
High-Throughput Imaging of Brain
Gene Expression

Vanessa M. Brown,1,2 Alex Ossadtchi,3 Arshad H. Khan,1,2 Simon R. Cherry,1,2,4

Richard M. Leahy,3 and Desmond J. Smith1,2,5

1Department of Molecular and Medical Pharmacology, 2Crump Institute for Molecular Imaging, School of Medicine,

University of California, Los Angeles, California 90095, USA; 3Department of Electrical Engineering, Signal and Image

Processing Institute, School of Engineering, University of Southern California, Los Angeles, California 90089, USA

Voxelation is a new method for acquisition of three dimensional (3D) gene expression patterns in the brain. It

employs high-throughput analysis of spatially registered voxels (cubes) to produce multiple volumetric maps of

gene expression analogous to the images reconstructed in biomedical imaging systems. Using microarrays, 24

voxel images of coronal hemisections at the level of the hippocampus of both the normal human brain and

Alzheimer’s disease brain were acquired for 2000 genes. The analysis revealed a common network of

coregulated genes, and allowed identification of putative control regions. In addition, singular value

decomposition (SVD), a mathematical method used to provide economical explanations of complex data sets,

produced images that distinguished between brain structures, including cortex, caudate, and hippocampus. The

results suggest that voxelation will be a useful approach for understanding how the genome constructs the

brain.

[All study results are available as a web supplement at http://www.pharmacology.ucla.edu/smithlab/genome_

research_data and at http://www.genome.org.]

Important insights into gene networks in unicellular systems

have been obtained using high-throughput multiplex gene

expression methodologies, including microarrays (Brown and

Botstein 1999), gene chips (Lipshutz et al. 1999), and serial

analysis of gene expression (SAGE) (Velculescu et al. 1995).

However, these powerful techniques have not yet been ap-

plied to understanding how the genome constructs the three

dimensional (3D) structure of multicellular organisms. In

contrast, tools exist for 3D imaging of gene expression in the

living organism, but at present these methods only permit the

examination of one, or at most, a few, genes at a time (Gamb-

hir et al. 1999; Herschman et al. 2000; Louie et al. 2000;

Zacharias et al. 2000). Here, a method called voxelation is

described, which uses high-throughput gene expression

analysis to produce volumetric expression maps for thou-

sands of genes in parallel. The method gets its name from the

term voxel, which is used in biomedical imaging to refer to a

3D image volume element. Voxelation is conceptually simple,

and entails the direct creation of voxels (cubes) in spatial reg-

ister with the brain, together with the application of high-

throughput gene expression analytic techniques to RNA ex-

tracted from the voxels. The resulting maps of gene expres-

sion are analogous to the images reconstructed in biomedical

imaging systems, such as CT and PET.

RESULTS
Coronal hemisections at the level of the hippocampus of a

normal human brain and an Alzheimer’s disease brain were

divided into 24 voxels (Fig. 1A) and analyzed using 2000 gene

microarrays. To provide an overall survey of the data, gene

expression correlation matrices for both specimens were con-

structed (Fig. 1B). The genes in the normal matrix were par-

simoniously clustered based on minimization of a cost func-

tion related to K-means, resulting in a cluster number of five.

The same gene order was used to construct the corresponding

matrix for the Alzheimer’s hemisection. Strikingly, the matri-

ces for both specimens were very similar as judged using a

Monte-Carlo simulation (P < 0.0001), demonstrating excel-

lent reproducibility of the voxelation strategy. To gain further

insights into gene expression in healthy and diseased brain, a

subset of the data was extracted. This subset consisted of the

genes in common between both the normal and Alzheimer’s

hemisections, where the genes had a spatial expression cor-

relation coefficient of >0.92 with at least one other gene in the

same brain. This procedure should identify networks of co-

regulated genes in both brains. Gene expression correlation

matrices for the coregulated subsets were created (Fig. 1C;

Table 1), with the normal matrix ordered using a similarity

metric, and the Alzheimer’s matrix following suit. Similar to

what was seen for the overall data, there was a striking corre-

spondence between the two matrices for the normal and Alz-

heimer’s hemisections. Again, this concordance was highly

significant, as judged using a Monte-Carlo simulation (P <

0.0001), implying that the coregulated networks of genes are

independently maintained in both the normal and Alzheim-

er’s specimens.

To further examine replicability between, as well as

within, the hemisections, the voxels were placed in ascending

order (A2, B1, B2, . . . .), with the first member of the series

(A2) being counted as 1 (i.e., odd), the second (B1) as 2 (i.e.,

even), etc. The data presented in Figure 1C was then arbi-

trarily split into two parts for each hemisection, consisting of
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even and odd numbered voxels. Based on the Monte-Carlo

strategy, there was highly significant similarity among the

data sets (odd and even voxels), both between and within

hemisections (P < 0.0001), further demonstrating the repro-

ducibility of voxelation (data not shown).

Interestingly, the correlation matrices of the coregulated

subset shown in Figure 1C revealed two mutually exclusive

clusters. Cluster 1 (genes 1–14) was positively correlated

within itself, and negatively correlated with cluster 2 (genes

15–46), and vice versa. The spatial map of gene expression

variation across the voxels for the selected subset of genes in

both specimens is shown in Figure 1D. The figure demon-

strates that although the mutually dependent network of spa-

tially coregulated gene clusters is maintained within each

brain, the expression patterns are different in the Alzheimer’s

specimen compared to the normal, particularly for cluster 1.

There were some interesting biological relationships within

the coregulated subset of genes. U5-100K (gene 4, cluster 1)

and RNPS1 (gene 16, cluster 2), have highly negatively corre-

lated spatial expression patterns in both the normal and Alz-

heimer’s hemisections, as indicated by their membership in

the two separate clusters. Both these genes encode proteins

with similar functions, U5-100kD being a U5 snRNA associ-

ated RNA helicase (Laggerbauer et al. 1998; Teigelkamp et al.

1997), and RNPS1 an RNA-binding protein involved in alter-

native splicing (Loyer et al. 1998; Mayeda et al. 1999). The

connected functions of these genes may account for their

negatively related spatial expression patterns. A bioinformat-

ics analysis found shared regulatory regions between these

genes (below). Another gene, MADD (gene 38, cluster 2),

showed elevated expression in the hippocampus of the Alz-

heimer’s hemisection (voxels F2, G1, G2) compared to nor-

mal, and this gene is induced in the hippocampus of hypoxic

brains (Zhang et al. 1998).

Table 1. Co-Regulated Genes

Gene
no.

UniGene symbol
or name Function

1 MSX2 craniosynotosis-associated homeotic protein MSX2—human Msh (Drosophila) homeo box homolog 2
2 LRP6 low density lipoprotein receptor-related protein 6
3 TBXAS1 thromboxane A synthase 1 (platelet, cytochrome P450, subfamily V)
4 U5-100K U5 snRNP 100 kD protein
5 MCF2 MCF.2 cell line derived transforming sequence hypothetical protein
6 SGCD sarcoglycan, delta (35kD dystrophin-associated glycoprotein)
7 TSC501 kidney- and liver-specific gene
8 ECHS1 enoyl Coenzyme A hydratase, short chain, 1, mitochondrial
9 MTMR3 myotubularin related protein 3
10 VRL vanilloid receptor-like protein
11 LRP1 low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)
12 BPAG1 bullous pemphigoid antigen 1 (230/240kD) isoform 3
13 KIAA0382 Rho guanine exchange factor (GEF) 12
14 HSPE1 heat shock 10kD protein 1 (chaperonin 10)
15 ABCA4 ATP-binding cassette, sub-family A (ABC1), member 4
16 RNPS1 RNA-binding protein S1, serine-rich domain
17 BAP1 BRCA1 associated protein-1 (ubiquitin carboxy-terminal hydrolase)
18 UBL3 ubiquitin-like 3
19 RAB2 member RAS oncogene family
20 PRDX2 peroxiredoxin 2—probable thioredoxin peroxidase
21 ALDOC aldolase C, fructose-bisphosphate
22 AIP aryl hydrocarbon receptor-interacting protein, immunophilin homolog ARA9
23 KIAA0365 KIAA0365 gene product
24 GCN5L2 GCN5 (general control of amino-acid synthesis, yeast, homolog)-like 2
25 HNRPA1 heterogeneous nuclear ribonucleoprotein A1
26 CTBP1 C-terminal binding protein 1, phosphoprotein CtBP
27 POLR2K polymerase (RNA) II (DNA directed) polypepide K (7.0kD)
28 SMS spermine synthase
29 SPOCK sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican)
30 DCTN1 dynactin 1 (p150 isoform, Drosophila Glued homolog)
31 MAL mal, T-cell differentiation protein
32 DDIT3 DNA-damage-inducible transcript 3
33 RPL31 ribosomal protein L31
34 ITPR1 inositol 1,4,5-triphosphate receptor, type 1
35 KIAA0494 KIAA0494 gene product
36 RNF 10 ring finger protein 10
37 PON2 paraoxonase 2
38 MADD MAP-kinase activating death domain
39 PRCC papillary renal cell carcinoma (translocation-associated)
40 TAF2F TATA box binding protein (TBP)-associated factor, RNA polymerase II, F, 55kD
41 ABLIM actin binding double-zinc-finger LIM protein 1
42 AKAP1 kinase A anchor protein 1 (PRKA)
43 DKFZP564M182 PBK1 protein
44 ILVBL acetolactate synthase
45 YWHAH tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta polypeptide
46 KIAA0308 KIAA0308 protein
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To find control regions shared between the correlated

and anticorrelated genes of the subsets shown in Figure 1C,D,

a bioinformatics analysis was performed to look for conserved

noncoding sequences (Table 2; Fig. 2). Gene pairs were ana-

lyzed with gene expression correlation coefficients >0.8 or

<�0.6. BLAST was used to find homologies, but not provide

reliable estimates of their statistical significance, as the algo-

rithm employs asymptotic statistical approximations, which

are not accurate for shorter sequences (Benson et al. 2000).

The resulting homology regions were further scrutinized for

transcription factor binding sites using the TRANSFAC data-

base (Wingender et al. 2000). The homology search was con-

fined to sequences 20-kb upstream, 20-kb downstream, and in

all introns of the relevant genes. The analysis revealed a com-

plex array of potential control elements shared between

genes, which may be responsible for their expression pattern

Table 2. Potential Regulatory Sequences in Co-Regulated Genes of Normal and Alzheimer’s Hemisections

Gene paira Homology blocksb

RAB2 and ABCA4(+)
RAB2 cct[ccaaatattccaga]c (17/17) [cttgtttctgaa]dtcatttagtaa (23/23) tttgcaa[gttttaaaat]eact (20/20)
(8 exons) 1188bp 5� upstrm ATG 3060bp 3� dstrm exon 1 (intron 1) 7268bp 3� dstrm exon 1 (intron 1)
Fly RAB2 aatattgcag (10/11)
(6 exons)/90% 12892bp 5� upstrm ATG
ABCA4 cct[ccaaatattccaga]c (17/17) [cttgtttctgaa]dtaattcagtaa (21/23) tttgcaa[gttttaaaac]eact (19/20)
(50 exons) 6865bp 5� upstrm ATG 17313bp 5� upstrm ATG 12300bp 5� upstrm ATG
Fly ABCA4 tttgcaagcttt (11/12)
(8 exons)/30% 9642bp 5� upstrm ATG

BAP1 and ABCA4 (+)
BAP1 (17 exons) ggcagtgaggg[tttgactgg]f (20/20) (1415bp 5� upstrm ATG [4087bp 5� upstrm ATG of HSPC226])
ABCA4 (50 exons) ggcagtcaggg[tttgactgg]f (19/20) (353bp 5� upstrm ATG [255bp 3� dstrm start promoter, ABCA4])
Fly ABCA4 (8 exons)/30% gcagtcaagttttga (13/15) (7664bp 3� dstrm stop codon)

BAP1 and RNPS1 (+)
BAP1 (17 exons) c[tc(catccctgcc]gccaa)h (17/17) (257bp 3� dstrm exon 11) (intron 11)
RNPS1 (7 exons) c[tc(catccctgcc]gccaa)h (17/17) (9153bp 5� upstrm ATG[in intron 21, ABCA3])

MSX2 and BAP1(�)
MSX2 (14 exons) actatgg[g(ccaggtgc)ic]jttgc (21/21) (6150bp 3� dstrm stop codon [in intron 4, ZNF151])
BAP1 (17 exons) actatgg[g(ccaggtgc)ic]jatgc (20/21) (3574bp 3� dstrm stop codon [in intron 14, FLJ13704fis])

RNPS1 and U5-100K (�)
RNPS1 tggag[gcaggga(cagaggg]katgct)lgt ggaaggatggtgtctcctg gac[agcagggagcca]mgggg
(7 exons) (26/26) 13335bp 5� upstrm ATG (19/19) 6684bp 5� upstrm (19/19) 8844bp 3� dstrm stop

[in intron 27, ABCA3] ATG codon [in intron 9, E4F1]
Fly RNPS1 gaggcaggaatagag (13/15)
(2 exons)/33% 10266bp 3� dstrm stop codon

[814bp 3� dstrm stop codon, RPA1]
U5-100K tggag[acagaga(cagaggg]katggt)lgt ggaaggatggtatctcctg gac[atcagggagcca]mgggg
(17 exons) (23/26) 2626bp upstrm ATG (18/19) (18/19) 1030bp 3� dstrm stop

675bp 5� upstrm ATG codon [in intron 1 CAL Bet3]
aggatcatatctcc cagggagtcagg (11/12)Fly U5-100K

(8 exons) 41% (12/14)
17652bp 5� upstrm ATG

656bp 3� dstrm stop codon

LRP6 and U5-100K (+)
LRP6 (26 exons) gggt[(ggaagggaataa]nt)ogga (20/20) (4972bp 3� dstrm stop codon)
U5-100K (17 exons) gggt[(ggaagggaataa]nt)ogga (20/20) (10261bp 3� dstrm stop codon [in intron 1, CAL Bet3])
Fly U5-100K (8 exons)/41% aagggtataatgg (12/13) (12661bp 5� upstrm ATG)

TAF2F and LRP6 (�)
TAF2F (1 exon) ct[atatgtt(cacttc]p,qtttaaatg)rtgc (26/26) (9542bp 5� upstrm ATG)
LRP6 (26 exons) ct[atatgtt[tacata]p,qtttaaatg)rtgc (23/26) (5612bp 3� dstrm stop codon)
Fly LRP6 (6 exons)/32% t[atatggctaaata]p,qtttaaa (17/20) (5236bp 5� upstrm ATG[836bp 3� dstrm stop codon H3-like protein])

TBXAS1 and ECHS1 (+)
TBXAS1 acac[cccagctgcc]s (19/19) cac[cccagctgcc]scagcac(19/19)
(13 exons) 1318bp 3� dstrm stop codon 1337bp 3� dstrm stop codon
ECHS1 acac[ccctgctgcc]scagca (18/19) cac[ccctgctgcc]scagcac (18/19)
(7 exons) 5989bp 3� dstrm stop codon 6051bp 3� dstrm stop codon

[in intron 16, GCP2] [in intron 16, GCP2]
Fly ECHS1 cac[gcctgctgcc]scag (15/16) cac[gcctgctgcc]scag (15/16)
(3 exons)/77.6% 1609bp 3� dstrm stop codon 1609bp 3� dstrm stop codon

a(+) Correlated pair; (�) anti-correlated pair; % aa (amino acid) homology to human gene shown. bNucleotide matches shown in parentheses,
mismatches in bold. Potential binding sites (core in capitals): cOCT-1 ccaaatATTCcagan, dHFH8 nctTGTTtctgaa, eTFIID gtTTTAAAAt, fAP1
ttTGACtggnn, gIK2 tccaTCCCtgcc (anti-sense strand), hSp1 catcccTGCCccaa (anti-sense strand), iUSF ccAGGTGc (anti-sense strand), jMYOD
gccaGGTGcc (anti-sense strand), kGKLF acagagacagAGGG, lIK2 cagaGGGAtggt, mIK2 atcaGGGAgcca, nIK2 ggaaGGGAataa, oIK1 ggaaGG
GAataat, pHFH3 ataTGTTtacata, qHFH8 ataTGTTtacata, rXFD1 tacataTTTAaatg (anti-sense strand), sAP4 ccctGCTGcc (anti-sense strand).
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relationships. Some of the genes (5/9) had putative control

regions in the flanking or intron sequences of adjacent genes.

In most of these cases (4/5), orthologs of the coregulated gene

were found in the Drosophila genome, and in all cases where

a Drosophila ortholog existed (4/4), analogous control regions

were also found. However, in the Drosophila genome, the pu-

tative regulatory regions were found in a distinct context:

either in the flanking region or intron of a completely differ-

ent neighboring gene. This validated the likely relevance of

the regulatory region in the original gene of interest. In all

cases, except for one (RNPS1 and U5-100K, homology block 2,

ggaaggatggt(g/a)tctcctg, respectively), the potential regulatory

sequences harbored known transcription factor binding sites.

We predict that the one exception may in the future be found

to represent an as yet uncharacter-

ized binding site. Nevertheless, the

significance of the potential regula-

tory sequences must be confirmed

experimentally.

In addition to global analyses

of spatial gene expression in the

normal and Alzheimer’s hemisec-

tions, significant (P < 10�7) gene

expression differences when aver-

aged across the voxels were sought

between the two specimens (Fig.

3A). To assess the replicability of

the findings, equivalent voxels

(voxel F1) from the hippocampus of

an additional normal and an addi-

tional Alzheimer’s specimen were

also analyzed, using a 5000 gene

microarray with substantial overlap

with the 2000 gene microarray. The

F1 voxel was chosen for replication

as it is part of the hippocampus,

which is strongly affected in Alzhei-

mer’s disease. A scatterplot was con-

structed that compared the expres-

sion level differences between nor-

mal and diseased specimens using

those genes judged significantly

different across the entire hemisec-

tions and also present on the 5000

gene microarray (Fig. 3B). Despite

the fact that the whole hemisec-

tions and the F1 voxels came from

four entirely different individuals,

the scatterplot analysis showed ex-

cellent replicability of gene expres-

sion differences (P = 0.0002) be-

tween the normal and Alzheimer’s

disease groups. This data suggests

that the uncovered differences be-

tween the normal and Alzheimer’s

disease brains represent real distinc-

tions attributable to the disease pro-

cess, and are not because of the in-

evitable lack of precisely matched

human samples.

A number of intriguing genes

were found to be significantly dif-

ferent between the normal and Al-

zheimer’s disease hemisections (Fig.

3A; Table 3), involved in such diverse areas as signal trans-

duction (e.g., YWHAH, PTPRN2, RAP2A), modulation of the

cytoskeleton (e.g., ICAP-1A, PALLADIN), transcription (e.g.,

DRAP1, TIF1�, NFATC3, TAF2F), and cholesterol synthesis

(IDI1). There were also two novel genes. Interestingly, it has

been reported that the expression within hippocampus and

neocortex of one of the differentially expressed genes,

MAPK10, closely matches that of Alzheimer disease targeted

neurons (Mohit et al. 1995). The vast majority of the genes are

expressed more highly in the normal brain than the Alzhei-

mer’s brain (29/34). This is a highly significant deviation from

random (�2 = 18.74, df = 1, P < 0.0001), and possibly reflects

the considerable neuronal cell death that occurs in Alzhei-

mer’s disease.

Figure 2 Putative regulatory elements shared between groups of correlated and anticorrelated
genes. There were three groups of correlated (+) genes: (1) RAB2, ABCA4, BAP1, RNPS1, (2) U5-100K,
LRP6, (3) ECHS1, TBXAS1; and three groups of anticorrelated (�) genes: (1) BAP1, MSX2 (2) RNPS1,
U5-100K (3) LRP6, TAF2F. The groups are indicated by square brackets. The regulatory sequences
responsible for correlated expression are shown as squares, those responsible for anticorrelated ex-
pression are shown as diamonds. Genes are indicated by UniGene symbol or name (http://
www.ncbi.nlm.nih.gov/UniGene). Exons are indicated by short vertical lines. Lines delineate the rela-
tionships between the conserved regulatory sequences. Multiple control regions frequently connected
the genes. Sometimes these control regions were found in introns or flanking regions of adjacent
genes. In that case, where there was a Drosophila ortholog of the relevant gene, the control region was
conserved in the Drosophila genome but in a different context. Potential binding sites are: (1) OCT-1,
(2) HFH8, (3) TFIID, (4) AP1, (5) IK2, (6) Sp1, (7) USF, (8) MYOD, (9) GKLF, (10) IK1, (11) HFH3, (12)
XFD1, and (13) AP4.
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A graphic presentation of the spatial expression pattern

across voxels for one of the significantly differentially ex-

pressed genes, YWHAH, is shown in Figure 3C for both the

normal and Alzheimer’s hemisections. In Figure 3D, a

Bayesian approach to creation of expression images for

YWHAH was employed, using a prior assumption of nearest

neighbor continuity. This resulted in smoothed expression

patterns over the voxels, which were then projected onto the

relevant neuroanatomy and reflected along the midline, giv-

ing bilateral symmetry.

Singular value decomposition (SVD) is a powerful

method for economical descriptions of complex data sets

(Hendler and Shrager 1994; Frackowiak et al. 1997; Alter et al.

2000). This statistical method reduces dimensionality, while

retaining the maximum possible fraction of the variance from

the original data. For example, when used in biomedical im-

aging, SVD analysis frequently explains data sets on the basis

of known functional and anatomical boundaries (e.g., cortical

vs. subcortical). In the context of gene expression patterns, it

might be expected that SVD would show which sets of genes

(“vectors”) account for the major variations between the vox-

els, and hence which sets of genes play important roles in

setting up spatial patterns of differentiation in the brain. In

essence, the gene vectors would represent ‘votes‘ for the prop-

erties of the various brain regions in which they are manifest.

It should be noted that SVD does not rely on preconceived

notions or hypotheses, and is entirely data driven. To see if

SVD would illuminate the large amounts of data from the

voxelation studies of the normal and Alzheimer’s hemisec-

tions, we performed an analysis on the conjoint matrix re-

sulting from the top 120 genes most strongly differentially

expressed between the samples (P ∼ 0.05) (c.f. Fig. 3). The

results of the SVD analysis are presented in Figure 4. The first

principal component (PC) was uniformly expressed, and rep-

resents genes consistently differentially expressed across all

voxels. Analogously, the first PC in biomedical imaging stud-

ies is often an average representation of the entire brain. The

second PC is largely restricted to cortex, the third to both the

tail of the caudate and the hippocampus, and the fourth to

the insular cortex. This restriction to anatomical regions is

remarkable considering the two-fold uncertainty in the mi-

croarray data, the relatively crude spatial maps (24 voxels),

Table 3. Genes Differentially Expressed in Normal and Alzheimer’s Hemisections

Miscellaneous (12 genes)
IDI1 (isopentenyl-diphosphate � isomerase) (cholesterol synthesis)
DNC1 (intermediate chain 1 of cytoplasmic dynein) (cytoplasmic transport)
KIAA0069 (ADP-ribosylation factor-like 6 interacting protein)
SMS (spermine synthase)
DSCR1L1 (thyroid hormone-responsive gene similar to Down syndrome critical region gene)
RARS (arginyl-tRNA synthetase)
PSCA (prostate stem cell antigen)
LIMS1 (LIM and senescent cell antigen-like domains 1)
BICD1 (Drosophila Bicaudal D homolog) (cytoskeletal mRNA sorting)
XPO1 (exportin 1) (export of proteins and RNA from the nucleus)
PSCD2 (Pleckstrin homology, Sec7 and coiled/coil domains 2, cytohesin-2)
RAB2 (G protein involved in secretion)

Transcription (eight genes)
DRAP1 (DR1-associated protein 1 -ve cofactor 2 �) (transcription repressor)
NFATC3 (nuclear factor of activated T-cells, 3) (transcription factor)
ZNF142 (zinc finger protein)
KIAA1041 (forkhead domain)
TIF1� (kinase and transcription silencing factor with a RING finger)
SALL2 (zinc finger protein and homolog of the Drosophila spalt gene)
TAF2F (TAFII55) (TATA box binding protein (TBP)-associated factor 2F)
NR113 (nuclear receptor subfamily 1, group 1, member 3) (MB67, CAR-beta)

Signal transduction (five genes)
YWHAH (14-3-3 eta chain) (signal transduction)
PTPRN2 (receptor-type protein tyrosine phosphatase IA-2 beta) (signal transduction)
RAP2A (RAS oncogene family member) (signal transduction)
PRKCB1 (Protein kinase C, �1 subunit) (signal transduction)
MAPK10 (mitogen-activated protein kinase 10) (signal transduction)

Modulation cytoskeleton (three genes)
ICAP-1A (�1 integrin cytoplasmic domain-associated protein)
KIAA0992 (palladin) (localized to stress fibers and cell adhesions)
WASF1 (Wiskott-Aldrich syndrome protein family, member 1) (WAVE)

Respiration (two genes)
COX7B (cytochrome c oxidase subunit VIIb) (electron transport)
IDH3A (� subunit of mitochondrial NAD+ specific isocitrate dehydrogenase 3) (respiration)

Redox (two genes)
SEPW1 (selenoprotein W1) (redox-related processes)
CCS copper chaperone for superoxide dismutase (interacts with SOD1)

Novel (two genes)
LOC51235 (novel)
LOC51628 (novel)
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and the inevitability, given the nature of human samples,

that the two hemisections are not perfect controls for each

other. With increased resolution and more comprehensive

gene surveys, voxelation may ultimately reveal the molecular

ontology of the brain, demonstrating which parts of the brain

are most closely related in terms of gene expression patterns

to other parts.

DISCUSSION
The investigations reported here demonstrate that employing

spatial information from whole organisms together with

high-throughput gene expression methodologies will provide

valuable additional insights not easily obtained from studies

of unicellular systems. Although the voxelation studies had

limited spatial resolution, useful data was obtained, and there

are parallels with functional imaging of the brain, which gives

important insights despite the fact that the voxels are inho-

mogeneous (Raichle 1998). The spatial information content

of voxelation helped define control regions in networks of

coregulated genes, and further insights were obtained from

SVD. It should be emphasized that these conclusions do not

depend on the assumption of precisely matched samples. For

example, the networks of coregulated genes were clearly con-

served between the two hemisections across multiple voxels,

despite the inevitable lack of exact controls using human

specimens. This lack notwithstanding, consistent gene ex-

pression differences between normal and Alzheimer’s disease

brains were found.

Despite the drawbacks of human studies, by definition

these investigations have the advantage of disease validity. In

contrast, studies using mice can be precisely and accurately

Figure 4 SVD delineates anatomical regions of the brain. The conjoint matrix resulting from the top 120 genes most strongly (P ∼ 0.05)
differentially expressed between the normal and Alzheimer’s hemisections was analyzed. The spatial patterns resulting from the first, second, third,
and fourth PCs are shown. Alongside are the first 30 members of the corresponding gene vectors. The ordinate represents the contribution by the
relevant gene to the variation of the vector spatial pattern, whereas the abscissa represents the genes in decreasing order of significance of
differential expression. The genes are indicated by UniGene symbol or name. Normal: red, Alzheimer’s: blue. The first component is uniformly
expressed over the brain, and represents an image of average gene expression differences between the samples. The second component is largely
restricted to cortex, the third to both the tail of the caudate and the hippocampus, and the fourth to the insular cortex. The level of expression
of the relevant gene vector in the spatial patterns can be deduced by reference to the pseudocolor scale (right). Imaging software smoothed the
expression patterns over the voxels, and the hemisection was reflected along the midline for the figure, giving bilateral symmetry.
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controlled, and furthermore provide opportunities for the use

of genetically engineered animals. However, with mice there

will always be unresolved uncertainties over disease model

validity (especially where the etiology is unclear, e.g., the neu-

ropsychiatric disorders such as schizophrenia). In the longer

term, perhaps the most information can be extracted by the

judicious combined use of both humans and mice, as well as

other model systems. A relevant point here is that the same

volumetric resolution (voxel size), will yield better relative

resolution with larger brains. For example, identical voxel di-

mensions will produce about a seven-fold higher relative reso-

lution using the rat brain compared to the mouse, because of

the corresponding brain volumes of these species.

An important future task for voxelation will be to in-

crease the amount of information it provides, by miniaturiza-

tion of voxel size to improve resolution and also analysis of

increased numbers of genes. The direct incorporation meth-

odology for probe labeling employed in this study is suffi-

ciently sensitive to allow construction of 13,000 voxel maps

of the human brain. In principle, more sensitive techniques,

such as those using tyramide signal amplification, should al-

low construction of 325,000 voxel images. By comparison, a

modern CT or PET scan of the human brain typically employs

about 150,000 voxels. Because of the much smaller size of the

mouse brain, it is not feasible to use direct incorporation for

construction of spatial expressionmaps of single brains in this

organism. However, pooling spatially equivalent voxels will

allow decreased voxel size, and hence improved resolution,

while still allowing recovery of sufficient RNA for analysis. For

individual mouse brains, tyramide signal amplification will

permit construction of 75 voxel maps. Real-time quantitative

RT–PCR is still more sensitive, and will allow construction of

6000 voxel maps, although automation and miniaturization

will doubtless be required to harvest such small voxels. Real-

time quantitative RT–PCR has lower throughput than micro-

arrays, but the potential of PCR for automatability and scal-

ability will nevertheless allow such methods in combination

with voxelation to surpass the throughput of classical tech-

niques, such as in situ hybridization.

It will also be important to find ways to drive down costs.

Although microarrays are a relatively cheap tool on a per gene

basis, voxelation will become increasingly expensive as

greater numbers of voxels are analyzed in the quest for im-

proved resolution in a variety of experimental situations. Fur-

thermore, as resolution is pushed ever higher, computational

analysis will become an important issue because of the over-

whelming amounts of data. However, assuming Moore’s law

continues to hold true, improvements in computing power

should allow data analysis to keep pace.

All of these goals—higher resolution, better analytic

methodologies, higher throughput and more powerful com-

putational tools—will provide substantial challenges. Ulti-

mately, however, cross-species high-resolution voxelation of

healthy and diseased brains is likely to provide better com-

prehension of the logic of the genome, and how this program

goes awry in disorders affecting the brain. Such investigations

will give important information on the genomic construction

of the brain as well as novel starting points for therapy.

METHODS

Voxelation Procedure

The hemisections from both the normal and Alzheimer’s
brain were 8 mm thick, and were from the left side at the level

of the hippocampus, corresponding to section 17 of the Uni-
versity of Maryland Brain and Tissue Bank protocol, method 2
(Brain and Tissue Bank, University of Maryland, http://
medschool.umaryland.edu/BTBank). In each case, the voxela-
tion was performed using a 32-voxel template consisting of
eight rows in the superior/inferior axis (A to H, superior to
inferior), and four columns in the medial to lateral axis (1 to
4, medial to lateral). The two hemisections were of different
superior/inferior and medial/lateral dimensions, and there-
fore the voxelation template of the Alzheimer’s brain was lin-
early spatially deformed along these axes relative to the nor-
mal brain, so that the same number of potential voxels were
present in both templates. Subsequent computational adjust-
ment, based on the anatomical topography of the two hemi-
sections, allowed for complete gene expression image regis-
tration. Because the brain hemisections were roughly semicir-
cular, whereas the voxelation template was rectangular, some
voxels in the templates were empty. A scheme was established
a priori to deal with voxels on the edge of the brain, whereby
if the volume of biological material in the voxel was <50%
voxel volume, those voxels were pooled with adjacent voxels.
The following clockwise scheme was employed to pool voxels
until a combination >50%was possible: First the subthreshold
voxel was combined with the voxel medially, then superiorly,
then laterally, then inferiorly. If an edge voxel contained
more biological material than 50% of the voxel volume, it was
considered a free-standing image element. The scheme re-
sulted in the following 24 data voxels in common for the two
hemisections: A2, B1, B2, B3, C1, C2, C3, D1, D2, D3, D4, E1,
E2, E3, E4, F1, F2, F3, F4, G1, G2, G3, H2, H3. The voxel grid
is shown in Figure 1A. The normal brain was from a 49 yr old
male who died as a result of a car accident. The postmortem
interval was 9 h. The Alzheimer’s brain was Lewy body posi-
tive, and was from an 85 yr old female who died from cardiac
complications. This individual had dementia with accompa-
nying depression and delusions, and was taking sertraline and
haloperidol. The postmortem interval was 12 h. The normal
F1 voxel was from a 22 yr old male who died as a result of
atherosclerotic cardiovascular disease. The postmortem inter-
val was 4 h. The Alzheimer’s disease F1 voxel was from an 85
yr old female, with well-formed neuritic plaques and scattered
neurofibrillary tangles. The case was classified as high likeli-
hood of Alzheimer’s disease based on consensus recommen-
dations (National Institute on Aging 1997). The cause of
death was respiratory failure and the postmortem interval 10 h.

Microarray Analysis

For each voxel of the normal and Alzheimer’s hemisections,
100 µg of Cy3-labeled voxel RNA and 100 µg of Cy5-labeled
control RNA were cohybridized to a separate 2000 gene mi-
croarray, as described previously (Eisen and Brown 1999). The
control RNA was used to facilitate interarray comparisons,
and consisted of total RNA from the normal hemisection re-
constructed by combining proportionate amounts of RNA
from each voxel. For each gene, signal to noise ratio was 2.5-
fold above background for both the Cy3 and Cy5 channels.
For the F1 voxels, two experiments were performed in which
labeled normal and Alzheimer’s RNA were directly compared
by cohybridization to separate 5000 gene microarrays, but
with the Cy3 and Cy5 dyes reversed for the second experi-
ment. Gene expression values were taken as the mean of the
two experiments. Of the genes present on the 2000 gene mi-
croarray, 62% were also present on the 5000 gene microarray.

The microarray data was processed using two types of
normalization procedures. First, spatial trends existing in the
data attributable to chip printing were removed by nonlinear
transformation of the data sets. The second normalization
procedure was designed to compensate for differences in the
labeling and chemical properties of the Cy3 and Cy5 dyes, by
aligning the histograms of the dye signals both within, as well
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as between, chips. The genes chosen for the microarrays were
a random selection of sequence verified known and novel
cDNAs obtained from Research Genetics. The genes are listed
on the study web site (below).

Correlation Matrix Clustering

The genes in the omnibus normal correlation matrix of Figure
1B were clustered using an algorithm related to the K-means
procedure (Sherlock 2000). The algorithm was based on mini-
mization of a cost function, C(K) = �(distribution within
clusters)2 + K2, where K is the number of clusters. As the num-
ber of clusters goes up, the first term of the equation de-
creases, whereas the second increases, and the C(K) is hence
expected to show a minimum. The genes in the Alzheimer’s
correlation matrix were placed in the same order as the nor-
mal. For the correlated subset matrices shown in Figure 1C,
the genes in the normal matrix were ordered using a hierar-
chical clustering approach with a similarity metric related to
the centroid method (Milligan 1980). The first row of the
matrix was chosen to exhibit a strong contrast between the
highest and lowest correlation coefficient for that row. This
row was denoted as the base vector, B, with respect to which
the remaining rows, R, were arranged in order of decreasing
similarity, using a metric consisting of �i(Bi � Ri)

2, where
i = the elements of the rows. Once the matrix for the normal
brain was created, the matrix for the Alzheimer’s brain was
created following the same order.

Monte-Carlo Simulations

The Monte-Carlo simulation to assess the similarity of the
normal and Alzheimer’s correlation matrices in Figure 1B em-
ployed random permutation of the columns of the matrices,
and showed that the similarity was highly significant (P <
0.0001). For the simulation, the discrepancy between ran-
domly selected pairs of permuted matrices was quantitated
using the Frobenius norm of the matrix obtained by subtract-
ing one permuted matrix from the other. The difference be-
tween the mean of the resulting distribution and the Froben-
ius norm obtained from the actual normal and Alzheimer’s
matrices was used to show significance. The Monte-Carlo
simulation to assess the similarity of the normal and Alzhei-
mer’s correlation matrices in Figure 1C also showed high sig-
nificance. The simulation employed random substitution of
genes drawn from the entire 2000 gene dataset in the rows
and columns of the matrices. Significance was assessed using
Frobenius norms, as described above.

Singular Value Decomposition

The conjoint matrix employed for SVD was obtained using
the top 120 genes most strongly differentially expressed be-
tween the normal and Alzheimer’s hemisections (P ∼ 0.05).
The matrices of m voxels � n genes for the normal and Alz-
heimer’s specimens were concatenated along the spatial di-
mension, giving a matrix of size m � 2n. The concatenation
procedure provided a common spatial dimension for the data
sets of both samples. When the number of genes in the SVD
analysis was limited to the 34 most significant (P < 10�7)
differentially expressed genes (Fig. 3) rather than the top 120,
the spatial expression patterns of the first and second PCs
were preserved, whereas the patterns of the third and fourth
were altered. This observation implies superior robustness of
the first and second PCs, and it is typical of SVD that the first
few PCs account for much of the data.

Web Sites

All study results are available as a web supplement at http://
www.pharmacology.ucla.edu/smithlab/genome_research_
data and http://www.genome.org.
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