouvanh
and S. Phongchanmixay (2020) Field phenotyping of plant height
in an upland rice field in Laos using low-cost small unmanned
aerial vehicles (UAVs). Plant Prod Sci 23: 452–465.

Keller, B., S. Matsubara, U. Rascher, R. Pieruschka, A. Steier, T.
Kraska and O. Muller (2019) Genotype specific photosynthesis ×
environment interactions captured by automated fluorescence
canopy scans over two fluctuating growing seasons. Front Plant
Sci 10: 1482.

Khan, Z., J. Chopin, J. Cai, V.-R. Eichi, S. Haefele and S.J. Miklavcic
(2018) Quantitative estimation of wheat phenotyping traits using
ground and aerial imagery. Remote Sens (Basel) 10: 950.

Li, B., X. Xu, J. Han, L. Zhang, C. Bian, L. Jin and J. Liu (2019) The
estimation of crop emergence in potatoes by UAV RGB imagery.
Plant Methods 15: 15.

Liedtke, J.D., C.H. Hunt, B. George-Jaeggli, K. Laws, J. Watson,
A.B. Potgieter, A. Cruickshank and D.R. Jordan (2020) High-
throughput phenotyping of dynamic canopy traits associated with
stay-green in grain sorghum. Plant Phenomics 2020: 4635153.

Liu, F., P. Hu, B. Zheng, T. Duan, B. Zhu and Y. Guo (2021a) A field-
based high-throughput method for acquiring canopy architecture
using unmanned aerial vehicle images. Agric For Meteorol 296:
108231.

Liu, F., Q. Song, J. Zhao, L. Mao, H. Bu, Y. Hu and X.-G. Zhu
(2021b) Canopy occupation volume as an indicator of canopy
photosynthetic capacity. New Phytol 232: 941–956.

Liu, J., J. Shang, B. Qian, T. Huffman, Y. Zhang, T. Dong, Q. Jing and
T. Martin (2019a) Crop yield estimation using time-series MODIS
data and the effects of cropland masks in Ontario, Canada. Remote
Sens (Basel) 11: 2419.

Liu, S., P. Martre, S. Buis, M. Abichou, B. Andrieu and F. Baret
(2019b) Estimation of plant and canopy architectural traits using
the digital plant phenotyping platform. Plant Physiol 181: 881–
890.

Liu, T., R. Li, X. Jin, J. Ding, X. Zhu, C. Sun and W. Guo (2017)
Evaluation of seed emergence uniformity of mechanically sown
wheat with UAV RGB imagery. Remote Sens (Basel) 9: 1241.

Lowe, D.G. (2004) Distinctive image features from scale-invariant
keypoints. Int J Comput Vis 60: 91–110.

Lu, H., Z. Cao, Y. Xiao, B. Zhuang and C. Shen (2017) TasselNet:
Counting maize tassels in the wild via local counts regression net‐
work. Plant Methods 13: 79.

Lu, H. and Z. Cao (2020) TasselNetV2+: A fast implementation for
high-throughput plant counting from high-resolution RGB im‐
agery. Front Plant Sci 11: 1929.

Lu, N., J. Zhou, Z. Han, D. Li, Q. Cao, X. Yao, Y. Tian, Y. Zhu, W.
Cao and T. Cheng (2019) Improved estimation of aboveground
biomass in wheat from RGB imagery and point cloud data ac‐
quired with a low-cost unmanned aerial vehicle system. Plant
Methods 15: 17.

Lyu, S.X., N. Noguchi, R. Ospina and Y. Kishima (2021) Develop‐
ment of phenotyping system using low altitude UAV imagery and
deep learning. International Journal of Agricultural and Biological

Engineering 14: 207–215.
Madec, S., X. Jin, H. Lu, B. De Solan, S. Liu, F. Duyme, E. Heritier

and F. Baret (2019) Ear density estimation from high resolution
RGB imagery using deep learning technique. Agric For Meteorol
264: 225–234.

Makanza, R., M. Zaman-Allah, J.E. Cairns, C. Magorokosho, A.
Tarekegne, M. Olsen and B.M. Prasanna (2018) High-throughput
phenotyping of canopy cover and senescence in maize field trials
using aerial digital canopy imaging. Remote Sens (Basel) 10: 330.

Miao, C., A. Pages, Z. Xu, E. Rodene, J. Yang and J.C. Schnable
(2020) Semantic segmentation of sorghum using hyperspectral data
identifies genetic associations. Plant Phenomics 2020: 4216373.

Michez, A., S. Bauwens, Y. Brostaux, M.-P. Hiel, S. Garré, P. Lejeune
and B. Dumont (2018) How far can consumer-grade UAV RGB
imagery describe crop production? A 3D and multitemporal mod‐
eling approach applied to zea mays. Remote Sens (Basel) 10:
1798.

Mirnezami, S.V., S. Srinivasan, Y. Zhou, P.S. Schnable and B.
Ganapathysubramanian (2021) Detection of the progression of an‐
thesis in field-grown maize tassels: A case study. Plant Phenomics
2021: 4238701.

Moller, M., V. Alchanatis, Y. Cohen, M. Meron, J. Tsipris, A. Naor,
V. Ostrovsky, M. Sprintsin and S. Cohen (2007) Use of thermal
and visible imagery for estimating crop water status of irrigated
grapevine. Exp Bot 58: 827–838.

Mu, Y., T.-S. Chen, S. Ninomiya and W. Guo (2020) Intact detection
of highly occluded immature tomatoes on plants using deep learn‐
ing techniques. Sensors (Basel) 20: 2984.

Parmley, K., K. Nagasubramanian, S. Sarkar, B. Ganapathysubramanian
and A.K. Singh (2019) Development of optimized phenomic pre‐
dictors for efficient plant breeding decisions using phenomic-
assisted selection in soybean. Plant Phenomics 2019: 5809404.

Patrick, A., S. Pelham, A. Culbreath, C.C. Holbrook, I.J. De Godoy
and C. Li (2017) High throughput phenotyping of tomato spot wilt
disease in peanuts using unmanned aerial systems and multi‐
spectral imaging. IEEE Instrum Meas Mag 20: 4–12.

Paulus, S., J. Dupuis, S. Riedel and H. Kuhlmann (2014) Automated
analysis of barley organs using 3D laser scanning: An approach for
high throughput phenotyping. Sensors (Basel) 14: 12670–12686.

Peng, X., W. Han, J. Ao and Y. Wang (2021) Assimilation of LAI
derived from UAV multispectral data into the SAFY model to
estimate maize yield. Remote Sens (Basel) 13: 1094.

Perich, G., A. Hund, J. Anderegg, L. Roth, M.P. Boer, A. Walter, F.
Liebisch and H. Aasen (2020) Assessment of multi-image un‐
manned aerial vehicle based high-throughput field phenotyping of
canopy temperature. Front Plant Sci 11: 150.

Phan, A.T.T., K. Takahashi, A. Rikimaru and Y. Higuchi (2016)
Method for estimating rice plant height without ground surface
detection using laser scanner measurement. J Apple Remote Sens
10: 046018.

Pommier, C., C. Michotey, G. Cornut, P. Roumet, E. Duchêne, R.
Flores, A. Lebreton, M. Alaux, S. Durand, E. Kimmel et al. (2019)
Applying FAIR principles to plant phenotypic data management in
GnpIS. Plant Phenomics 2019: 1671403.

Rebetzke, G., R. Fischer, D. Deery, J. Jimenez-Berni and D. Smith
(2019) Review: High-throughput phenotyping to enhance the use
of crop genetic resources. Plant Sci 282: 40–48.

Riera, L.G., M.E. Carroll, Z. Zhang, J.M. Shook, S. Ghosal, T. Gao,
A. Singh, S. Bhattacharya, B. Ganapathysubramanian, A.K. Singh
et al. (2021) Deep multiview image fusion for soybean yield esti‐
mation in breeding applications. Plant Phenomics 2021: 9846470.

Status of high-throughput field crop phenotyping
Breeding Science
Vol. 72 No. 1 BS

15



Roitsch, T., L. Cabrera-Bosquet, A. Fournier, K. Ghamkhar, J.
Jiménez-Berni, F. Pinto and E.S. Ober (2019) Review: New sen‐
sors and data-driven approaches—A path to next generation
phenomics. Plant Sci 282: 2–10.

Romero, A.P., A. Alarcón, R.I. Valbuena and C.H. Galeano (2017)
Physiological assessment of water stress in potato using spectral
information. Front Plant Sci 8: 1608.

Romero, M., Y. Luo, B. Su and S. Fuentes (2018) Vineyard water sta‐
tus estimation using multispectral imagery from an UAV platform
and machine learning algorithms for irrigation scheduling manage‐
ment. Comput Electron Agric 147: 109–117.

Roth, L., M. Camenzind, H. Aasen, L. Kronenberg, C. Barendregt,
K.-H. Camp, A. Walter, N. Kirchgessner and A. Hund (2020)
Repeated multiview imaging for estimating seedling tiller counts
of wheat genotypes using drones. Plant Phenomics 2020:
3729715.

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al. (2015)
ImageNet Large scale visual recognition challenge. Int J Comput
Vis 115: 211–252.

Sa, I., Z. Ge, F. Dayoub, B. Upcroft, T. Perez and C. McCool (2016)
DeepFruits: A fruit detection system using deep neural networks.
Sensors (Basel) 16: 1222.

Sadeghi-Tehran, P., N. Virlet, E.M. Ampe, P. Reyns and M.J.
Hawkesford (2019) DeepCount: In-field automatic quantification
of wheat spikes using simple linear iterative clustering and deep
convolutional neural networks. Front Plant Sci 10: 1176.

Sagan, V., M. Maimaitijiang, P. Sidike, K. Eblimit, K.T. Peterson, S.
Hartling, F. Esposito, K. Khanal, M. Newcomb, D. Pauli et al.
(2019) UAV-based high resolution thermal imaging for vegetation
monitoring, and plant phenotyping using ICI 8640 P, FLIR Vue
Pro R 640, and thermomap cameras. Remote Sens (Basel) 11: 330.

Schirrmann, M., N. Landwehr, A. Giebel, A. Garz and K.-H. Dammer
(2021) Early detection of stripe rust in winter wheat using deep
residual neural networks. Front Plant Sci 12: 475.

Seguin, B., J.P. Lagouarde and M. Savane (1991) The assessment of
regional crop water conditions from meteorological satellite ther‐
mal infrared data. Remote Sens Environ 35: 141–148.

Selby, P., R. Abbeloos, J.E. Backlund, M. Basterrechea Salido,
G. Bauchet, O.E. Benites-Alfaro, C. Birkett, V.C. Calaminos, P.
Carceller, G. Cornut et al. (2019) BrAPI—an application program‐
ming interface for plant breeding applications. Bioinformatics 35:
4147–4155.

Shete, S., S. Srinivasan and T.A. Gonsalves (2020) TasselGAN: An
Application of the generative adversarial model for creating field-
based maize tassel data. Plant Phenomics 2020: 8309605.

Shrestha, R., L. Matteis, M. Skofic, A. Portugal, G. McLaren, G.
Hyman and E. Arnaud (2012) Bridging the phenotypic and genetic
data useful for integrated breeding through a data annotation using
the crop ontology developed by the crop communities of practice.
Front Physiol 3: 326.

Shu, M., M. Shen, J. Zuo, P. Yin, M. Wang, Z. Xie, J. Tang, R. Wang,
B. Li, X. Yang et al. (2021) The application of UAV-based hyper‐
spectral imaging to estimate crop traits in maize inbred lines. Plant
Phenomics 2021: 9890745.

Singh, A., B. Ganapathysubramanian, A.K. Singh and S. Sarkar
(2016) Machine learning for high-throughput stress phenotyping
in plants. Trend Plant Sci 21: 110–124.

Singh, A.K., B. Ganapathysubramanian, S. Sarkar and A. Singh
(2018) Deep learning for plant stress phenotyping: Trends and
future perspectives. Trend Plant Sci 23: 883–898.

Singh, A., S. Jones, B. Ganapathysubramanian, S. Sarkar, D. Mueller,
K. Sandhu and K. Nagasubramanian (2021) Challenges and oppor‐
tunities in machine-augmented plant stress phenotyping. Trends
Plant Sci 26: 53–69.

Singh, D., X. Wang, U. Kumar, L. Gao, M. Noor, M. Imtiaz, R.P.
Singh and J. Poland (2019) High-throughput phenotyping enabled
genetic dissection of crop lodging in wheat. Front Plant Sci 10:
394.

Singh, V., A. Rana, M. Bishop, A.M. Filippi, D. Cope, N. Rajan and
M. Bagavathiannan (2020) Chapter Three—Unmanned aircraft
systems for precision weed detection and management: Prospects
and challenges. Advances in Agronomy 159: 93–134.

Skovsen, S.K., M.S. Laursen, R.K. Kristensen, J. Rasmussen, M.
Dyrmann, J. Eriksen, R. Gislum, R.N. Jørgensen and H. Karstoft
(2021) Robust species distribution mapping of crop mixtures using
color images and convolutional neural networks. Sensors (Basel)
21: 175.

Srivastava, S., S. Bhugra, B. Lall and S. Chaudhury (2017) Drought
stress classification using 3D plant models. IEEE Int Conf Comput
Vis Workshops, pp. 2046–2054.

Su, J., C. Liu, M. Coombes, X. Hu, C. Wang, X. Xu, Q. Li, L. Guo
and W.-H. Chen (2018) Wheat yellow rust monitoring by learning
from multispectral UAV aerial imagery. Comput Electron Agric
155: 157–166.

Sugiura, R., S. Tsuda, S. Tamiya, A. Itoh, K. Nishiwaki, N.
Murakami, Y. Shibuya, M. Hirafuji and S. Nuske (2016) Field
phenotyping system for the assessment of potato late blight resis‐
tance using RGB imagery from an unmanned aerial vehicle.
Biosyst Eng 148: 1–10.

Sun, Q., L. Sun, M. Shu, X. Gu, G. Yang and L. Zhou (2019) Moni‐
toring maize lodging grades via unmanned aerial vehicle multi‐
spectral image. Plant Phenomics 2019: 5704154.

Sun, S., C. Li, A.H. Paterson, Y. Jiang, R. Xu, J.S. Robertson, J.L.
Snider and P.W. Chee (2018) In-field high throughput phenotyping
and cotton plant growth analysis using LiDAR. Front Plant Sci 9:
16.

Tanger, P., S. Klassen, J.P. Mojica, J.T. Lovell, B.T. Moyers, M.
Baraoidan, M.E.B. Naredo, K.L. McNally, J. Poland, D.R. Bush
et al. (2017) Field-based high throughput phenotyping rapidly
identifies genomic regions controlling yield components in rice.
Sci Rep 7: 42839.

Teramoto, S. and Y. Uga (2022) Improving the efficiency of plant root
system phenotyping through digitization and automation. Breed
Sci 72: 48–55.

Tetila, E.C., B.B. Machado, N.A. Belete, D.A. Guimaraes and H.
Pistori (2017) Identification of soybean foliar diseases using un‐
manned aerial vehicle images. IEEE Geosci Remote Sens Lett 14:
2190–2194.

Thomas, S., J. Behmann, A. Steier, T. Kraska, O. Muller, U. Rascher
and A.-K. Mahlein (2018) Quantitative assessment of disease
severity and rating of barley cultivars based on hyperspectral
imaging in a non-invasive, automated phenotyping platform. Plant
Methods 14: 45.

Thorp, K.R., A.L. Thompson, S.J. Harders, A.N. French and R.W.
Ward (2018) High-throughput phenotyping of crop water use
efficiency via multispectral drone imagery and a daily soil water
balance model. Remote Sens (Basel) 10: 1682.

Tilly, N., D. Hoffmeister, Q. Cao, S. Huang, V. Lenz-Wiedemann, Y.
Miao and G. Bareth (2014) Multitemporal crop surface models:
Accurate plant height measurement and biomass estimation with
terrestrial laser scanning in paddy rice. J Apple Remote Sens 8: 1–

BS Breeding Science
Vol. 72 No. 1 Ninomiya

16



23.
Toda, Y. and F. Okura (2019) How convolutional neural networks

diagnose plant disease. Plant Phenomics 2019: 9237136.
Toda, Y., F. Okura, J. Ito, S. Okada, T. Kinoshita, H. Tsuji and D.

Saisho (2020) Training instance segmentation neural network with
synthetic datasets for crop seed phenotyping. Commun Biol 3:
173.

Torres-Sánchez, J., F.J. Mesas-Carrascosa, F.M. Jiménez-Brenes, A.I.
de Castro and F. López-Granados (2021) Early detection of broad-
leaved and grass weeds in wide row crops using artificial neural
networks and UAV imagery. Agronomy 11: 749.

Tresch, L., Y. Mu, A. Itoh, A. Kaga, K. Taguchi, M. Hirafuji, S.
Ninomiya and W. Guo (2019) Easy MPE: Extraction of quality
microplot images for UAV-based high-throughput field pheno‐
typing. Plant Phenomics 2019: 2591849.

Ubbens, J., M. Cieslak, P. Prusinkiewicz, I. Parkin, J. Ebersbach and
I. Stavness (2020) Latent space phenotyping: Automatic image-
based phenotyping for treatment studies. Plant Phenomics 2020:
5801869.

Uga, Y. (2021) Challenges to design-oriented breeding of root system
architecture adapted to climate change. Breed Sci 71: 3–12.

Velumani, K., R. Lopez-Lozano, S. Madec, W. Guo, J. Gillet, A.
Comar and F. Baret (2021) Estimates of maize plant density from
UAV RGB images using faster-RCNN detection model: Impact of
the spatial resolution. Plant Phenomics 2021: 9824843.

Wakamori, K. and H. Mineno (2019) Optical flow-based analysis of
the relationships between leaf wilting and stem diameter variations
in tomato plants. Plant Phenomics 2019: 9136298.

Walter, J., J. Edwards, J. Cai, G. McDonald, S.J. Miklavcic and H.
Kuchel (2019a) High-throughput field imaging and basic image
analysis in a wheat breeding programme. Front Plant Sci 10: 449.

Walter, J.D.C., J. Edwards, G. McDonald and H. Kuchel (2019b) Esti‐
mating biomass and canopy height with LiDAR for field crop
breeding. Front Plant Sci 10: 1145.

Wang, H., Y. Duan, Y. Shi, Y. Kato, S. Ninomiya and W. Guo (2021a)
EasyIDP: A Python package for intermediate data processing in
UAV-based plant phenotyping. Remote Sens (Bazel) 13: 2622.

Wang, H., S. Lyu and Y. Ren (2021b) Paddy rice imagery dataset for
panicle segmentation. Agronomy 11: 1542.

Wang, J., B. Wu, M.V. Kohnen, D. Lin, C. Yang, X. Wang, A. Qiang,
W. Liu, J. Kang, H. Li et al. (2021c) Classification of rice yield
using UAV-based hyperspectral imagery and lodging feature. Plant
Phenomics 2021: 9765952.

Wang, X., R. Zhang, W. Song, L. Han, X. Liu, X. Sun, M. Luo, K.
Chen, Y. Zhang, H. Yang et al. (2019) Dynamic plant height QTL
revealed in maize through remote sensing phenotyping using a
high-throughput unmanned aerial vehicle (UAV). Sci Rep 9: 3458.

Watanabe, K., W. Guo, K. Arai, H. Takanashi, H. Kajiya-Kanegae, M.
Kobayashi, K. Yano, T. Tokunaga, T. Fujiwara, N. Tsutsumi et al.
(2017) High-throughput phenotyping of sorghum plant height us‐
ing an unmanned aerial vehicle and its application to genomic pre‐
diction modeling. Front Plant Sci 8: 421.

Watt, M., F. Fiorani, B. Usadel, U. Rascher, O. Muller and U. Schurr
(2020) Phenotyping: New windows into the plant for breeders.
Annu Rev Plant Biol 71: 689–712.

Wiesner-Hanks, T., H. Wu, E. Stewart, C. DeChant, N. Kaczmar, H.
Lipson, M.A. Gore and R.J. Nelson (2019) Millimeter-level plant
disease detection from aerial photographs via deep learning and
crowdsourced data. Front Plant Sci 10: 1550.

Wilke, N., B. Siegmann, L. Klingbeil, A. Burkart, T. Kraska, O.
Muller, A. van Doorn, S. Heinemann and U. Rascher (2019)

Quantifying lodging percentage and lodging severity using a UAV-
based canopy height model combined with an objective threshold
approach. Remote Sens (Basel) 11: 515.

Wilkinson, M.D., M. Dumontier, I.J. Aalbersberg, G. Appleton, M.
Axton, A. Baak, N. Blomberg, J.-W. Boiten, L.B. da Silva Santos,
P.E. Bourne et al. (2016) The FAIR Guiding Principles for scien‐
tific data management and stewardship. Sci Data 3: 160018.

Woebbecke, D.M., G.E. Meyer, K. Von Bargen and D.A. Mortensen
(1995) Color indices for weed identification under various soil
residue and lighting conditions. Biol Eng Trans 38: 259–269.

Wu, J., G. Yang, X. Yang, B. Xu, L. Han and Y. Zhu (2019) Auto‐
matic counting of in situ rice seedlings from UAV images based
on a deep fully convolutional neural network. Remote Sens
(Basel) 11: 691.

Xiao, S., H. Chai, K. Shao, M. Shen, Q. Wang, R. Wang, Y. Sui and Y.
Ma (2020) Image-based dynamic quantification of aboveground
structure of sugar beet in field. Remote Sens (Basel) 12: 269.

Xiong, H., Z. Cao, H. Lu, S. Madec, L. Liu and C. Shen (2019)
TasselNetv2: In-field counting of wheat spikes with context-
augmented local regression networks. Plant Methods 15: 150.

Xiong, X., L. Duan, L. Liu, H. Tu, P. Yang, D. Wu, G. Chen, L.
Xiong, W. Yang and Q. Liu (2017) Panicle-SEG: A robust image
segmentation method for rice panicles in the field based on deep
learning and superpixel optimization. Plant Methods 13: 104.

Yao, X., N. Wang, Y. Liu, T. Cheng, Y. Tian, Q. Chen and Y. Zhu
(2017) Estimation of wheat LAI at middle to high levels using un‐
manned aerial vehicle narrowband multispectral imagery. Remote
Sens (Basel) 9: 1304.

Yates, S., A. Mikaberidze, S.G. Krattinger, M. Abrouk, A. Hund, K.
Yu, B. Studer, S. Fouche, L. Meile, D. Pereira et al. (2019) Preci‐
sion phenotyping reveals novel loci for quantitative resistance to
septoria tritici blotch. Plant Phenomics 2019: 3285904.

Yeom, J., J. Jung, A. Chang, M. Maeda and J. Landivar (2018) Auto‐
mated open cotton boll detection for yield estimation using un‐
manned aircraft vehicle (UAV) data. Remote Sens (Basel) 10:
1895.

Yoshioka, Y., H. Iwata, R. Ohsawa and S. Ninomiya (2004) Quantita‐
tive evaluation of flower colour pattern by image analysis and
principal component analysis in Primula sieboldii E. Morren.
Eupytica 139: 179–186.

Yuan, H., R.S. Bennett, N. Wang and K.D. Chamberlin (2019) Devel‐
opment of a peanut canopy measurement system using a ground-
based LiDAR sensor. Front Plant Sci 10: 203.

Yue, J., H. Feng, G. Yang and Z. Li (2018a) A Comparison of regres‐
sion techniques for estimation of above-ground winter wheat
biomass using near-surface spectroscopy. Remote Sens (Basel) 10:
66.

Yue, J., H. Feng, X. Jin, H. Yuan, Z. Li, C. Zhou, G. Yang and Q. Tian
(2018b) A comparison of crop parameters estimation using images
from UAV-mounted snapshot hyperspectral sensor and high-
definition digital camera. Remote Sens (Basel) 10: 1138.

Zhang, D., X. Zhou, J. Zhang, Y. Lan, C. Xu and D. Liang (2018)
Detection of rice sheath blight using an unmanned aerial system
with high-resolution color and multispectral imaging. PLoS One
13: e0187470.

Zhang, L., C.L. Guo, L.Y. Zhao, Y. Zhu, W.X. Cao, Y.C. Tian, T.
Cheng and X. Wang (2016) Estimating wheat yield by integrating
the WheatGrow and PROSAIL models. Field Crops Res 192: 55–
66.

Zhang, L., Y. Niu, H. Zhang, W. Han, G. Li, J. Tang and X. Peng
(2019) Maize canopy temperature extracted from UAV thermal

Status of high-throughput field crop phenotyping
Breeding Science
Vol. 72 No. 1 BS

17



and RGB imagery and its application in water stress monitoring.
Front Plant Sci 10: 1270.

Zhang, W., K. Chen, J. Wang, Y. Shi and W. Guo (2021) Easy domain
adaptation method for filling the species gap in deep learning-
based fruit detection. Hortic Res 8: 119.

Zhao, C., Y. Zhang, J. Du, X. Guo, W. Wen, S. Gu, J. Wang and J. Fan
(2019) Crop phenomics: Current status and perspectives. Front
Plant Sci 10: 714.

Zhao, J., X. Zhang, J. Yan, X. Qiu, X. Yao, Y. Tian, Y. Zhu and W.
Cao (2021a) A wheat spike detection method in UAV images
based on improved YOLOv5. Remote Sens (Basel) 13: 3095.

Zhao, L., W. Guo, J. Wang, H. Wang, Y. Duan, C. Wang, W. Wu and
Y. Shi (2021b) An efficient method for estimating wheat heading
dates using UAV images. Remote Sens (Basel) 13: 3067.

Zhou, C., H. Ye, J. Hu, X. Shi, A. Hua, J. Yue, Z. Xu and G. Yang
(2019) Automated counting of rice panicle by applying deep learn‐
ing model to images from unmanned aerial vehicle platform.
Sensors (Basel) 19: 3106.

Zhou, J., H. Mou, J. Zhou, M.L. Ali, H. Ye, P. Chen and H.T. Nguyen
(2021) Qualification of soybean responses to flooding stress using
UAV-based imagery and deep learning. Plant Phenomics 2021:
9892570.

Zhu, J.Y., T. Park, P. Isola and A.A. Efros (2017) Unpaired image-
to-image translation using cycle-consistent adversarial networks.
IEEE Int Conf Comput Vis Workshops 2017: 2223–2232.

Ziliani, M.G., S.D. Parkes, I. Hoteit and M.F. McCabe (2018) Intra-
season crop height variability at commercial farm scales using a
fixed-wing UAV. Remote Sens (Basel) 10: 2007.

BS Breeding Science
Vol. 72 No. 1 Ninomiya

18


