
High Throughput Low Latency LDPC Decoding on GPU for SDR Systems

Guohui Wang, Michael Wu, Bei Yin, and Joseph R. Cavallaro
Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005

Email: {wgh, mbw2, by2, cavallar}@rice.edu

Abstract—In this paper, we present a high throughput and low

latency LDPC (low-density parity-check) decoder implementation on

GPUs (graphics processing units). The existing GPU-based LDPC decoder

implementations suffer from low throughput and long latency, which

prevent them from being used in practical SDR (software-defined radio)

systems. To overcome this problem, we present optimization techniques

for a parallel LDPC decoder including algorithm optimization, fully

coalesced memory access, asynchronous data transfer and multi-stream

concurrent kernel execution for modern GPU architectures. Experimental

results demonstrate that the proposed LDPC decoder achieves 316 Mbps

(at 10 iterations) peak throughput on a single GPU. The decoding latency,

which is much lower than that of the state of the art, varies from 0.207 ms

to 1.266 ms for different throughput requirements from 62.5 Mbps

to 304.16 Mbps. When using four GPUs concurrently, we achieve an

aggregate peak throughput of 1.25 Gbps (at 10 iterations).

Index Terms—LDPC codes, software-defined radio, GPU, high

throughput, low latency.

I. INTRODUCTION

Low-Density Parity-Check (LDPC) codes are a class of error-

correction codes which have been widely adopted by emerging stan-

dards for wireless communication and storage applications, thanks

to their near-capacity error-correcting performance. Because LDPC

decoding algorithms are very computationally intensive, researchers

have been exploring GPUs’ parallel architecture and used GPUs as

accelerators to speed up the LDPC decoding [1–9].

Falcão first introduced GPU-based LDPC decoding using

NVIDIA’s Compute Unified Device Architecture (CUDA) [10], and

studied algorithm mapping onto GPU, data packing methods, and

memory coalescing techniques [1, 2]. In [3], compact H matrix repre-

sentations and optimized memory access are studied for Quasi-Cyclic

LDPC codes. The forward-backward algorithm (FBA), optimized

memory access and tag-based parallel early termination algorithm

are discussed in our previous work [4]. Later, researchers studied the

methodology to partition the workload based on availability of GPU’s

resources, so that scalable LDPC decoding can be achieved on differ-

ent GPU architectures [5, 6]. Kang proposed LDPC decoding based

on unbalanced memory coalescing [7]. Recently, Falcão presented a

portable LDPC decoding implementation using OpenCL [8].

Depending on the LDPC code structures and decoding algo-

rithms, the current GPU-based LDPC decoding can normally achieve

50~150 Mbps peak throughput by packing a large number of code-

words. As a side effect, the decoding latency becomes very high due

to the data aggregation. Attracted by the highly parallel architecture

and easy-to-use parallel programming environment provided by mod-

ern GPUs, researchers are attempting to build GPU-based software-

defined radio (SDR) systems. In this scenario, reducing decoding

latency is as important as increasing throughput.

In this paper, we present a new GPU-based implementation of

LDPC decoder targeting at future GPU-based SDR systems. Our

goal is to achieve both high throughput and low latency. To improve

decoding throughput, several optimization strategies are explored, in-

cluding two-min decoding algorithm, fully coalesced memory access,

and data/thread alignment. In addition, we use asynchronous memory

data transfer and multi-stream concurrent kernel execution to reduce

the decoding latency.

...

...

...

...

...

mb

sub-matrices

nb sub-matrices

Z

...

Fig. 1. Matrix H of a QC-LDPC code (Slashes represent 1’s in sub-matrices).

II. LDPC CODES AND DECODING ALGORITHM

A. Quasi-Cyclic LDPC (QC-LDPC) Codes

A binary LDPC code is a linear block code defined by a sparse

M×N parity-check matrix H, which can be represented by a Tanner

graph containing M check nodes (CNs) and N variable nodes (VNs).

Number of nonzero entries in a row (or column) of H is called row

(or column) weight, denoted as ωr (or ωc).

QC-LDPC codes are a class of well-structured codes, whose matrix

H consists of an array of shifted identity matrices with size Z.

QC-LDPC codes have been adopted in many standards such as

IEEE 802.16e WiMAX and 802.11n WiFi, due to their good error-

correction performance and efficient hardware implementation. Fig. 1

shows a typical H of QC-LDPC codes, which contains mb × nb

shifted identity matrices with different shift values. The WiMAX

(2304, 1152) code and WiFi (1944, 972) code have similar structures,

in which mb = 12 and nb = 24. Z = 96 and Z = 81 are defined in

WiMAX (2304, 1152) code and WiFi (1944, 972) code, respectively.

B. Scaled Min-Sum Algorithm for LDPC Decoding

The sum-product algorithm (SPA) algorithm is usually used to de-

code LDPC codes, in which belief messages are passed and processed

between check nodes and variable nodes. The Min-Sum algorithm

(MSA) is a simplification of the SPA based on the processing of a

posteriori probability (APP) log-likelihood ratio (LLR). Let cn denote

the n-th bit of a codeword, and let xn denote the n-th bit of a decoded

codeword. LLR is defined as Ln = log((Pr(cn = 0)/Pr(cn = 1)).
Let Qmn and Rmn denote the messages from VN n to CN m and

the message from CN m to VN n, respectively. The major steps of

the MSA can be summarized as follows.

1) Initialization:

Ln and VN-to-CN (VTC) message Qmn are initialized to channel

input LLRs. The CN-to-VN (CTV) message Rmn is initialized to 0.

2) Check node processing (CNP):

Rnew
mn = α ·

∏

n′∈{Nm\n}

sign(Qold
mn′) · min

n′∈{Nm\n}
| Qold

mn′ |, (1)

where “old” and “new” represent the previous and the current

iterations, respectively. Nm \n denotes the set of all VNs connected

with CN m except VN n. α is a scaling factor to compensate for

performance loss in the MSA (typical value is α = 0.75).

3) Variable node processing (VNP):

Lnew
n = Lold

n +
∑

m

(Rnew
mn −Rold

mn), (2)

Qnew
mn = Lnew

n −Rnew
mn . (3)

4) Tentative decoding:

kn
Typewritten Text
To appear at IEEE Global Conference on Signal and Information Processing (GlobalSIP), December 2013, Austin, Texas, USA

Algorithm 1 TMA for check node processing.

1: sign_prod = 1; /* sign product; 1:postive, -1:negtive */

2: sign_bm = 0; /* bitmap of Q sign; 0:postive, 1:negtive */

3: for i = 0 to ωr − 1 do

4: Load Ln and R from device memory;

5: Q = Ln −R;

6: sq = Q < 0; /* sign of Q; 0:postive, 1:negtive */

7: sign_prod ∗ = (1− sq ∗ 2);
8: sign_bm | = sq << i;

9: if |Q| < min1 then

10: update min1, idx and min2;

11: else if |Q| < min2 then

12: update min2;

13: end if

14: end for

15: for i = 0 to ωr − 1 do

16: sq = 1− 2 ∗ ((sign_bm >> i)&0x01);
17: Rnew = 0.75 · sign_prod · sq · (i ! = idx ? min1 : min2);
18: dR = Rnew −R;

19: Store dR and Rnew into device memory;

20: end for

The decoder makes a hard decision to get the decoded bit xn by

checking the APP value Ln, that is, if Ln < 0 then xn = 1, otherwise

xn = 0. The decoding process terminates when a pre-set number of

iterations is reached, or the decoded bits satisfy the check equations

if early termination is allowed. Otherwise, go back to step 2 and start

a new iteration.

III. IMPROVING THROUGHPUT PERFORMANCE

In this section, we describe parallel LDPC decoding algorithms

and optimization techniques to improve throughput.

A. Parallel LDPC Decoding Algorithm

The message values are represented by 32bit floating-point data

type. Similar to [4], CNP and VNP are mapped onto two separate

parallel kernel functions. Matrix H is represented using compact

formats, which are stored in GPU’s constant memory to allow fast

data broadcasting. To fully utilize the stream multi-processors of

GPU, we use multi-codeword decoding algorithm. NMCW macro-

codewords (MCWs) are defined, each of which contains NCW

codewords, so the total number of codewords decoded in parallel

is Ncodeword = NCW × NMCW (typically NCW ∈ [1, 4], and

NMCW ∈ [1, 100]). To launch the CNP kernel, the grid dimension

is set to (mb, NMCW , 1) and the thread block dimension is set to

(Z,NCW , 1). For the VNP kernel, the grid dimension and the thread

block dimension are (nb, NMCW , 1) and (Z,NCW , 1), respectively.

By adjusting NMCW and NCW , we can easily change the scalable

workload for each kernel. For data storage, since we can use Rmn

and Ln to recover Qmn according to (3), we only store Rmn and Ln

in the device memory and compute Qmn on the fly in the beginning

of CNP. Please refer to [4] for the above implementation details.

To support both the SPA and the MSA algorithms, a forward-

backward algorithm (FBA) is used to implement the CNP kernel

in [4]. In this paper, we employ the two-min algorithm (TMA) to

further reduce the CNP complexity [8, 11]. It is worth mentioning

that FBA and TMA provide the same error-correcting performance

when implementing the MSA. According to (1), we can use four

terms to recover all Rmn values for a check node: the minimum of

|Qmn| (denoted as min1), the second minimum of |Qmn| (denoted

as min2), the index of min1 (denoted as idx), and product of all

signs of Qmn (denoted as sign_prod). Rmn can be determined by

TABLE I
COMPLEXITY COMPARISON FOR CNP USING A “NATIVE”

IMPLEMENTATION, THE FBA AND THE TMA.

“Naive” FBA TMA

CS operations Mωr(ωr − 1) M(3ωr − 2) M(ωr − 1)

Memory accesses Mω
2

r M(3ωr − 2) 2Mωr

Rmn = sign_prod · sign(Qmn) · ((n 6= idx)?min1 : min2). The

TMA is described in Algorithm 1. Since we do not store Qmn values,

the sign array of Qmn needs to be kept for the second recursion. To

save storage space, we use a char type sign_bm to store the bitmap of

the sign array. Bitwise shift and logic operations are needed to update

this bitmap or extract a sign out of the bitmap. The sign_prod can

be updated by using either bitwise logic operations or floating-point

(FP) multiplication. However, since the instruction throughput for FP

multiplication is higher than bitwise logic operations (192 versus 160

operations per clock cycle per multiprocessor) [10], FP multiplication

is chosen to update sign_prod value efficiently.

Table I compares the complexity of a naive implementation of

(1), the FBA and the TMA. Since compare-select (CS) is the core

operation in the Min-Sum algorithm, we use the number of CS

operations to indicate algorithmic complexity. Table I indicates that

the TMA has lower complexity compared to the other two algorithms.

It is worth mentioning that Algorithm 1 is targeted at decoding more

challenging irregular LDPC codes (ωc is not constant). If we decode

regular LDPC codes, the loops in Algorithm 1 can be fully unrolled

to avoid branching operations to further increase the throughput.

B. Memory Access Optimization

Accesses to global memory incur long latency of several hundred

clock cycles, therefore, memory access optimization is critical for

throughput performance. In our implementation, to minimize the data

transfer on the PCIe bus, we only transfer the initial LLR values

from host to device memory and the final hard decision values from

device to host memory. All the other variables such as Rmn and

dRmn (storing (Rnew
mn −Rold

mn) values needed by (2) in VNP) are only

accessed by the kernel functions without being transferred between

host and device. To speed up data transfers between host and device,

the host memories are allocated as page-locked (or pinned) memories.

The page-locked memory enables a direct memory access (DMA) on

the GPU to request transfers to and from the host memory without

the involvement of the CPU, providing higher memory bandwidth

compared to the pageable host memory [10]. Profiling results indicate

that throughput improves about 15% by using page-locked memory.

GPUs are able to coalesce global memory requests from threads

within a warp into one single memory transaction, if all threads access

128-byte aligned memory segment [10]. Falcão proposed to coalesce

memory reading via translation arrays, but writing to memory is still

uncoalesced [2]. In [7], reading/writing memory coalescing is used

in VTC messages, but CTV message accesses are still not coalesced.

In this section, we describe a fully coalesced memory access scheme

which coalesces memory accesses for both reading and writing in

both CNP and VNP kernels.

In our implementation, accesses to Rmn (and dRmn) in CNP

kernels and memory accesses to APP values Ln are naturally

coalesced, as is shown in Fig. 2-(a). However, due to the random

shift values, memory accesses to Ln in CNP and memory accesses to

Rmn (and dRmn) in VNP are misaligned. For instance, in Fig. 2-(b),

three warps access misaligned Rmn data, and warp 2 even accesses

nonconsecutive data, so multiple memory transactions are generated

per data request. As is shown in Fig. 2-(c), we use fast shared memory

as cache to help coalesce memory accesses (size of shared memory:

ωr ·NCW ·Z ·sizeof(float)). We first load data into shared memory in

__syncthreads()

(c) Optimized Variable Node Processing (VNP)

...
...

Thread 1
Thread 96

Thread 43

...

...warp 1

warp 2

warp 3

...
...

...

Rmn R Cache

Thread 44

Rmn

Z=96

(b) Variable Node Processing (VNP)

...
...warp 1

warp 2

warp 3

Thread 1

warp 2

Thread 43

. . .

. . .

Thread 44...
...

Rmn

warp 1

warp 2

warp 3

(a) Check Node Processing (CNP)

Thread 1

Thread 96

shift value=43

Thread 96

Coalesced mem
accesses

Fast shared mem
accesses

Uncoalesced mem accessesCoalesced mem accesses

Fig. 2. Optimized coalesced memory access. A shifted identity matrix from
WiMAX code (Z = 96) with shift value 43 is shown. Combining CNP from
(a) and VNP from (c), we achieve fully coalesced memory accesses.

a coalesced way using parallel threads. After a barrier synchronization

is performed, the kernels can access data from the shared memory

with very low latency. Finally, the kernels write cached data back to

device memory in a coalesced way. Profiling results from NVIDIA

development tools indicate the proposed method effectively elimi-

nates uncoalesced memory accesses. Since all the device memory

accesses become coalesced which leads to a reduction in the number

of global memory transactions, the decoding throughput is increased.

C. Data and Thread Alignment for Irregular Block Size

Data alignment is required for coalesced memory access, so it has

a big impact on the memory access performance. For the WiMAX

(2304, 1152) code, the shifted identity matrix has a size of Z = 96,

which is a multiple of warp size (32). Therefore, the data alignment

can be easily achieved. However, since Z = 81 is defined in the

WiFi (1944, 972) code, with straightforward data storing order and

thread block assignment, few data are aligned to 128-byte addresses.

Therefore, we optimize LDPC decoding for irregular block sizes

(such as WiFi codes) by packing dummy threads, which means that

the thread block dimension becomes ((Z + 31)/32× 32, NCW , 1).
Similarly, for data storage, dummy spaces are reserved to make sure

all memory accesses are 128-byte aligned. Although we waste some

thread resources and a few memory slots, the aligned thread and

data enable efficient memory accesses, and therefore, improves the

throughput by approximately 20%.

IV. REDUCING DECODING LATENCY

All the aforementioned optimization strategies applied to the

decoding kernels will not only improve the throughput, but also help

reduce the decoding latency. In this section, we present optimization

techniques to reduce the LDPC decoding latency.

A. Asynchronous Memory Transfer

The current generation NVIDIA GPU contains two memory copy

engines and one compute engine. Therefore, we are able to hide most

of the time required to transfer data between the host and device by

overlapping kernel execution with asynchronous memory copy. Fig. 3

shows how the memory transfers overlap with CNP/VNP kernels.

According to our experiments, this technique improves performance

by 17% for a typical kernel configuration (NCW = 2, NMCW = 40).

Compute
engine

H2D
engine

D2H
engine

H2D

CNP VNP

First iteration

CNP VNP

Last iteration

. . .

D2H

CNP VNP

First iteration

CNP VNP

Last iteration

. . .

H2D

D2H

. . .

H2D

2
nd

 frame1
st

 frame 3
rd

 frame

Fig. 3. Asynchronous data transfer. H2D: host to device data transfer. D2H:
device to host data transfer.

Stream 2

Stream 1

Stream Ns

. . .

H2D CNP VNP . . . CNP VNP D2H

H2D CNP VNP . . . CNP VNP D2H

H2D CNP VNP . . . CNP VNP D2H

H2D CNP VNP . . . CNP VNP D2HStream 3
. . .

...

Decoding latency

Fig. 4. Multi-stream LDPC decoding.

B. Multi-stream Scheduling for Concurrent Kernels

Computation kernels and memory operations in multiple streams

can execute concurrently if there is no dependency between streams.

Since the Kepler GK110 architecture, NVIDIA GPUs support up to

32 concurrent streams. In addition, a new feature called Hyper-Q is

provided to remove false dependencies between multiple streams to

fully allow concurrent kernel overlapping [10]. We take advantage of

these new features and further reduce the LDPC decoding latency.

Algorithm 2 Depth-first multi-stream scheduling.

1: for i = 0 to NStream − 1 do

2: memcpyAsync(streams[i], host→device);

3: for j = 0 to Niter − 1 do

4: CNP_kernel(streams[i]);

5: VNP_kernel(streams[i]);

6: end for

7: memcpyAsync(streams[i]), device→host);

8: end for

9: for i = 0 to NStream − 1 do

10: streamSynchronize(streams[i]);

11: end for

In the literature, high throughput is usually achieved via multi-

codeword decoding in order to increase the occupancy ratio of parallel

cores [4, 5, 7–9]. One drawback of multi-codeword decoding is long

latency. To overcome this drawback, we partition codewords into in-

dependent workloads and distribute them across multiple streams, so

that each stream only decodes a small number of codewords. Multi-

stream decoding not only keeps high occupancy thanks to concurrent

kernel execution, but also reduces decoding latency. Breadth-first and

depth-first GPU command issuing orders are two typical ways to

schedule multiple streams. Our experimental results indicate that both

issuing orders result in similar decoding throughput, but the depth-

first scheduling listed in Algorithm 2 leads to much lower latency.

Therefore, we choose the depth-first scheduling algorithm.

Fig. 4 demonstrates a timeline for the multi-stream LDPC de-

coding. The degree of kernel overlapping depends on the kernel

configurations (such as parameters NCW and NMCW). In a practical

SDR system, we can use multiple CPU threads with each managing

one GPU stream, so that all the GPU streams can run independently.

The decoding latency is determined by the latency of each stream.

V. EXPERIMENTAL RESULTS

The experimental platform consists of an Intel i7-3930K six-core

3.2GHz CPU and four NVIDIA GTX TITAN graphics cards. The

GTX TITAN has a Kepler GPU containing 2688 CUDA cores running

at 837MHz, and 6GB GDDR5 memory. Graphics cards are connected

to the system via PCIe x16 interfaces. CUDA toolkit v5.5 Linux 64bit

TABLE II
ACHIEVABLE THROUGHPUT. NS = 16, NCW = 2, NMCW = 40.

Code # of iterations Throughput (Mbps)

WiMAX 5 621.38

(2304, 1152) 10 316.07

15 204.88

WiFi 5 490.01

(1944, 972) 10 236.70

15 154.30

TABLE III
LOWEST ACHIEVABLE LATENCY FOR DIFFERENT THROUGHPUT GOALS

(Niter = 10). WIMAX (2304, 1152) CODE. (T: THROUGHPUT)

Tgoal(Mbps) NS NCW NMCW Latency (ms) T (Mbps)

50 1 2 3 0.207 62.50

100 1 2 6 0.236 110.25

150 8 1 10 0.273 155.43

200 16 2 7 0.335 201.39

250 16 2 10 0.426 253.36

300 32 2 25 1.266 304.16

version is used. NSight v3.5 is used for profiling. In the experiments,

two typical codes from the 802.16e WiMAX and 802.11n WiFi

standards are employed. The processing time is measured using the

CPU timer, so the kernel processing time plus the overhead including

CUDA runtime management and memory copy time are counted.

Table II shows the achievable throughput when using one GPU.

NS denotes the number of concurrent streams. 16 concurrent streams

are used, and experiments show that using 32 streams provides

similar throughput performance. We achieve the peak throughput of

316.07 Mbps (@10 iters) when decoding the WiMAX code. We also

notice that there is still a gap in throughput results between WiMAX

codes and WiFi codes, although specific optimizations have been

performed for WiFi LDPC codes as discussed in Section III-C. The

reason is two fold. Firstly, by aligning the size of a thread block to

a multiple of the warp size, 15.6% threads (15 out of 96) are idle;

while for the WiMAX codes, all threads perform useful computations.

Secondly, the H matrix of the WiFi LDPC code has 13.16% more

edges than the WiMAX codes, which requires more computations.

Table III shows the minimum workload per stream (so as to

get the lowest latency) needed to achieve different throughput

goals. The workload can be configured by changing parameters

(NS ,NCW ,NMCW) to meet different latency/throughput require-

ments. We sweep through all combinations of (NS ,NCW ,NMCW)

for NS ∈ [1, 32], NCW ∈ [1, 5] and NMCW ∈ [1, 150]. We

searched the whole design space and found the configurations that

meet the Tgoal Mbps performance with the lowest latency, which

are reported in Table III. For example, to achieve throughput higher

than 50 Mbps, one stream (NS = 1) with NCW = 2 and

NMCW = 3 is configured. With this configuration, we can actually

achieve 62.5 Mbps throughput while the latency is only 0.207 ms.

As is shown in Table IV, this work achieves much lower decoding

latency than other GPU-based LDPC decoders.

In this paper, we focus on improving the raw performance of the

computation kernels. Please note that we can still apply the tag-based

parallel early termination algorithm and achieve the corresponding

speedup as we reported in [4].

The above experiments are performed on a single GPU. We

have successfully further pushed the throughput limit by using all

four GPUs in our test platform. In order to distribute the decoding

workload evenly across four GPUs, we create four independent CPU

threads using OpenMP APIs, with each CPU thread managing a GPU,

as shown in Fig. 5. As a result, an aggregate peak throughput of

1.25 Gbps (at 10 iterations) is achieved for decoding the WiMAX

(2304, 1152) LDPC code. The workload configuration for each CPU

thread is NS = 16, NCW = 2, and NMCW = 40.

TABLE IV
DECODING LATENCY COMPARISON WITH OTHER WORKS. (NC : NUMBER

OF CODEWORDS; T : THROUGHPUT; L: LATENCY)

LDPC code GPU Niter NC T (Mbps) L (ms)

[2] (1024, 512) 8800GTX 10 16 14.6 1.12

[3] (2304, 1152) GTX280 10 1 1.28 1.8

[4, 6] (2304, 1152) GTX470 10 300 52.15 13.25

[5] (2304, 1152) 9800GTX 5 256 160 3.69

[7] (2048, 1723) GTX480 10 N/A 24 N/A

[8] (8000,4000) HD5870 10 500 209 19.13

[9] (64800, 32400) M2050 17.42 16 55 18.85

(2304, 1152) 10

6 62.50 0.207

This GTX 12 110.25 0.236

work TITAN 14 201.39 0.335

50 304.16 1.266

GPU 1

Main

thread

Thread 1

Thread 2

Thread 3

Thread 4

GPU 2

GPU 3

GPU 4CPU P
C

Ie
 s

w
it

c
h

Fig. 5. Multi-GPU LDPC decoding managed by multiple CPU threads.

VI. CONCLUSION

In this paper, we present our effort to improve LDPC decoding on

GPU to achieve both high throughput and low latency for potential

SDR systems. Several optimization strategies are described to im-

prove throughput performance. Moreover, asynchronous data transfer

and multi-stream concurrent kernel execution are employed to reduce

decoding latency. Experimental results show that the proposed LDPC

decoder achieves 316 Mbps peak throughput for 10 iterations. We

also achieve low latency varying from 0.207 ms to 1.266 ms for

different throughput requirements from 62.5 Mbps to 304.16 Mbps.

An aggregate peak throughput of 1.25 Gbps (at 10 iterations) is

achieved by distributing workload to four concurrent GPUs.

ACKNOWLEDGMENT

This work was supported in part by Renesas Mobile, Texas

Instruments, Xilinx, and by the US National Science Foundation

under grants CNS-1265332, ECCS-1232274, and EECS-0925942.

REFERENCES

[1] G. Falcão, V. Silva, and L. Sousa, “How GPUs can outperform ASICs for fast

LDPC decoding,” in Proc. ACM Int. conf. Supercomputing, 2009, pp. 390–399.

[2] G. Falcão, L. Sousa, and V. Silva, “Massively LDPC decoding on multicore

architectures,” IEEE Trans. Parallel Distrib. Syst., vol. 22, pp. 309–322, 2011.

[3] H. Ji, J. Cho, and W. Sung, “Memory access optimized implementation

of cyclic and Quasi-Cyclic LDPC codes on a GPGPU,” Springer J. Signal

Process. Syst., vol. 64, no. 1, pp. 149–159, 2011.

[4] G. Wang, M. Wu, Y. Sun, and J. R. Cavallaro, “A massively parallel imple-

mentation of QC-LDPC decoder on GPU,” in Proc. IEEE Symp. Application

Specific Processors (SASP), 2011, pp. 82–85.

[5] K. K. Abburi, “A scalable LDPC decoder on GPU,” in Proc. IEEE Int. Conf.

VLSI Design (VLSID), 2011, pp. 183–188.

[6] G. Wang, M. Wu, Y. Sun, and J. R. Cavallaro, “GPU accelerated scalable

parallel decoding of LDPC codes,” in Proc. IEEE Asilomar Conf. Signals,

Systems and Computers, 2011, pp. 2053–2057.

[7] S. Kang and J. Moon, “Parallel LDPC decoder implementation on GPU based

on unbalanced memory coalescing,” in Proc. IEEE Int. Conf. Commun. (ICC),

2012, pp. 3692–3697.

[8] G. Falcão, V. Silva, L. Sousa, and J. Andrade, “Portable LDPC Decoding on

Multicores Using OpenCL,” IEEE Signal Process. Mag., vol. 29, no. 4, pp.

81–109, 2012.

[9] G. Falcão, J. Andrade, V. Silva, S. Yamagiwa, and L. Sousa, “Stressing the

BER simulation of LDPC codes in the error floor region using GPU clusters,”

in Proc. Int. Symp. Wireless Commun. Syst. (ISWCS), August 2013.

[10] NVIDIA CUDA C programming guide v5.5. [Online]. Available: http:

//docs.nvidia.com/cuda/

[11] K. Zhang, X. Huang, and Z. Wang, “High-throughput layered decoder im-

plementation for quasi-cyclic LDPC codes,” IEEE J. Sel. Areas in Commun.,

vol. 27, no. 6, pp. 985–994, 2009.

http://docs.nvidia.com/cuda/
http://docs.nvidia.com/cuda/

	Introduction
	LDPC Codes and Decoding Algorithm
	Quasi-Cyclic LDPC (QC-LDPC) Codes
	Scaled Min-Sum Algorithm for LDPC Decoding

	Improving Throughput Performance
	Parallel LDPC Decoding Algorithm
	Memory Access Optimization
	Data and Thread Alignment for Irregular Block Size

	Reducing Decoding Latency
	Asynchronous Memory Transfer
	Multi-stream Scheduling for Concurrent Kernels

	Experimental Results
	Conclusion

