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High-Throughput FPGA Implementation of QR
Decomposition

Sergio D. Muñoz and Javier Hormigo

Abstract—This brief presents a hardware design to achieve
high-throughput QR decomposition, using Givens Rotation
Method. It utilizes a new two-dimensional systolic array architec-
ture with pipelined processing elements, which are based on the
COordinate Rotation DIgital Computer (CORDIC) algorithm.
CORDIC computes vector rotations through shifts and additions.
This approach allows a continuous computation of QR factoriza-
tions with simple hardware. A fixed-point FPGA architecture for
4 × 4 matrices has been optimized by balancing the number of
CORDIC iterations with the final error. As a result, compared to
other previous proposals for FPGA, our design achieves at least
50% more throughput, and much less resource utilization.

Index Terms—QR Decomposition, systolic array, pipelined,
FPGA, high-throughput, CORDIC

I. INTRODUCTION

MOST of the advanced signal processing algorithms are
based on algebraic matrix operations. Many examples

of this are found in wireless communication, such as multiple-
input-multiple-output (MIMO), beam-forming, multi-user de-
tection and cancellation, etc [1]. One useful operator for these
matrix operations is QR factorization, especially for MIMO
technologies [2] [3] and adaptive filtering [4]. Some of this
applications require high-throughput QR decomposition but
are for small matrix sizes. Thus, many works have addressed
the parallel hardware implementation of this operation for
either ASIC or FPGA technologies. In this work, we focus on
high-throughput computation for small matrices on FPGAs.

The Givens Rotation Method (and its variations) is probably
the most widely used to implement QR decomposition by
hardware due to its robust numerical properties and its easy
parallelization [5]. In the literature, there are several papers
in which QR factorization has been implemented on FPGA
by using this method. Although, serial approaches or linear
systolic arrays may be used [6], to achieve high throughput,
the most common hardware implementation is through two-
dimension (2D) systolic arrays, such as in [7], [8], [2], [9],
[10], [11]. A 2D systolic array is a parallel grid structure
where processing elements (PEs) works in parallel and are
locally interconnected. This systolic architecture allows the
exploitation of different grades of parallelism inherent to the
the Given Rotation algorithm. Thus, these approaches have
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high-throughput and relatively low latency, at the cost of
considerable area consumption.

In this work, through combining several ideas, we have
designed a new architecture which improves previous high-
throughput FPGA implementations. It is based on the
CORDIC algorithm to simplify hardware, pipelining the PEs
to obtain better throughput, along with a different schedule
for performing the Given Rotations to reduce latency. As a
result, the proposed architecture has very high-throughput and
low latency, with a relatively reduced area consumption. They
also have a very simple control and communication logic.

The next sections of this brief are organized as followed:
Section II reviews some important aspects of the QR decom-
position using Givens Rotations, along with a brief review of
some previous works proposed in the literature. Section III
presents the proposed architecture to achieve high-throughput.
In Section IV the results of the FPGA implementation are
studied and compared with other previous works. Finally,
Section V provides the conclusions of this work.

II. GIVENS ALGORITHM AND PREVIOUS FPGA
IMPLEMENTATIONS

Given a matrix Am×n, this is equivalent to the product
of two factors, i. e. A = Q · R, in which matrix Qm×m is
orthogonal and Rm×n is an upper triangular matrix [5]. The
computation of these two factors is called QR decomposition
or factorization.

The Givens Method achieves a QR factorization through
unitary transformations, called Givens Rotations, which se-
lectively allow the introducing of a zero element [5]. Givens
rotation matrix has rank-two corrections about identity matrix,
where the rank (i, j) is replaced by orthogonal values based
on sines and cosines.[

cos(θ) sin(θ)
−sin(θ) cos(θ)

]
×
[
a1
a2

]
=

[
a′1
0

]
(1)

As an example, a Givens rotation is represented in Eq. 1 for
a 2× 1 matrix, where the resultant matrix has a new inserted
zero; this can be extrapolated to any other matrix size. The
rotation angle θ must be computed beforehand by the formula
arctan(a2

a1
). Alternatively, these values can also be calculated

by Eq. 2 and Eq. 3.

cos(θ) =
ai,k√

a2i,k + a2j,k

(2) sin(θ) =
−aj,k√
a2i,k + a2j,k

(3)

Accordingly, Givens Method algorithm starts zeroing the
lower elements, from the first column to the last one, and,
on each column, starting from the bottommost element to theCopyright c©2015 IEEE. Personal use of this material is permitted.
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Fig. 1. Usual Givens rotation schedule for 4× 4 matrices.
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Fig. 2. Column-based 2D-systolic array for 4× 4 matrices.

diagonal element. The upper triangular matrix R is achieved
by accumulating the Givens Rotations on the initial matrix.
Similarly, Q is obtained when the same rotations are applied
to the identity matrix.

As an example, Fig. 1 illustrates the application of the
Givens Method on a 4×4 matrix to achieve an upper triangular
matrix R in 6 stages. Each arrow represents a Givens Rotation,
where Gk(i, j) specifies the involved rows (i, j) and the
column k where a zero will be inserted. The circular areas
indicate the elements selected to calculate the rotation angle,
whereas the squared areas delimit those elements that will be
rotated using said angle.

It is clearly seen that this algorithm has different levels of
parallelism that could be exploited depending on the selected
architecture. Several works, such as in [10] and [7], have
proposed a 2D systolic array similar to the one showed
in Fig. 2. In this architecture, each PE always works over
elements on the same column. On each row of the architecture,
the Givens rotations may be performed in parallel using as
many PEs as non-zero elements are within the row of the
matrix.

Besides this parallel computation, this configuration has the
advantage of the two different types of PEs used, one (V)
to compute the rotation angle which, at first, requires much
more complicated operations, and another (R) to perform the
effective rotations, which is much simpler. Each row of PEs
only needs one PE type V and the rest as type R. Thus,
although they need more PEs, the number of PEs type V (much
more complex) are reduced and, then, the overall area may be
also reduced.

This architecture is used in [7], where standard arithmetic
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Fig. 3. Row-based 2D-systolic array for 4× 4 matrices.

operations are utilized to implement the PEs. In [10], it-
erative CORDIC circuits are used instead, which reduces
area consumption. However, in these approaches, due to data
dependencies between consecutive rotations, the PEs of the
last rows are idle most of the time, which means an important
waste of resources. Besides this, the same data dependency
prevents the use of pipelining internally in the PEs, which
limits the achievable throughput.

A different and older approach is the one used in [8]
and [12] which is shown in Fig. 3. On this scheme, a PE
completely performs a Givens rotation for all elements of
the two rows. Thus, the two operations involved in a Givens
rotation have to be combined in one PE, making it more
complex, although much fewer PEs are required. The main
advantage of this approach is the fact that the only data
dependency, which prevents the pipelining within the PEs, is
the one between the computation of the rotation angle and
the rotation itself. In [12], they propose to interleave columns
of different input matrices to overcome this dependency, but
this is unpractical for many applications, especially for deep
pipelines. On the other hand, Square Root and Division Free
Givens Rotations (SDFG) [13] are utilized in [8], where
this dependency is eliminated by means of a pre- and post-
processing which allows pipelining of the PEs. Thus, this
architecture achieves a high-throughput, but the complexity
of the operations involved also requires a high utilization of
resource.

III. PROPOSED ARCHITECTURE

Similarly to the work in [8], we propose to use a 2D-
array architecture where each PE works with all the elements
of the same row and these PEs are pipelining, to achieve
high throughput. Yet, at the same time, we propose different
connections for the PEs within the 2D array to reduce latency.
Moreover, the PEs are designed based on the CORDIC al-
gorithm to implement this pipeline in a simpler way, which
produces a system with lower area and higher throughput.
Next, we present some details of this architecture.

A. Givens Rotations Schedule

The classic schedule to implement the Givens algorithm,
as it is previously described in Fig. 1, starts zeroing the
bottommost element of the first column, and serially continues
up in the same column until this column is finished. Then,
the same procedure is performed over the next column and
so on, until the matrix is triangular. The 2D systolic array
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Fig. 4. Givens rotations scheduled for increasing parallelism.

improves this schedule by performing several rotations at the
same time. Concretely, as it is indicated in Fig 3, all PEs
in the same diagonal work in parallel, significantly reducing
the number of steps required for one matrix computation.
However, this schedule can be performed with a higher level
of parallelism, if as many rows as possible were rotated
simultaneously. Thereby the algorithm decreases latency by
reducing its amount of steps. We should note that the number
of Givens rotations remains the same but the number of Givens
rotations by step is increased.

To reduce the number of steps as much as possible, on each
step all suitable pairs of rows (i.e., two unselected rows that
contain the same number of zeros to the left) are selected and
they are rotated in parallel. This is repeated until an upper
triangular matrix is achieved. Fig. 4 illustrates how a 4 × 4
matrix is factorized by using this schedule. In this figure, two
types of lines are described, dotted and continuous; each one
represents a Givens rotation made simultaneously. In the first
stage, two Givens rotations are performed concurrently, it takes
the adjacent rows (1, 2) and (3, 4). This means inserting two
zeros in rows 2 and 4 as shown on the second stage. Following,
rotations G1(1, 3) and G2(2, 4) are calculated, finishing the
computation on the first column. Then, the first row will not
be used again, restricting the algorithm to only one rotation
by stage for the two last stages. Therefore, only four stages
are required using this schedule.

B. CORDIC-based processing elements

CORDIC (COordinate Rotation DIgital Computer) is an
iterative algorithm based on shifts and additions which allows
calculating many elementary functions with a very simple
hardware [14]. The same CORDIC circuit may operate in
two modes, vectoring or rotation mode. The former rotates
an input vector (X,Y ) until its Y coordinate reaches a zero
value, returning angle θ and the X coordinate has rotated.
The latter rotates an input vector (X,Y ) with a determined
angle θ. Therefore, a CORDIC unit could be used to compute
the angle for a Givens Rotation (vectoring mode) and, then,
performs the rotation through the rest of the row using said
angle (rotation mode).

Many different circuits based on CORDIC have been pro-
posed in the literature to perform Givens Rotations. To achieve
our goal, we have selected the one used to implement a
linear systolic array in [15]. It is a pipeline architecture

X
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Fig. 5. CORDIC-based processing element.

which performs both vectoring and rotation mode. Due to
data dependency of the linear array, the circuit presented
in [15] needs matrix interleaving to take advantage of the
pipeline design. However, within our row-based 2D systolic
array, the pipeline is used in a natural way. This CORDIC
approach replaces the computation of the rotation angle θ by
the direction of each micro-rotation. This direction is indicated
by the sign of Y on each CORDIC stage and it is stored in
a register (σ) to be used in subsequent rotations. Thus, this
circuit allows overlapping the computation of the angle with
the rotation of the corresponding rows.

Fig. 5 shows this circuit divided into two sections. The
right section is the operation section that contains the typical
CORDIC x-y data-path. The left section represents the con-
trol hardware which, in vectoring mode, selects the rotation
direction and updates the σ registers. These registers configure
the adds/subs in the rotation mode. An active nda signal
indicates a new angle computation (vectoring mode) on this
stage. Then, sign(Y ) is used to control the add/sub and
it is stored in the σ register. While the active nda signal
goes through the pipeline, the rest of the elements of the
corresponding rows are introduced into the circuit to be rotated
using said stored directions (rotation mode). Therefore, both
computations are overlapped and, furthermore, it is clearly
seen that a new Givens rotation may be introduced in the
pipeline before the actual one was completely finished.

The constant scale factor introduced by the CORDIC algo-
rithm [14] is compensated by multiplying the output values
by its inverse. As we will see in the next section, constant
multipliers or embedded multipliers could be utilized for this
operation.

C. Proposed circuit

Using the schedule described in section III-A, the proposed
architecture is derived by assigning a PE to each Givens
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Fig. 6. CORDIC base architecture implemented to factorize 4 × 4 size
matrices.

rotation. Fig. 6 illustrates the architecture for 4× 4 matrices.
There are four stages, the two first ones with two PEs, since
two Givens rotations are performed in parallel, and only one in
the two others. Input and output buses are connected directly
from one stage to the next. Only a FIFO register is required
on stage 3, since one of the rows computed in stage 2 is used
in stage 4. Not much logic is required for synchronization
of this architecture, due to its pipelined structure. The nda
signals of the PEs on the first stage may be set externally, or
using a counter if the flow of input matrices is regular. In the
next stages, the nda inputs are connected to the nda outputs
of the previous stage. In some PEs, the nda signal has to be
delayed one extra cycle to compensate for the zero elements.
In the first stage, all rows are introduced simultaneously,
element by element (input matrix followed by identity matrix).
Furthermore, thanks to its fully pipelined architecture, a new
matrix computation could start right after the last element is
introduced. Therefore, a very high throughput is achieved (for
this example, one matrix computation each 8 cycles).

IV. PERFORMANCE ANALYSIS AND COMPARISON

Using the proposed architecture, a VHDL fixed-point QR
decomposition core for 4 × 4 matrices has been designed.
Said core allows us to configure both bit-width and number
of CORDIC iterations. This core has been simulated and
synthesized using Xilinx ISE 14.3 software, and implemented
and evaluated using a hardware Virtex-6 XV6VLX240T speed
-2 FPGA platform. To confirm the correctness of the proposed
core, first, it has been tested with a wide range of random
matrices and the results have been checked using Matlab.

Secondly, to improve the area and the latency of the pro-
posed circuit, we have experimentally studied how the number
of CORDIC iterations influences the error of its results. To do
this, different circuits, using three word-lengths (16, 24 and
32 bits), have been implemented on our hardware platform
for several numbers of CORDIC iterations. Using each one of
these circuits, the QR decomposition has been calculated for
50,000 random matrices whose results have been checked by
computing Qt∗R and comparing it with the original matrix A.
In Table I, the maximum error detected on these comparisons
is presented for each tested configuration. It is clearly observed
that, at first, the maximum error decreases when the number of
iterations increases, due to the better approximation achieved
for the rotation angle. However, at a certain point, the error
starts to slightly increase due to the accumulated rounding
error. Thus, to obtain minimum error while reducing the area

TABLE I
MAXIMUM ERROR OF QR FACTORIZATION FOR 16, 24 AND 32 BIT

WORD-LENGTHS DEPENDING ON THE NUMBER OF CORDIC ITERATIONS.

Word-Lenght 16 bits
CORDIC-Iter. 8 10 12 14 16
Latency (cycles) 44 52 60 68 76
Max. Error 1.4e-3 5.8e-4 6.9e-4 7.3e-4 8.9e-4

Word-Lenght 24 bits
CORDIC-Iter. 12 16 18 20 24
Latency (cycles) 60 76 84 92 108
Max. Error 8.06e-5 6.01e-6 3.5e-6 3.7e-6 4.7e-6

Word-Lenght 32 bits
CORDIC-Iter. 20 24 26 28 32
Latency (cycles) 92 108 116 124 140
Max. Error 3.3e-7 2.4e-8 9.4e-9 1.6e-8 2.3e-8

and the latency, the best configurations for 16, 24 and 32 bit-
widths are 10, 18, 26 CORDIC iterations, respectively.

Table II shows the implementation results for the three an-
alyzed word-lengths, each one with three different approaches
for the scale factor compensation required by the CORDIC
algorithm (see Section III-B). All designs use the optimum
number of iterations previously computed. Two approaches
use the embedded multipliers (DSP48E) which typically exist
in FPGAs, either non-pipelined or pipelined (Multiplier A and
Multiplier B, respectively). While, the third approach uses
pipelined constant-coefficient (Multiplier C) designed with
Xilinx Core Generator. There are not great area differences
between the approaches using DSP48, but the one pipelined
allows much higher clock frequency and, consequently, much
better throughput at the cost of a moderate latency increase.
On the other hand, the number of slices used to implement the
constant-coefficient multipliers is relatively high compared to
the rest of the circuit. Then, although this approach achieves
the same throughput as the pipelined-DSP48 one, and even less
latency, this approach may be only selected if it is required to
save DSP48 for different computations.

Finally, to study the effectiveness of our proposal, from the
literature, we have selected some representative works which
provide enough data to perform a reasonable comparison.
Tab. III shows the mean results of these works along with the
ones for our 16-bit circuit using Multiplier A. To provide a fair
comparison, we have synthesized our architecture on equiva-
lent FPGAs as those works, concretely Virtex4 (XC4VFX60-
11) and Virtex5 (XC5VTX150T-2).

Regarding the performance, the only design with a through-
put relatively close to ours is the one in [8]. Similarly to
our proposal, it uses pipelined PEs and has practically the
same latency in clock cycles. However, its lower maximum
frequency provides that our proposal presents about 35% less
latency (seconds) and 50% more throughput than the design
in [8]. The better critical path of our design is explained mainly
by the simplicity of the CORDIC architecture. On the other
hand, the circuits presented in [10] and [7] have a throughput
which is one order of magnitude lower than ours, since their
PEs are iterative.

Regarding the area, our design clearly requires several
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TABLE II
FPGA IMPLEMENTATION RESULTS FOR 16, 24 AND 32 BITS

WORD-LENGTHS.

Device Xilinx Virtex 6 XC6VLX240T -2
Word-Lenght 16 bits 24 bits 32 bits
CORDIC-Iterations 10 18 26

Cycles/Matrix 8 8 8

Multiplier A Dedicated Non-Pipelined DSP48E
Latency (cycles) 52 84 116

DSP48E 12(1%) 24(3%) 48(6%)

Max. Freq. (Mhz) 234.5 170.3 117.1

Slice Registers 2,402(1%) 5,888(1%) 10,844(3%)

Slice LUTs 2,498(1%) 6,109(4%) 11,337(7%)

Multiplier B Dedicated Pipelined DSP48E
Latency (cycles) 60 100 140

DSP48E 12(1%) 24(3%) 48(6%)

Stages Pipe. Mult. 2 4 6

Max. Freq. (Mhz) 421.1 398 377.6

Slice Registers 2,457(1%) 6,046(1%) 11,520(3%)

Slice LUTs 2,587(1%) 6,220(4%) 11,225(7%)

Multiplier C Const. Coef. Pipelined (without DSP48E)
Latency (cycles) 60 96 132

Stages Pipe. Mult. 2 3 4

Max. Freq. (Mhz) 421.1 398 377.6

Slice Registers 3,262(1%) 8,400(2%) 16,259(5%)

Slice LUTs 3,641(2%) 8,596(5%) 16,100(10%)

TABLE III
COMPARATIVE WITH OTHER FPGA IMPLEMENTATIONS

Work [7] [8] [10] This Work
(Multiplier A)

DEVICE Virtex5 Virtex4 Virtex5 Virtex4 Virtex5
W-Length 16 bits 16 bits 18 bits 16 bits

Latency(cl) 180 51 80 52
Latency(µs) 0.73 0.35 0.72 0.23 0.20
Max. Freq.

(Mhz.) 246 144 111 222 254

Throughput
MMatrices/sec 1.36 18.05 2.13 27.70 31.70

Slice Reg. 16,929 5,891 7,811 2,311 2,085
Slice LUTs 10,899 9,810 2,609 2,085 2,671

DSP48 28 41 — 12
Max. Error 4.2e-3* — 6.32e-3 5.8e-4
*Note. Maximum error for [7] is obtained from a factored matrix
sample, a complete error study has not been done.

times less resources than the others, considering all kinds of
resources. The closest one is the circuit in [10], which also uses
a CORDIC-based architecture. Although it requires practically
the same number of LUTs and no multipliers, the number
of registers is more than three times greater. This is mainly
explained by the much greater number of PEs presented in the
architecture and the use of carry-save arithmetic.

Taking all these results into account, we could conclude
that the architecture proposed herein presents much better
throughput, and much lower resource utilization, than pre-
viously proposed works. Moreover, this throughput could be
doubled by using the pipelined version of DSP48 at the cost

of a moderate latency increase.

V. CONCLUSION

This brief presents a fixed-point systolic architecture to
achieve high-throughput QR Decomposition for small matri-
ces. This is achieved by performing as many Givens rotations
as possible in parallel in an unrolled architecture, and using a
pipelined CORDIC circuit which allows completely overlap-
ping the angle computation and the rows rotation. Thus, this
highly pipelined circuit performs a n×n matrix decomposition
each 2n clock cycles. The FPGA implementation of this
architecture for 4×4 matrices has been optimized for different
word-lengths by selecting the appropriate number of CORDIC
iterations. Comparing with previous FPGA approaches, our
proposal highly improves both performance and resources
utilization.
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