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High-throughput immune repertoire sequencing is promising to lead to new statistical

diagnostic tools for medicine and biology. Successful implementations of these methods

require a correct characterization, analysis, and interpretation of these data sets. We present

IGoR (Inference and Generation Of Repertoires)—a comprehensive tool that takes B or T cell

receptor sequence reads and quantitatively characterizes the statistics of receptor generation

from both cDNA and gDNA. It probabilistically annotates sequences and its modular

structure can be used to investigate models of increasing biological complexity for different

organisms. For B cells, IGoR returns the hypermutation statistics, which we use to reveal co-

localization of hypermutations along the sequence. We demonstrate that IGoR outperforms

existing tools in accuracy and estimate the sample sizes needed for reliable repertoire

characterization.
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The adaptive immune system recognizes pathogens by
binding their antigens to specific surface receptors
expressed on T and B cells. The recent advent of high-

throughput immune repertoire sequencing (RepSeq)1–4 gives us
direct insight into the diversity of B cell and T cell receptor (BCR
and TCR) repertoires with great potential to change the way we
diagnose, treat, and prevent immune system-related disorders. A
growing number of algorithms and software tools have been
designed to address the new challenges of RepSeq, in particular
sequence analysis, germline assignment and clone construction5–
10. However, each receptor sequence can be generated in a large
number of ways, which we call “scenarios,” comprising the pro-
cesses leading to pre-selection receptors: recombination of
germline segments, insertions and deletions, and hypermutations.
Different germline segments can recombine with each other with
different frequencies, and the number of insertions and deletions
is random, so that the overall receptor generation process cannot
be described deterministically. Standard assignments introduce
systematic errors when describing this inherently stochastic
process. Quantitatively characterizing the diversity and the biases
of these mechanisms remains a challenge for understanding
adaptive immunity and applying RepSeq for diagnostics.

We present a flexible computational method and software tool,
IGoR (Inference and Generation of Repertoires), that processes
raw immune sequence reads from any source (cDNA or gDNA)
and learns unbiased statistics of V(D)J recombination and
somatic hypermutations. Using these statistics, for each sequence
IGoR outputs a whole list of potential recombination and
hypermutation scenarios, with their corresponding likelihoods.
IGoR’s performance at identifying the correct VDJ recombination
scenario is two times better than current state-of-the-art methods.
IGoR used as a sequence generator produces an arbitrary number
of randomly rearranged sequences with the same statistics as in
the data set. Applied to BCRs, IGoR learns a context-dependent
hypermutation model to identify hotspots, which allows for a
comprehensive analysis of the mutational landscape of BCRs.

Results
Probabilistic assignment of recombination scenarios. V(D)J
recombination selects two or three germline segments (Variable
—V and Joining—J loci for TCR α and BCR light chains; and the
V, Diversity—D, and J loci for TCR β and BCR heavy chains)
from a library of germline genes, and assembles them while
deleting base pairs and inserting other non-templated ones at the
junctions (Fig. 1a). B cell receptors can further diversify through
somatic hypermutations during affinity maturation. The recom-
bination process is degenerate, as the same sequence can be
generated in many different ways11. IGoR takes as input a list of
sequences obtained from the initial pre-processing of raw reads,
controling for read quality, and grouping unique or very similar
sequences together (as can be done using existing software such
as MiXCR8). IGoR starts by listing the possible recombination
and hypermutation scenarios leading to an observed sequence in
the data set. It then assigns probability weights reflecting the
likelihood of these scenarios. As the example in Fig. 1a shows,
explored scenarios can be very different yet have comparable
contributions to the sequence likelihood. Since exploring all
possible scenarios would be computationally too costly, IGoR
restricts its exploration to the reasonably likely ones (see Sup-
plementary Note 5). Scenario exploration takes from 1ms up to
less than a second per sequence on a single CPU core, depending
on the chain (see Table 1, and full distributions of runtimes in
Supplementary Fig. 1). Different recombination architectures can
be configured within IGoR by specifying dependencies between
elementary events (gene choices, deletions, insertions, and
hypermutations) through an acyclic-directed graph, or Bayesian
network, as illustrated in Fig. 1b for the case of BCR heavy chains
(see “Methods” section for the other used structures). Note that
IGoR actually runs faster on longer reads, as this tends to lift
ambiguities in the assignment of the V gene, decreasing sum-
mation time over scenarios.

IGoR functions according to three modes: learning, analysis,
and generation (Fig. 1c). In the learning mode, IGoR infers the
recombination statistics of large data sets of sequences using a
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Fig. 1 IGoR’s pipeline for sequence analysis. a V(D)J recombination proceeds by joining randomly selected segments (V, D, and J segments in the case of
TRB and IGH). Each segment gets trimmed at its ends (hashed areas), and a varying number of non-templated insertions are added between them
(orange). Hypermutations (in the case of B cells) or sequencing errors (in red) further enhance diversity. IGoR lists putative recombination scenarios
consistent with the observed sequence, and weighs them according to their likelihood. b The likelihood of each scenario is computed using a Bayesian
network of dependencies between the recombination features (V, D, J segment choices, insertions, and deletions), as illustrated here for the human TRB
locus. Architectures for TRA and IGH are described in Methods. c IGoR’s pipeline includes three modes. In the learning mode, IGoR learns recombination
statistics from data sequences. In the analysis mode, IGoR outputs detailed recombination scenario statistics for each sequence. In the generation mode,
IGoR produces synthetic sequences with specified recombination statistics
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sparse expectation-maximization algorithm (see “Methods” sec-
tion). In the analysis mode, IGoR assigns recombination events to
sequences in a probabilistic way, by outputting the most likely
scenarios ranked by their probabilities, as well as the overall
generation probability of the sequence. In the generation mode,
IGoR outputs random sequences with specified statistics, e.g.,
learned from real data sets.

Inference of V(D)J recombination. We used IGoR’s learning
mode to infer the accurate statistics of V(D)J recombination from
four data sets comprised of unique sequences of non-productive
rearrangements of three different chains, sequenced either at the
levels of mRNA (TCRα chain or “TRA,” and TCRβ chain or
“TRB”12) or DNA (TRB13, and BCR immunoglobulin heavy chain
or “IGH” from naive B cells14), generalizing earlier methods15–17.
Restricting to non-productive unique sequences allowed us to
avoid biases introduced by functional selection. For BCR, we only
consider out-of-frame sequences from the naive repertoire, which
have no hypermutation insertions and deletions, giving us con-
fidence in their non-productive status. The expectation-
maximization algorithm converged within a few iterations (see
Supplementary Fig. 2 for the convergence of the likelihoods and
of the insertion distributions of both TRB and IGH).

The same TRB insertion and deletion distributions were
inferred regardless of the individual, laboratory of origin, or
sequencing protocol, and of whether DNA (light blue distribu-
tions in Fig. 2) or mRNA (dark blue) was used. By contrast, V and
J gene usage varied moderately but significantly across indivi-
duals, and even more across sequencing technologies, suggesting
possible primer-dependent biases (Supplementary Fig. 3 for TRB,
see also Supplementary Fig. 4 for IGH D–J gene usage). Insertions
at the TRA V–J junction, and at the TRB V–D and D–J junctions
have similar distributions (Fig. 2a), as previously reported17. IGH
sequences have significantly more insertions at the junctions than
TCRs, consistent with previous observations16. The statistics of
deletions (Supplementary Fig. 5), and in particular negative
deletions which by convention correspond to palindromic
insertions, depend on gene segments for both BCR and TCR
(Supplementary Fig. 6), updating previous estimates in IGH18.

We then validated the learning algorithm on synthetic data
sets. Sequences were generated in batches of 103–105 by IGoR
with a variable error rate, using statistics inferred from 60 bp
DNA TRB data. The length of the synthetic sequences was chosen
to match the experimentally analyzed read lengths. IGoR’s
learning algorithm was then run on these raw sequences, and
the resulting statistics compared to the known ground truth. We
found that the inference was highly accurate for data sets of 105

sequences and an error rate set to its typical experimental value,
10−3 (Fig. 3a, b). However, not all high-throughput sequencing
data sets reach this depth, especially when restricted to unique
non-productive sequences. To assess how these limitations affect
accuracy, we calculated the Kullback–Leibler divergence (a non-
parametric measure of difference between probability distribu-
tions, see “Methods” section) between the true TRB distributions
and the inferred ones, for varying sizes of data sets and error
rates. For an error rate of 10−3, ~5000 unique out-of-frame
sequences (which can be obtained from less than 2 ml of blood
with current mRNA sequencing technologies12) were sufficient to
learn an accurate model of TRB (Fig. 3c, see also Supplementary
Fig. 7 for insertion and deletion distributions), with the majority
of the estimation error due to deletion profiles (which account for
the majority of parameters). The typical divergences, of the order
of 1 bit, are small compared to the total entropy of the
process, ~50 bits19, suggesting absence of overfitting. Increasing
the error rate has little effect up to rates of 10−2, but significantly
degrades accuracy for larger error rates, 10−1 (Fig. 3d), with the
gene usage distribution affected the most (Supplementary Fig. 8).
In addition, hypermutation rates in BCRs, which IGoR treats in
the same way as errors, can reach 1–10%, and they show a long
tail with about 5% of sequences having a hypermutation rate of
30% or greater (Supplementary Fig. 9). This suggests that the
recombination statistics of BCRs should preferably be inferred
using sequences from naive, non-hypermutated cells (as we did in
Fig. 2). We also used the synthetic data sets to verify that learning
the model on out-of-frame sequences only does not bias our
inference results: the model learned from synthetic out-of-frame
TRB sequences differed from the true model by only 0.4 bits,
compared to 0.3 bits when learned on both in-frame and out-of-
frame sequences.
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Fig. 2 IGoR infers reproducible recombination statistics between individuals. a Distribution of the number of insertions at the junctions of recombined
genes: IGH at the VD and DJ junctions from DNA data14, TRB at the VD and DJ junction from both DNA13 and mRNA data12, and TRA at the VJ insertion
site from mRNA data12. The insertion profile is assumed to be universal for all genes and the distributions are also reproducible between TRA and TRB. b, c
Average distribution over all genes of the number of deletions across b V and c J genes. The gene-by-gene distributions of the most frequent genes are
reported in Supplementary Fig. 5. Negative deletions correspond to palindromic insertions (P-nucleotides), e.g., −2 means 2 P-nucleotides. The inferred
distributions are robust to the choice of individuals, genetic material (mRNA or DNA), and sequencing technology. Error bars show 1 standard deviation
across individuals
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Analysis of scenario degeneracy. By considering all recombina-
tion scenarios that contribute to the probability for each
sequence, our approach departs significantly from most existing
methods, whose goal is to find the most likely one (note however
that Partis10 treats scenarios probabilistically). To assess how
often the most plausible scenario is the correct one, we analyzed
synthetic sequences for which the generation scenario is known in
a model without hypermutations. For each generated sequence,
we used IGoR’s analysis mode to enumerate the set of scenarios
that were consistent with the nucleotide sequence, and ranked
them according to their likelihood. Figure 4a shows the dis-
tribution of the rank of the true recombination scenario for TRB
and unmutated IGH synthetic data. The maximum-likelihood
scenario is not the correct one in 72% of 130 bp IGH sequences

and 85% of 60 bp TRB sequences. Both distributions have long
tails, meaning that a substantial fraction of sequences has a very
large recombination degeneracy. This degeneracy is not due to
our inability to learn the correct model but it results from the
inherent stochastic nature of the VDJ recombination process:
different combinations of inserted and deleted nucleotides can
produce exactly the same sequence. More data, longer reads, or a
different model structure cannot improve this inherent limitation.

We then estimated how many scenarios, ranked from most
likely to least likely, were needed to explain a given fraction f of
the total sequence likelihood. The distributions of this number for
IGH across 100,000 generated sequences are shown in Fig. 4b for
various values of f (see Supplementary Fig. 10 for the equivalent
plot for TRB data). To enumerate the correct scenario with f =
95% confidence requires to include at least 30–50 scenarios. This
analysis indicates that, for both TCR and BCR, many scenarios
need to be considered to correctly characterize the generation
process.

IGoR outputs the probability of generation of the processed
sequences, by summing the probabilities of all their possible
scenarios, which deterministic assignment methods cannot do. It
was shown that this generation probability was predictive of
sharing properties between healthy individuals12,15. This func-
tionality could be used as a useful indicator of convergent
recombination in studies attempting to identify antigen-specific
or auto-immune-related sequences from large clinical data sets.

Comparison to other methods. We compared our method to
two representative state-of-the-art algorithms: MiXCR8, an effi-
cient assignment tool that finds the best matching germline genes,
and Partis10, a BCR-specific tool that uses maximum likelihood to
find the most plausible scenario with a focus on calling hyper-
mutations. 130-base-pair IGH hypermutation-free sequences
were synthesized in silico from a data-inferred model using
IGoR’s generation mode. We then assigned recombination sce-
narios using MiXCR, Partis, and IGoR, and compared them to the
true scenarios with which sequences were generated. In IGoR’s
and Partis’ case, the model parameters were learned from the
generated data set to mimick the analysis of real data. Figure 4c
shows the performance of the three methods in assigning the
correct scenario of recombination. IGoR performs about two
times better than MiXCR and Partis in predicting the complete
recombination scenario (in absence of hypermutations for IGH),
as well as each of its individual components. Note that Partis does
not include palindromic insertions, which both IGoR and MiXCR
treat by appending a short palindromic sequence at the end of
each germline segment; restricting the analysis to sequences
generated without palindromic insertions makes Partis’ perfor-
mance comparable to that of MiXCR (Supplementary Fig. 11).
Note that longer reads would improve the performance of all
methods when assigning the V gene choice due to increased
sequence information, but would not change the ability of other
methods to identify the insertion or deletion profiles, or correctly
call the real generation scenario. Since IGoR enumerates all likely
scenarios, it is slightly slower than other methods (see Table 1).

To check that IGoR’s performance is robust to changes in the
sequence ensemble, and in particular to selection effects following
recombination which are not modeled by IGoR, we generated an
artifically selected naive IGH data set by selecting synthetic
sequences according to their CDR3 length, so that the resulting
length distribution exactly matched that of naive productive IGH
sequences, using rejection sampling. Applying IGoR, Partis, and
MiXCR to these sequences gave very similar performances as on
unselected sequences, whether IGoR’s model parameters were
learned from unselected sequences (mirroring our approach of
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Fig. 3 Validation on synthetic data. Short synthetic reads of recombined
TRB sequences were generated with known recombination statistics, and
given to IGoR as input to reinfer these statistics. Inference with 105 TRB
sequences and a typical sequencing error rate of 10−3 gives excellent
agreement for a gene usage and insertion statistics and b deletion statistics
(Pearson’s r for deletions is calculated on the joint statistics of gene usage
and deletion number; cross size scales with gene usage). c Discrepancy
between true and inferred values of the recombination statistics for TRB,
measured by the Kullback–Leibler divergence, as a function of the number
of unique sequences in the sample, and decomposed according to the
features of the recombination scenario. d Same as c, for increasing rates of
sequencing errors
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learning the model from unproductive sequences), or from
selected sequences (Supplementary Fig. 12). While IGoR’s
performance is robust in the annotation task, the inferred
recombination statistics may still differ significantly between the
selected and unselected sets16,20.

Next, we compared the recombination statistics learned by the
three methods to the true statistics used to generate the data. For
MiXCR and Partis, we built the distribution of recombination
events assigned to each sequence, while for IGoR these
distributions were inferred using expectation-maximization, as
explained before. All three methods yielded similar statistics for V
and J gene usage and deletion profiles (see Supplementary Fig. 13
for IGH). However, the dependency between D and J usage in
TRB (Fig. 4d) is correctly captured by IGoR but not by MiXCR
(Partis was not included in this comparison as it does not handle
TCR). TRB D and J genes are organized in two clusters, one
containing D1 followed by genes of the J1 family, the other
containing D2 followed by genes of the J2 family. Because of this
organization, D2 cannot be recombined with genes from the J1

family21. MiXCR assigns 20% of impossible D2–J1 recombination
events to sequences. By contrast, IGoR correcly learns the rule by
assigning zero frequency to these impossible D–J pairs. The same
results are obtained directly on real data (see Supplementary
Fig. 14). Finally, IGoR accurately reconstructs the distribution of
insertions, while the other methods systematically overestimate
the probability of zero insertions (shown in Supplementary
Fig. 13a, b for IGH).

IGoR also shares some features with repgenHMM17, which
represents scenarios probabilistically using a hidden Markov
model. However, compared to IGoR, repgenHMM is much
slower (Table 1), cannot call the most likely scenario(s), does not
include a hypermutation model, and cannot encode arbitrary
dependencies between recombination events. To illustrate this
last point, we learned a model from synthetic TRA data simulated
with an artificial dependency between V gene choice and number
of insertions. While such dependency does not exist in TRA data,
it may be relevant for other receptors (e.g., TCRδ and TCRκ) or
for artificially designed receptors. Briefly, either one of two
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Fig. 4 Probabilistic analysis of putative recombination scenarios and comparison to existing methods. Synthetic 130-bp reads of recombined
hypermutation-free IGH sequences and 60-bp reads of TRB sequences were generated with a 5 × 10−3 error rate, and processed for analysis by IGoR and
two existing methods, MiXCR8 and Partis10. IGoR ranks putative scenarios by descending order of likelihood. a Distribution of the rank of the true scenario
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Table 1 Runtimes of the compared methods

Chain (Pre)alignments Probabilistic treatment

MiXCR Partis IGoR/RepgenHMM MiXCR Partis RepgenHMM IGoR

TRA 100 bp 2 × 10−4 NA 0.3 NA NA 10−2 10−4

TRB 60 bp 3 × 10−4 NA 0.1 NA NA 1 0.1
IGH 130 bp 10−3 10−2 0.2 NA 5 × 10−2 >1 0.2

Times for alignments are in seconds per sequence. In the probabilistic treatment, times are in seconds per sequence per iteration for Partis, and in seconds per sequence per EM iteration for IGoR and
repgenHMM. MiXCR only performs alignments and does not include a probabilistic treatment. Partis only handles BCRs. IGoR and repgenHMM share the same code for pre-alignment. NA not applicable
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insertion profiles (the true one, or a geometric distribution) was
assigned randomly to each V gene segment. In addition to
learning the correct distributions of insertions for each V gene,
which repgenHMM cannot by construction, IGoR learned the
distribution of deletions, whose gene-dependent structure is the
same in both methods, with much higher accuracy than
repgenHMM (Supplementary Table 1).

Somatic hypermutations. To study patterns of SHMs in BCR
expressed by memory B cells, we included into IGoR the possi-
bility to infer a sequence-dependent hypermutation rate. The
probability of error or mutation at a given position on the
nucleotide sequence is assumed to depend on its immediate n-
mer context (see Fig. 5a), through the logistic transformation of
an additive score computed using a position weight matrix
(PWM), similar to binding energy motifs used to describe DNA-
binding sites22. We ran IGoR on memory out-of-frame IGH
sequences from ref. 14 to learn 7-mer PWMs, as well as overall
mutation rates (the geometric mean of the mutation rate over all
possible 7-mers), while fixing the recombination statistics to those
previously learned from naive sequences, using expectation-
maximization (see “Methods” section). IGoR’s probabilistic fra-
mework handles the degeneracy of sequence origin caused by
convergent combinations of gene choices and hypermutations.
The learning procedure differs crucially from ref. 16, where the
hypermutation rate was uniform. It also differs from Partis10,
which does not learn a PWM model but exhaustively infers the
hypermutation profiles directly as a function of position for each
gene (similarly to IGoR’s posterior mutabilities of Fig. 5c, see
below). For this reason, Partis learns a more complete

hypermutation profile, with more parameters. Other context-
dependent models, with no additive assumption and hence large
numbers of parameters learned from either silent mutations
statistics23 or from non-functional sequences in mutant mice24,
have also been proposed. Three distinct PWMs were learned for
V, D, and J templated regions (Fig. 5b). To validate our PWM and
mutation rate learning algorithm, we generated synthetic data
with hypermutations according to the model learned from the
real data set, and re-learned its parameters using IGoR, finding
excellent agreement (Supplementary Fig. 15).

The PWM prediction for the position-dependent probability of
hypermutations correlated well with that actually observed in the
sequences (r = 0.7 for V genes, see Fig. 5c and Supplementary
Fig. 16). PWMs were very reproducible across the two tested
individuals (r = 0.98, Supplementary Fig. 17), indicating that the
inference procedure is robust to the individual history of
infections, and pointing to the universal nature of the SHM
mechanism. By constrast, the inferred overall mutation rate
differred by a twofold factor between the two individuals,
probably owing to differences in age, past infections, or lifestyle
(Supplementary Fig. 17). The motifs we found recapitulate
previously reported hotspot motifs (positive values of the PWM)
for every gene, including WRCY (or WRCH25) and WA26,27 (W
=A or T, Y =C or T, R =G or A; mutated position underlined), as
well as cold-spot motifs albeit to a lesser extent (SYC, where S =
C, G)28. In all three motifs, C and G are generally under-
represented, except for the mutated position in V and D genes,
where T is less mutated than others. We assessed the robustness
of the model to n-mer length by learning PWMs of sizes ranging
from 3 to 9 (Supplementary Fig. 18). The contributions of each
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relative position did not change substantially as a function of
context length. Positions at least up to 4 nucleotides away from
the mutation locus contribute to the motif. This could mean that
the context dependence is broad, or alternatively that the motif
model is indirectly capturing non-contextual effects. Overall, the
inferred PWMs give both a more detailed and more nuanced view
of the rules that govern hotspot positions, and cannot be reduced
to a few easily describable motifs.

Figure 5b shows that the motifs differ substantially between V,
D, and J genes. V-learned PWMs only moderately predict J gene
hypermutation rates (r = 0.5 versus r = 0.7 for V gene rates), and
J-learned PWMs predict V gene rates even worse (r = 0.24, see
Supplementary Fig. 16). To assess whether this poor general-
izability was due to assumption of additivity in the model, we
learned a non-additive 5-mer model that tries to assign a specific
hypermutation rate to each of the possible 45 = 1024 possible 5-
mer contexts (see Supplementary Note 2). In practice, we could
only estimate mutabilities for a subset of 5-mer contexts
comprising less than half (between 160 and 498) of all 1024
possible 5-mers. Models learned for the V and J segments were
reproducible across individuals (Supplementary Fig. 19a–c), but
did not agree well between V and J (Supplementary Fig. 19d, e).
Although the model predicted the mutability very well as a
function of position along the gene for the small subset of 5-mers
for which that prediction was possible (Supplementary Fig. 20a,
b), the model learned from V segments was not predictive of
hypermutations rates in the J segment, and vice versa (Supple-
mentary Fig. 20c, d), consistent with the results of the additive
model. This disagreement indicates that predictions purely based
on context-dependent motifs are insufficient to explain all of the
variability in hypermutation probabilities, and that other
mechanisms must be at play. The overall mutation rate was also
different between germline genes, consistent with reports that the
chromatin state affects hypermutation rates29–31.

We then used the inferred PWM within IGoR to probabil-
istically call putative hypermutations in sequences. We first
examined the distribution of the number of mutations in a
sequence (Fig. 5d). The empirical distribution (red) is more
skewed and has a longer tail than would be expected by assuming
independent hypermutations in each sequence, as predicted by
generating randomly hypermutated sequences with the inferred
PWM (blue). This observation is consistent with the fact that
different B cells have undergone a variable number of cycles of
affinity maturation, resulting in differences in effective hypermu-
tation rates. Second, we asked whether hypermutations co-
localized within the same sequence, by calculating the enrichment
of hypermutations at two positions as a function of their genomic
distance (Fig. 5e). While this enrichment is one in synthetic
sequences (since our model assumes that hypermutations are
independent of each other), real data shows up to a fourfold
enrichment of hypermutations at nearby positions. This differ-
ence is consistent with the fact that AID can cause repairs of
DNA over large regions32. The typical distance at which the co-
localization enrichment index decays gives an estimate for the
length of these correlated regions of hypermutations, about 15
base pairs.

IGoR can in principle calculate the generation probability of
any sequence. However, highly hypermutated sequences pose an
additional challenge because the ancestral (unmutated) recom-
bined sequence itself is sometimes not known with certainty. To
overcome this issue, IGoR explores for each sequence all
possible recombination and hypermutation scenarios, and
calculates the generation probability of each potential ancestral
sequence. Using synthetic data, we checked that the generation
probability of individual sequences is well predicted by this
method (r = 0.97, see Supplementary Fig. 21 and “Methods”

section), and its distribution accurately reproduced (see
Supplementary Fig. 22).

Discussion
By treating alignments of immune receptors to the germline
probabilistically15, IGoR corrects for systematic biases in the
estimate of V(D)J recombination statistics, and predicts recom-
bination scenarios more accurately than previous methods. Its
detailed analysis of recombination scenarios further reveals that,
even with a perfect estimator, the scenario is incorrectly called in
more than 70% of sequences owing to the inherent stochasticity
of the generation process, suggesting caution when interpreting
results from deterministic assignments.

Although we demonstrated its functions on human TRA, TRB
and IGH, IGoR’s flexible structure makes it applicable to any
variable lymphocyte receptor (TCR or immunoglobulin) and
species for which a germline database is available. Unlike hidden
Markov model-based methods (e.g., refs. 10,17), it can include a
wide array of possible dependencies between the recombination
events. It can also be adapted to handle unusual or incomplete
rearrangements (D–J rearrangments, DD2/DD3 rearrangements
in TCR δ chains, hybrid TRA/TRD recombinations, etc.). IGoR
can also help detect unusual rearrangement features by using its
synthetically generated sequences as a control. For instance,
rearrangements with tandem Ds have been reported14, but dis-
tinguishing them from random insertions can be challenging. To
test this, we counted sequences with two ≥10-nt D segments in
the data, and compared it with predictions from IGoR’s synthetic
sequences generated with a single D segment (see “Methods”
section). We found five times more double D assignments in IGH
data than in the control, validating the findings of ref. 14. In
contrast, the same analysis performed on TRB showed no sig-
nificant presence of tandem Ds. Future versions of IGoR should
include the possibility of including multiple D segments . We also
found that IGoR does not find reversed Ds in IGH (Supple-
mentary Fig. 23).

IGoR infers recombination statistics from non-productive
sequences only, but can do it with as few as 5000 sequences.
Once a recombination model is learned for a given locus, IGoR
can generate arbitrary numbers of synthetic sequences with the
same statistics, which could be used as a control in disease-
association studies, by helping to statistically distinguish antigen-
specific clonotypes from public sequences with high convergent
recombination frequencies, and thus dispense with the need of a
healthy control cohort33. This approach is based on the high level
of reproducibility of the receptor generation process across
individuals15, which allows one universal model to be used for
different individuals. Gene usage profiles are the most persona-
lized part of the distribution (in particular the V gene choice,
which is expected to correlate with HLA type), but they con-
tribute relatively little to the overall probability of generation of a
receptor sequence15,16. To control for biases introduced by dif-
ferential gene usages, it is possible to perform population analyses
on specific V–J classes34. Alternatively, one could use IGoR to
infer the V and J gene usage specific to the data set of interest
while keeping the insertion and deletion profiles fixed, as those do
not seem to depend on individuals or protocols.

Our analysis of hypermutations led us to infer distinct
sequence motifs for mutation targets on the V, D, and J segments
of human IGH, in contrast with previous approaches that assume
a universal context model23,24,27. In this work, we focused our
attention on additive models, because non-additive context
models are limited by the number of n-mers for which the
mutability can be estimated reliably. We checked that our results
are not simply a consequence of this additive assumption, by
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showing that they hold when learning a non-additive 5-mer
model instead (Supplementary Fig. 19). Although the non-
additive 5-mer model performed better than the additive model,
it did so only on the few 5-mers for which hypermutation rates
could be estimated reliably, which accounted for less than half of
all 5-mers in the best of cases (Supplementary Fig. 20). In addi-
tion, any given 5-mer context is rare enough that it can often
uniquely identify a gene segment and the position along that
gene, making this better performance a likely result of overfitting.

We also compared our hypermutation rates to those of the
“S5F” model23 used for predicting hypermutation rates in human
IGH. The agreement with our additive 5-mer model was quite
poor (Pearson’s r ranging from 0.2 to 0.37, Supplementary
Fig. 24). Correlation improved when comparing to our non-
additive 5-mer model instead (Pearson’s r from 0.45 to 0.57,
Supplementary Fig. 25), although that improvement was limited
to the subset of well-sampled 5-mers. The predictability of the
S5F model was comparable to that of the additive model (Sup-
plementary Fig. 26). In particular, it predicted J segment mut-
abilities well, despite having been trained on V segments only.
Note that the S5F model was trained on much longer reads and
more diverse data sets than IGoR. Although our analysis of
synthetic sequences showed that motifs can in principle be
accurately learned from such short reads (Supplementary Fig. 15),
applying IGoR to longer reads such as those with which the S5F
model was trained could yield more robust models with better
predictability.

We also found that hypermutations tend to co-localize along
the sequence. Taken together, these results suggest that at least
three effects determine hypermutation hotspots: the immediate
DNA context of the hypermutation, as modeled by our sequence
motifs, position-specific effects mediated by, e.g., chromatin
configuration and histone modifications, and the co-occurence of
nearby mutations. Future improvements of hypermutation target
predictions should account for all three aspects, and rely on a
better quantitative understanding of AID operation31.

Apart from point mutations, the hypermutation process can
also include insertions or deletions (indels)35. We estimate that
5–12% of the memory IGH sequences labeled as unproductive
(i.e., with a frameshift or stop codon in their CDR3) also had an
indel in their V region (Supplementary Fig. 27). IGoR currently
discards about 30% of those sequences, owing to a large gap
penalty that pushes those sequences below the minimum like-
lihood threshold. Although IGoR does not explicitly model indels
in its probabilistic framework, we have checked that they did not
affect our results: increasing the likelihood threshold to get rid of
all sequences with indels does not affect the output of the infer-
ence. Including indels into the IGoR model structure would help
better analyze repertoires that have higher indel rates due to
enhanced hypermutation rates, as for example in untreated HIV
carriers.

IGoR characterizes the elements of the VDJ recombination
process and gives the overall probability of generating a given
TCR or BCR receptor sequence. In order to characterize the
statistics of the process—gene usage, insertion, and deletions
profiles etc.—the model needs to be learned on sequences that
have not undergone any kind of selection. Here, we have used
out-of-frame sequences as an example of such sequences, but
correctly sorted double-negative TCRs or pro-B cells could also
be used when available. Trained in this way on selection-free
sequences, IGoR’s analysis module can then also be applied to
functionally selected sequences to annotate them, and to compute
their generation probability. Since selection only affects the
sequence itself, and not directly its scenario, IGoR should perform
as well on selected as on unselected sequences (see Supplementary
Fig. 12). In addition, the sequence generation probability

computed by IGoR can be used to disambiguate the effects of
generation from selection and identify sequences that have been
selected for functional reasons. IGoR’s model can also be trained
directly on in-frame sequences from a given repertoire, even if
this repertoire has undergone some form of functional selection
(Supplementary Fig. 12). While the model structure may not be
adapted to describe the various selective pressures acting on the
translated amino acid sequence, such a model would still capture
a combination of the sequence generation and selection forces,
and could be useful for estimating the prevalence of particular
sequences in selected repertoires. In general, as with all tools, it is
important to understand the limitations of the data and the
acquisition and pre-processing steps, which influence the inter-
pretation of the results. IGoR can be used with data generated on
any platform, with different experimental preparations, and its
performance will not depend on the experimental technique as
long as the data is trustworthy and correctly preprocessed.

Additionally to reads from repertoire sequencing, in the cur-
rent version IGoR requires a germline database as input. Such
databases are often incomplete as they do not include all possible
polymorphisms across a population. In principle, highly recurrent
“errors” identified by IGoR or other software could be used to
detect polymorphisms and infer missing information from largely
incomplete databases36, extending the applicability of RepSeq
sequencing to less well-characterized species. This approach
would require enough knowledge of the genome to be able to
construct primers and the experiment without knowing the full
genome. It remains an interesting future application of IGoR.

In summary, since certain sequences are more likely to be
generated than others, IGoR provides a baseline for how sur-
prised we should be to see a given sequence in a given repertoire.
It can be used as a tool for distinguishing convergent recombi-
nation from functionally selected sequences33. Finally, it can be
used as a way to generate a control for studying affinity
maturation, and can be combined with more accurate mutation
models.

Methods
Overview of IGoR. IGoR functions according to three modes: VDJ statistics
learning, sequence analysis, and sequence generation. All modes rely on an explicit
stochastic description of the recombination and hypermutation events. In the
analysis and learning modes, each sequence is analyzed by listing all possible
recombination and hypermutation scenarios. The learning mode iterates the
analysis mode by updating the model parameters according to an expectation-
maximization algorithm.

Recombination model. In all three modes, IGoR assumes that receptor sequences
result from a recombination scenario comprising several stochastic elements—
choice of germline segments, deletions, and insertions. These features are stochastic
and share statistical dependencies with each other. For tractability, we assume that
these dependencies can be represented by an acyclic graph, also called Bayesian
network (see Supplementary Note 1 for details). This structure can be configured
within IGoR’s setup files. For the purpose of this study, we used the following
dependency structures for the α chain of T cells (TRA):

Pα
recomb ¼ PðV ; JÞP delV jVð ÞP delJjJð Þ

´ P insVJð Þ QinsVJ
i

PVJ nijni�1ð Þ; ð1Þ

and for the β chain of T cell receptors (TRB) and heavy chain of B cell receptors
(IGH)17:

Pβ=H
recomb ¼ PðV ;D; JÞPðdelVjVÞ

´ PðinsVDÞP delDl; delDrjDð Þ
´ PðinsDJÞP delJjJð Þ

´
QinsVD
i

PVD nijni�1ð Þ QinsDJ
i

PDJ mijmi�1ð Þ;

ð2Þ

where V, D, and J denote the choice of germline genes, delV, delJ the number of
deleted base pairs at the ends of the V and J segments, delDl, delDr the number of
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deletions at the left and right ends of the D segments, insVJ, insVD, insDJ, the
numbers of insertions at each of the insertion sites (between V–J, or V–D and D–J),
and ni, mi the identities of the inserted base pairs. In the case of TRB, gene usage is
further factorized as P(V, D, J) = P(V)P(D, J).

Context-dependent hypermutation model. When processing TCRs or naive
BCRs, a constant error probability is assumed throughout the sequence. When
processing memory BCRs, a context-dependent hypermutation model is assumed:
at each position along the V, D, and J genes, a hypermutation occurs with prob-
ability Pmut, with

Pmut

1� Pmut
¼ μ exp

Xm
i¼�m

ei πið Þ
 !

; ð3Þ

where (π−m, …, πm) is the (2m + 1)-mer sequence context centered around the
location of the mutation. The entries of the position weight matrix (PWM), ei(π),
contribute additively to the motif, and μ is the overall hypermutation rate.

Alignment to germline and scenario listing. In the analysis and learning modes,
each sequence is first aligned to all possible germline genes retrieved from germline
databases (e.g., IMGT), using the Smith–Waterman algorithm37. Only germline
genes with alignment scores higher than an adjustable threshold are considered for
further analysis (see Supplementary Note 5 for details). Possible scenarios are then
listed by picking germline genes with an above-threshold alignment score, and by
choosing a number of base pairs to further delete from the ends of their aligned
parts. The base pairs located between the germline segments trimmed in this
manner are called insertions, and alignment mismatches to the germline are called
errors or hypermutations. When the palindromic end of germline genes is not
entirely deleted, the number of remaining palindromic base pairs are described as
negative deletions. To allow for the possibility that the D segments be inserted in
both directions in BCRs, we added the reverse complements of each D germline
segment to the list of germline templates.

Sequence analysis. For each sequence in the data set, the probability of possible
scenarios is computed using the recombination probability of Eq. (1) or (2),
multiplied by the probability of errors or hypermutations Perr: Pscenario = Precomb ×
Perr. Scenarios are then listed in order of decreasing probability. The sum of
probabilities Precomb × Perr of possible recombination and hypermutation events
gives the probability of observation of that particular sequence read, Pread. The
probability that the pre-mutation sequence was generated by recombination, Pgen,
is defined as the sum of the probabilities Precomb of scenarios leading to that
sequence. Since the pre-mutation sequence is not known with certainty, we cal-
culated an approximate generation probability Pgen as the geometric mean of Pgen
of all possible unmutated sequences consistent with the read, weighted by their
posterior probabilities, Pgen × Perr/Pread. Alternatively, we approximated Pgen by that
of the most likely pre-mutation sequence (see Supplementary Note 4).

To shorten computation times, only plausible scenarios are listed by IGoR.
Scenarios are enumerated by exploring the nodes of a hierarchical decision tree,
where each depth corresponds to the choice of a scenario feature. Branches of the
tree are discarded if their total contribution to the sequence probability is upper
bounded to be below a certain threshold. Details of the procedure are given in the
Supplementary Note 5.

Learning algorithm. The learning algorithm infers the parameters of Eq. (1) or (2),
as well as the error or hypermutation model parameters of Eq. (3), from a large
data sets of unique sequences. It relies on the sequence analysis module, and
follows an expectation-maximization procedure. Starting from an arbitrary (but
reasonable) set of parameters, all sequences in the data set are analyzed as described
above, producing a long list of scenarios associated with each sequence. We define
the pseudo-log-likelihood as the weighted sum of the log-likelihoods of all sce-
narios of all sequences, where the weights are given by the conditional probabilities
of scenarios given the sequence, Precomb/Pread (expectation step). This pseudo-log-
likelihood is then maximized with respect to the parameters of the log-likelihoods
(Eqs. (1), (2), and (3)), while keeping the weights fixed. The parameters are
updated, and the procedure repeated, until convergence. Mathematical derivations
of the update rules and details about expectation-maximization are given in the
Supplementary Note 2.

Validation of model inference. To compare the model parameters θ1 inferred
from synthetic data to the known model parameters θ2 from which these data were
generated, we computed the Kullback–Leibler divergence between two probability
distributions, D θ1 k θ2ð Þ ¼PE P E; θ1ð Þlog P E; θ1ð Þ=P E; θ2ð Þ½ �, where the sum is
over all scenarios E. P(E, θ) is computed using Eq. (1) or (2). This Kullback–Leibler
divergence can be decomposed into additive contributions from each of the sce-
nario features, as detailed in the Supplementary Note 3.

Correlations between hypermutations. To evaluate correlations between the
occurence of hypermutations at close-by positions along the BCR sequence, we

computed the radial disbribution function defined as:

gðrÞ ¼ 1=Nrð Þ
X

V ;ði;jÞ2CV ðrÞ
f ði; j;VÞ=f ði;VÞf ðj;VÞ; ð4Þ

where f(i, V) and f(i, j, V) are the frequencies of hypermutations at position i, and
at both positions i and j, respectively, calculated from individual scenario statistics
weighted by their posterior probabilities. CV(r) is the set of pairs of positions
separated by r that were observed a large enough number of times in gene V, and
Nr ¼

P
V CV rð Þj j.

Usage of tandem D segments. In order to assess the occurrence of double D
insertions during the VDJ recombination event of IGH or TRB, we computed the
frequency with which one could align (with the Smith–Waterman algorithm) two
non-overlapping Ds over at least 10 nucleotides, between the best V and best J
alignments. We then compared the frequency obtained for synthetically generated
sequences, to that obtained for real sequencing data.

Software availability. IGoR along with example data sets and pre-learned human
TRA, TRB, and IGH models is available at https://github.com/qmarcou/IGoR.

Data availability. We applied the learning algorithm on the following publicly
available data sets: TCR α and β chains RNA data sets from ref. 12 are available on
sequence read archive (SRP078490); TCR β chains 60-bp DNA data sets from
ref. 15 are available at http://physics.princeton.edu/ccallan/TCRPaper/data/; naive
and memory BCR heavy chains DNA data sets from refs. 16,38 are available at
http://physics.princeton.edu/ccallan/BCRPaper/data/.
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