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Abstract

Introduction: Mammographic density (MD) is a strong, independent risk factor for breast cancer, but measuring

MD is time consuming and reader dependent. Objective MD measurement in a high-throughput fashion would

enable its wider use as a biomarker for breast cancer. We use a public domain image-processing software for the

fully automated analysis of MD and penalized regression to construct a measure that mimics a well-established

semiautomated measure (Cumulus). We also describe measures that incorporate additional features of

mammographic images for improving the risk associations of MD and breast cancer risk.

Methods: We randomly partitioned our dataset into a training set for model building (733 cases, 748 controls) and

a test set for model assessment (765 cases, 747 controls). The Pearson product-moment correlation coefficient (r)

was used to compare the MD measurements by Cumulus and our automated measure, which mimics Cumulus.

The likelihood ratio test was used to validate the performance of logistic regression models for breast cancer risk,

which included our measure capturing additional information in mammographic images.

Results: We observed a high correlation between the Cumulus measure and our measure mimicking Cumulus (r =

0.884; 95% CI, 0.872 to 0.894) in an external test set. Adding a variable, which includes extra information to

percentage density, significantly improved the fit of the logistic regression model of breast cancer risk (P = 0.0002).

Conclusions: Our results demonstrate the potential to facilitate the integration of mammographic density

measurements into large-scale research studies and subsequently into clinical practice.

Introduction
Extensive mammographic density (MD) is a strong risk

factor for breast cancer. MD refers to the different radiolo-

gic patterns of dense and nondense tissue in the breast.

Radiologically dense tissue (for example, connective and

epithelial tissue) appears light on a mammogram [1]. Non-

dense tissue is made up mostly of fat, is radiologically

lucent, and appears dark on a mammogram. Women with

dense tissue in more than 75% of the breast have been

consistently reported to be at a four- to sixfold higher risk

of developing the disease than are women of similar age

with little or no dense tissue [2-4]. A substantial fraction

of breast cancers can be attributed to this risk factor. One

third of all breast cancers have been found to be diagnosed

in women with more than 50% density [5].

MD can be evaluated and reported by radiologists on

the basis of visual analysis of mammograms. Examples of

quantitative and qualitative classification methods based

on the visual characterization of mammographic parench-

ymal patterns include BIRADS, Wolfe [6], and Tabar [7].

Computer-assisted methods are also used to assess MD.

The interactive thresholding technique introduced by

Byng et al. [8], Cumulus, has been validated as being pre-

dictive of breast cancer risk in many large epidemiologic

studies, and has thus gained acceptance as the gold stan-

dard for acquiring quantitative MD reads. Screen-film

mammograms must be digitized before using Cumulus.

An operator selects the threshold grey levels that identify
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specific regions of the breast. Two thresholds are chosen

by the operator: one to outline the edge of the breast, and

the other to distinguish dense breast tissue from nondense

breast tissue. Percentage density (PD) is calculated by an

algorithm that identifies the number of pixels in each

category.

MD is not yet an integral part of predicting the risk of

breast cancer at screening and has limited influence in the

clinical decision-making process for breast cancer-preven-

tive interventions. A key challenge in the incorporation of

MD data in research studies or clinical practice is that the

assessment of MD by using the described methods, when

performed on a large scale, is heavily restricted because of

time and cost. The second challenge is that these methods

are to some extent dependent on a subjective interpreta-

tion by the reader, some more so than others. A robust

automatic method that measures MD, developed to work

in a high-throughput setting, would thus be of great bene-

fit to both single assessments of MD and longitudinal stu-

dies assessing risk of breast cancer with respect to MD

change in large-scale screening programs.

We present a fully automated method of assessing MD

quantitatively from digitized analogous film mammo-

grams by using ImageJ [9], a public domain, Java-based

image-processing program developed at the National

Institutes of Health. This method was developed with

two intentions. The first intention was to duplicate find-

ings of the established semiautomated method (Cumu-

lus), and the second, to explore the value of additional

features of mammographic images for explaining breast

cancer risk. We estimated breast cancer risks associated

with MD measurements acquired by using both Cumulus

and our method mimicking Cumulus, and compared the

discriminatory power between the two measurements in

a large population-based case-control study consisting of

1,498 breast cancer cases and 1,495 healthy controls.

Coupled with further modifications designed to improve

the risk associations of mammographic density and

breast cancer risk, we also illustrated that mammograms

hold information over and above PD that can improve

prediction of breast cancer outcome.

Materials and methods
Main study population

This study is an extension of a breast cancer case-control

study carried out among Swedish residents born in Swe-

den and aged 50 to 74 years, between October 1, 1993,

and March 31, 1995 [10,11]. Information on breast cancer

risk factors was collected from self-reported question-

naires. The study was approved by the ethical review

board at Karolinska Institutet, and by the five ethical

review boards in other regions in Sweden. All participants

provided informed consent.

Postmenopausal women with incident primary inva-

sive breast cancer were identified via the six Swedish

Regional Cancer Registries. The 3,979 women with a

diagnosis of invasive breast cancer were identified, and

84% (3,345) of these women participated in the study.

The primary reasons for nonparticipation were patient’s

refusal or doctor’s refusal because of the patient’s poor

health.

Controls were frequency matched by the expected age

distribution (5-year intervals) among cases and identified

through the Swedish National Population Register hold-

ing data on national registration number, name, address,

and place of birth of all Swedish residents. The response

rate among controls was 82% (3,455 of 4,188).

Retrieval and digitization of mammograms

We sought to retrieve all mammograms for the eligible

women in the initial cohort of the main study popula-

tion by using the Swedish national registration numbers

(described in Ludvigsson et al. [12]). We could thereby

obtain addresses for participants from 1975 to 1995

through the civil registry. During 2006 through 2008, we

visited all mammography screening units and radiology

departments conducting screening mammography

throughout Sweden. We collected all available mammo-

grams for the study participants, up to and including

1995 for controls and until date of diagnosis for cases,

and obtained 29,077 film mammograms for 3,859 study

subjects.

Film mammograms of the mediolateral oblique (MLO)

view were digitized by using an Array 2905HD Laser

Film Digitizer, which covers a range of 0 to 4.7 optical

densities. The density resolution was set at 12-bit

dynamic range. For participants in this study with multi-

ple mammograms, the most recent mammogram was

used; for cases, this was the mammogram before diagno-

sis. The mammogram contralateral to the tumor was

chosen for cases. If this image was missing, the examina-

tion before the most recent examination was selected.

For controls, we randomized side and used the same pro-

cedure as for cases. Women with bilateral breast cancer

were excluded.

Cases lacking information on tumor side or lacking

films of the contralateral breast were excluded, as were

subjects with previous reduction mammoplasty, and

subjects who only had mammograms of very poor qual-

ity. There were 3,593 participants with eligible film

mammograms (1,784 cases and 1,809 controls).

Assessment of mammographic density

Current gold standard method: Cumulus

Mammographic density was measured by using the

Cumulus software, a computer-assisted technique
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developed at the University of Toronto, Ontario, Canada

[8]. For each image, a trained observer (LE) set the appro-

priate gray-scale threshold levels defining the edge of the

breast and distinguishing dense from nondense tissue. The

software calculated the total number of pixels within the

entire region of interest and within the region identified as

dense. The percentage density was then calculated from

these values (dense area/total breast area). The images

measured in this study were part of a larger study in

which approximately 4,000 images were measured. Images

for breast cancer cases were measured together with

almost the same number of images for healthy women,

and the reader was blinded to case-control status. A ran-

dom 10% of the images were included as replicates to

assess the intraobserver reliability, which was high, with an

R2-squared of 0.95. In addition, LE regularly calibrated

herself against a training set of mammograms measured

by Professor Boyd, an expert on, and one of the developers

of, Cumulus [3].

Novel automated thresholding method

To process automatically the digitized film mammo-

grams and to measure PD, we used ImageJ [9], a public

domain Java image-processing program.

Preprocessing to remove patient identification tags and

standardize images

Patient-identification tags were first automatically

removed (cropped) by ImageJ from the images. Further

preprocessing of the images was required to extract the

breast region from the rest of the image. Background of

the image was subtracted by superimposing a “mask”

derived by applying grayscale erosion and gaussian Blur

filters, followed by implementing the Kittler and Illing-

worth Minimum Error thresholding [13], implemented

in the Auto Threshold (v1.10) ImageJ plugin [14].

Although preprocessing was satisfactory for most

images, traces of unremoved tags were present in a

small subset of mammograms. As the general patient-

identification tag placement of film mammograms dif-

fered between centers, manual inspection of the prepro-

cessed images was carried out to ensure proper removal

of artefacts. Wherever possible, remaining artefacts were

manually corrected. In total, 2,993 mammograms corre-

sponding to 1,498 cases and 1,495 controls were

retained for further analysis.

Automated image thresholding

Having identified the breast region of the image, we

further applied automated thresholding methods to

separate the areas of “dense” breast tissue (“regions of

interest”) from the remaining area of the breast. In total,

15 thresholding methods, which vary according to the

type of pixel-intensity information they exploit (such as

histogram shape, clustering, entropy) were applied to

the preprocessed image, and the same preprocessed

image after subtracting background by using a rolling-

ball algorithm and further filtering/de-noising of the

image. Areas corresponding to “dense” tissues were sub-

divided into smaller objects by using the watershed algo-

rithm. Figure 1 shows an example of a digitized

mammogram before and after thresholding and applica-

tion of the watershed algorithm (one image, one particu-

lar thresholding algorithm, Moments), and the same

image thresholded by using Cumulus. A more elaborate

example illustrating images thresholded by all different

algorithms is provided in Additional file 1, Figure S1.

The Analyze command in ImageJ was then used to

count and measure objects in the thresholded images

(for groups of objects divided into four size categories: 5

+ in the case of the former preprocessed images; 1 to

100, 101 to 1,000, and 1,001+ pixels, in the case of the

latter images that underwent background subtraction

and watershedding). A variety of measurements were

obtained for the breast as a whole, as well as for the

“objects” of dense tissue, under each thresholding

method (details given in Table 1). We also used the

Analyze command in ImageJ, after applying the “find

edges” filter in ImageJ to identify sharp changes in

intensity, and binary thinning to find the centerlines of

objects in the image (in place of thresholding). For each

image, 1,008 measurements were obtained as output

from ImageJ. An example of the output file from ImageJ

is shown in Figure 2.

Not all of the measurements/variables produced by

ImageJ were informative (for example, a large number

of images lacked objects of a particular size, under parti-

cular thresholding procedures). Analysis was limited to

772 variables with less than 200 NaN ("not a number”)

values. All remaining NaN values in the 772 variables

were converted to zero in subsequent analyses.

Figure 1 Examples of processed images. An example of a

digitized mammogram before and after thresholding and

application of the watershed algorithm (one image, one particular

thresholding algorithm, Moments), and the same image thresholded

by using Cumulus.
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Statistical analysis

Descriptive variables

The two-sample Student t test was used to compare the

means of continuous variables. Because of the nonnor-

mal distributions of MD measures, we used the non-

parametric Wilcoxon test to compare the distribution of

percentage density and absolute dense area. Distribu-

tions of categoric variables were compared by using the

c
2 test. All tests were two-sided.

Machine-learning method to estimate MD measures

To build and assess a PD estimation model, we randomly

partitioned the dataset, consisting of information on

2,993 women, into two parts: a training set for model

building (733 breast cancer cases and 748 healthy con-

trols), and a test set for model assessment (765 cases and

747 controls).

Principal component analysis was used to carry out fea-

ture selection. Instead of directly using the 772 noninde-

pendent “raw” (ImageJ) variables, for building a model of

PD, we substituted, in their place, 123 principal compo-

nents (PCs). The weights (of the raw variables) used by

each PC were calculated from a principal component ana-

lysis (PCA) of the training set. These 123 PCs captured

90% of the total variance of the original 772 variables (in

the training set). The Scree plot, showing the fraction of

total variance, as explained or represented by each PC, is

displayed in Additional file 2, Figure S2. Weights for each

of the original variables (loadings) for each PC are listed in

Additional file 3, Table S1.

Our first aim was to select a model for Cumulus PD,

as a function of the PCs. As other researchers have

done [15], we worked with the square-root transforma-

tion of PD to ensure approximate normality. Model

selection was based on penalized estimation of a linear

model by using the lasso (l1) penalty [16,17]. The

method minimizes the residual sum of squares subject

to a constraint on the sum of the absolute values of the

regression coefficients. The purpose of this shrinkage is

to prevent overfitting the data because of either colli-

nearity of the covariates or high-dimensionality. The

penalized package in R [18] was used to find optimal

values of the shrinkage tuning parameter (lambda) by

using repeated tenfold likelihood cross-validation. The

data in the training set was repeatedly broken into 10

sets of n/10 women. During each run, nine subsets of

data were used to fit the models, and the remaining

“validation” set was used to compute the likelihood

value for model selection. Tenfold cross-validation was

repeated 100 times to obtain a mean lambda for the

model. To obtain the final model for PD, the linear

Table 1 Types of measurements made

Area measurements

Count Numbers of particles

TotalArea Area of selection in square pixels

AverageSize Average size of each particle (TotalArea divided by count)

Area Fraction The percentage of pixels in the image or selection that have been thresholded

Intensity measurements

Mean gray
value

Average gray value within the selection. This is the sum of the gray values of all the pixels in the selection divided by the number
of pixels

Modal gray
value

Most frequently occurring gray value within the selection. Corresponds to the highest peak in the histogram

Median The median value of the pixels in the image or selection

Shape descriptors

Circularity 4π (area/perimeter2). A value of 1.0 indicates a perfect circle. As the value approaches 0.0, it indicates an increasingly elongated
polygon. Values may not be valid for very small particles

Solidity Area/convex area

Others

Integrated
density

The sum of the values of the pixels in the image or selection. This is equivalent to the product of Area and Mean Gray Value

Skewness The third-order moment about the mean

Kurtosis The fourth-order moment about the mean

Perimeter The length of the outside boundary of the selection

Fit ellipse Fit an ellipse to the selection. Uses the headings Major, Minor, and Angle. Major and Minor are the primary and secondary axis of
the best-fitting ellipse. Angle is the angle between the primary axis and a line parallel to the × axis of the image

The Analyze command in ImageJ counts and measures objects in thresholded images. It works by scanning the selection until it finds the edge of an object. It

then outlines the object by using the wand tool, measures it by using the Measure command, fills it to make it invisible, and then resumes scanning until it

reaches the end of the image or selection.
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model using the lasso penalty, based on the optimal

value of lambda, was fitted to the full training set. Our

“ImageJ PD” measure is derived by summing the pro-

ducts of the regression coefficients of this model with

the corresponding PC values of that image (and also

including the intercept). The test set was then used for

“external” assessment of the predictive accuracy of the

“trained” ImageJ PD measure.

The same procedure may be applied to get a trained

estimate of other MD measures by ImageJ, such as total

breast area, absolute dense area, or absolute nondense

area.

Comparison of MD measured by Cumulus and ImageJ

To test for an association between Cumulus PD and

ImageJ PD, the Pearson product-moment correlation

coefficient (r) was estimated. The Bland-Altman plot

Figure 2 ImageJ output. An example of the output file from ImageJ, which includes 1,008 variables.
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was used to assess the agreement between the two

methods of measurement.

Percentage density is often divided into six categories

[3], but because of small numbers of subjects in some

categories of mammographic density, we created a new

low category (<5%) and combined the upper three cate-

gories (25% to 50%, 50% to 75%, and >75%). The odds

ratios (ORs) and corresponding 95% confidence intervals

(CIs) for risk of breast cancer associated with different

categories of mammographic density were estimated by

using unconditional logistic regression.

The power to discriminate breast cancer case-control

status by using estimates of PD (ImageJ and Cumulus)

was evaluated by calculating the area under the curve

(AUC) of the receiver operating characteristic (ROC)

curve. The pROC package in R was used to calculate

AUCs along with their standard errors and 95% confi-

dence intervals. The DeLong test [19] was used to com-

pare the areas under two different ROC curves.

Evaluation of extra information from mammograms that is

associated with breast cancer over and beyond PD

In addition to using ImageJ to mimic the Cumulus mea-

sure of PD, we performed a systematic evaluation of the

information in the ImageJ variables in terms of their ability

to predict breast cancer risk. We fitted logistic regression

models with the lasso penalty in the training set (consist-

ing of 733 cases and 748 controls) by using a similar pro-

cedure to that described earlier for the linear model for

PD. The same 123 PCs were included in our analysis, and

repeated 10-fold cross validation was again used to obtain

the optimal value of the tuning parameter. We “trained”

three models:

1. 123 PCs as covariates; all regression coefficients

included in the penalty term.

2. PD + 123 PCs as covariates; coefficients for the

123 PCs included in the penalty term, but not the

coefficient for PD.

3. PD + 123 PCs as covariates; all coefficients (123

PCs + PD) included in the penalty.

Based on these three models, we formed three “scores”

for each image, derived by summing the products of the

nonzero regression coefficients of the PCs with the corre-

sponding PC values of that image. We refer to these scores

as score 1, score 2, and score 3 (according to these three

models). The test set was then used for “external” assess-

ment of the predictive ability of the “trained” ImageJ scores;

we fitted logistic regression models with breast cancer sta-

tus as outcome variable, with different combinations of the

scores and Cumulus or ImageJ PD as covariates.

R (version 2.13.0) [20] was used for data management,

statistical analyses and graphics. All reported tests are

two-sided.

Results
A summary of descriptive statistics of breast cancer risk

factors for the subjects included in this study, presented

by breast cancer case status, is shown in Table 2. Signifi-

cant univariate associations with breast cancer status, in

the same direction as previously reported in the literature,

were seen for percentage density (P < 0.001), absolute

dense area (P < 0.001), age at diagnosis or reference date

(P < 0.001), age at mammogram (P < 0.001), age at meno-

pause (P = 0.001), alcohol consumption (P = 0.008), par-

ity/age at first birth (P < 0.001), hormone-replacement

therapy (P < 0.001), family history of breast cancer (P <

0.001), and benign breast disease (P < 0.001). A near-sig-

nificant association was observed for age at menarche (P =

0.084). Body mass index (BMI) (P = 0.801) was not signifi-

cantly associated with breast cancer case status in this sub-

set of the main population case-control study.

Descriptive statistics for the study population accord-

ing to training and test sets are given in Additional file

4, Table S2. For all variables examined, we observed no

significant difference in summary statistic between the

two data sets.

We externally evaluated the performance of our ImageJ

PD measure, derived by using the training set, by asses-

sing the correlation between Cumulus PD and ImageJ PD

in the test set. We observed a high correlation (r = 0.884;

95% CI, 0.872 to 0.894; Figure 3) between Cumulus PD

and ImageJ PD measurements. The corresponding corre-

lation in the training data was naturally higher (r = 0.902;

95% CI, 0.892 to 0.911). From fitting a linear regression

model (test set), we found that a 1% increase in the value

of ImageJ PD was associated with a 1.029% increase in

the value of Cumulus PD. The range of square-root

transformed PD values for ImageJ (0 to 9.10) was similar

to that of Cumulus (0 to 8.96). Bland-Altman analysis for

Cumulus PD and ImageJ PD, based on the 1,512 samples

in the test set, showed good agreement (r = 0.311; 95%

CI, 0.265 to 0.356; slope = 0.161; intercept = -0.610;

Figure 4). The mean difference in PD between the two

methods was 0.019 (95% CI, -1.66 to 1.69).

The breast cancer risk profiles (OR and corresponding

95% CI) were similar for both Cumulus PD and ImageJ

PD (Figure 5). The AUCs for Cumulus PD (0.596; 95%

CI, 0.568 to 0.625) and ImageJ PD (0.589; 95% CI, 0.561

to 0.618) were not significantly different from one

another (Delong P = 0.324; Figure 6).
Having assessed the ability of our ImageJ PD measure

to mimic Cumulus PD, we next turned to whether Ima-

geJ might hold extra information (not captured by

Cumulus) for discriminating cases and controls. We

selected three models based on the training set. Three

scores were constructed as linear combinations of 28, 3,

and 37 PCs from fitting penalized regression models (see

Statistical analysis), respectively. As expected, score 3
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included considerably more PCs than score 2 and was

more strongly associated with PD (r = 0.370; 95% CI,

0.326 to 0.413, as compared with r = 0.094; 95% CI, 0.044

to 0.144). Not including PD as a penalized covariate dur-

ing the process of forming score 2, meant that score 2

was “forced” to be independent of PD, whereas score 3

was constructed based on a model that penalized PD

along with the PCs. Additional file 5 shows the nonzero

coefficients of the three penalized regression models.

Table 3 summarizes the goodness of fit of eight logistic

regression models for the test set. Score 1, which was

derived from 123 PCs (using the training set), was

strongly associated with breast cancer risk in the test set,

and the residual deviance of this model was also lower

than the models with Cumulus and ImageJ PD only.

Models of breast cancer risk that included either score 2

or score 3, together with PD, improved the goodness of

fit of models that included only PD (for both Cumulus

PD and ImageJ PD). The improvement in fit due to

including score 3, in addition to PD, was strongly (P =

0.0002 for both Cumulus and ImageJ) significant, indicat-

ing that information is contained in mammographic

Table 2 Summary characteristics of study population by breast cancer case status

Characteristic Cases (n = 1,498) Controls (n = 1,495) P

Median

Percentage density (%) 16.9 11.0 <0.001

Absolute dense area (cm2) 24.3 16.9 <0.001

Mean (SD)

Age at diagnosis or reference date (y) 61.2 (7.1) 62.8 (6.9) <0.001

Age at mammogram (y) 60.6 (7.2) 62.8 (6.7) <0.001

Age at menarche (y) 13.5 (1.4) 13.6 (1.4) 0.084

Age at menopause (y) 50.6 (3.8) 50.0 (3.9) 0.001

BMI at diagnosis or reference date (kg/m2) 25.1 (3.6) 25.2 (3.9) 0.801

Alcohol consumption (g/day) 2.8 (5.0) 2.3 (4.2) 0.008

Percentage density (%) 20.7 (16.1) 15.7 (14.5) <0.001

Absolute dense area (cm2) 30.2 (23.7) 23.3 (21.5) <0.001

Frequency, number (%)

Categoric percentage density (%) <0.001

<10 477 (31.8) 680 (45.5)

10-24 538 (35.9) 506 (33.8)

25-49 384 (25.6) 250 (16.7)

50-74 96 (6.4) 57 (3.8)

≥75 3 (0.2) 2 (0.1)

Categoric absolute dense area (cm2) <0.001

<10 288 (19.2) 475 (31.8)

10-24 471 (31.4) 509 (34.0)

25-49 460 (30.7) 347 (23.2)

50-74 211 (14.1) 114 (7.6)

75-99 47 (3.1) 39 (2.6)

≥100 21 (1.4) 11(0.7)

Parity and age at first birth <0.001

Nulliparous 190 (12.7) 148 (9.9)

1-3 children, age at first birth <25 y 556 (37.1) 555 (37.1)

1-3 children, age at first birth 25-29 y 420 (28.0) 399 (26.7)

1-3 children, age at first birth ≥30 y 223 (14.9) 212 (14.2)

≥4 children, age at first birth <25 y 29 (1.9) 31 (2.1)

≥4 children, age at first birth ≥25 y 78 (5.2) 150 (10.0)

Hormone replacement therapy <0.001

Never used hormones 722 (48.2) 844 (56.5)

Ever used hormones 774 (51.7) 649 (43.4)

Unknown status of hormone use 2 (0.1) 2 (0.1)

Family history of breast cancer (ever) 207 (13.8) 119 (8.0) <0.001

Benign breast disease (ever) 351 (23.4) 141 (9.4) <0.001
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images, not captured by PD, that is important for discri-

minating between cases and controls. The extra informa-

tion captured by ImageJ is independent of PD in

predicting risk. We also note that the fully automated

ImageJ PD + score 3 model has a lower Akaike informa-

tion criterion (AIC) [21] than the semiautomated Cumu-

lus PD model (2,053.3 compared with 2,059.6).

Discussion
We developed an automated thresholding method for

obtaining quantitative measurements of MD that com-

pares favorably with the established semiautomatic com-

puter-assisted Cumulus method in predicting risk of

breast cancer. The algorithm is based on an established

Java-based image-analyses program, ImageJ. Further-

more, we showed evidence that additional features in a

mammogram captured by ImageJ, summed into a col-

lective score, represent a significant and independent

marker of breast cancer risk.

Other researchers have developed automated

approaches to measure MD. For example, Heine et al.

[22] described an automated breast-density method,

based on the analysis of wavelet-filtered images, which

directly measures PD as the ratio of segmented dense

tissue to the total area of the breast. The authors com-

pared their continuous percentage MD measurements

with those acquired by Cumulus. Kallenberg et al. [23]

describe a method that, like our approach, extracts a

number of features from the pixels in mammographic

images and uses these to train (and validate) a measure

of PD against a “ground truth” (Cumulus PD). Our MD

measurement was associated with a correlation (r =

0.875; 0.863 to 0.887), which was similar to that of Kal-

lenberg et al. [23] (r = 0.895), and substantially higher

than that of Heine et al. [22] (r = 0.70). In our study,

the odds ratios associated with breast cancer risk were

also similar between PD measured by Cumulus and

ImageJ, suggesting that PD measured by ImageJ is as

good as PD measured by Cumulus in indicating the

Figure 3 Scatterplot of Cumulus PD and ImageJ PD . Sqrt,

square-root transformed; r, Pearson product-moment correlation

coefficient; x, x-axis; y, y-axis.

Figure 4 Bland-Altman plot of mean of Cumulus PD and

ImageJ PD versus the difference between the two

measurements. Blue solid line, Mean difference (0.019). Red dotted

lines, Lower and upper limits of agreement (-1.66 and 1.69,

respectively). Green dotted line, Line of best fit (slope = 0.161;

intercept = -0.610).

Figure 5 Risk profiles of Cumulus PD and ImageJ PD. OR, Odds

ratio from unconditional logistic regression of breast cancer risk

among cases and controls.
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likely development of breast cancers. Kallenberg et al.

[23] included only healthy women in their study and

were thus unable to make a similar comparison.

It could be said that the AUCs of both ImageJ and

Cumulus PD are relatively low (in the range of 0.589 to

0.596) compared with what has been reported before,

for example, for the parenchymal pattern-based BIRADS

density measure (AUC = 0.658) [24]. However, the fairly

low AUC that we observed may be connected to the

characteristics of our study population (postmenopausal

women). The AUC values can vary to a large extent

across different populations; for the original Gail model,

for instance, the reported AUC values have ranged

between 0.54 and 0.74 (0.54 in a cohort of 70-year-old

and older U.S. women [25] and 0.74 in a study of UK

women aged 21 to 73 from a UK family-history clinic

[26]. Moreover, the Cumulus method, on which our PD

measure is trained, has been reported to have better

intraobserver reliability than BIRADS [27], and the

Figure 6 Discriminatory powers of Cumulus and ImageJ for predicting breast cancer risk, as measured by area under curve (AUC).

Legend on the top-left corner summarizes P values for the Delong test between two receiver operating characteristic (ROC) curves. Legend on

the bottom-right corner summarizes the AUC for each model with corresponding 95% confidence intervals.

Table 3 Goodness of fit of eight logistic regression

models fitted to the test set

Model Null/Residual deviance P1 P2

Null 2,095.9 - -

Cumulus PD 2,057.6 6.3 × 10-10 -

ImageJ PD 2,062.8 8.8 × 10-9 -

Score 1 2,052.5 4.5 × 10-11 -

Cumulus PD + score 2 2,053.5 6.4 × 10-10 0.0424

Cumulus PD + score 3 2,043.8 4.9 × 10-10 0.0002

ImageJ PD + score 2 2,058.7 8.4 × 10-9 0.0427

ImageJ PD + score 3 2,049.3 7.7 × 10-11 0.0002

Scores for individual images in the test set were derived by summing the

products of the nonzero regression coefficients (estimated by using the

training set) by the corresponding PC values of that individual image: (1) 123

principal components (PCs) as covariates; all regression coefficients included

in the penalty term; (2) percentage density (PD) + 123 PCs as covariates;

coefficients for the 123 PCs included in the penalty term, but not the

coefficient for PD; and (3) PD + 123 PCs as covariates; all coefficients (123 PCs

+ PD) included in the penalty. P1, based on Likelihood Ratio Test, comparison

with null model. P2, based on Likelihood Ratio Test, comparison with model

including Cumulus or ImageJ PD.
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proposed method, by being reader independent, has

merit in terms of intra- and interreader reliability.

In the present study, we provided evidence that our

approach captures additional information in mammo-

graphic images, in addition to PD, which improves the

ability to discriminate between breast cancer disease sta-

tus, when compared with using PD alone (P = 0.0002).

ImageJ might be capturing information not related to

PD, for example, features related to mammographic tex-

ture, in the mammograms. PCs with nonzero coeffi-

cients in each score (listed in Additional file 5) are in

turn linear combinations of the “original” variables (see

Additional file 3), so in principle, it is possible to inter-

pret the scores. In practice, however, it is difficult to

provide clear interpretations. PC axes will generally not

coincide exactly with any of the original variables, often

making interpretations for the PCs very challenging.

Nevertheless, we observe that PCs with nonzero coeffi-

cients in score 3 are generally less area and intensity

measurements, and more shape descriptors or variables

describing fitted ellipses, in contrast to PCs for ImageJ

PD, which are more closely related to area and intensity

variables. We have, however, presented the strongest

evidence so far that mammographic images contain

additional information to Cumulus PD, which improves

the ability to discriminate between breast cancer disease

statuses, but further work is needed to clarify exactly

what information our score captures.

Although the relation between mammographic breast

density and breast cancer risk has been clearly demon-

strated, studies have also shown that a potential inde-

pendent relation exists between mammographic

parenchymal texture and the risk of breast cancer [28].

Nielsen et al. [28] describe an algorithm that extracts

textural information from all pixels of segmented breast

images, which is “trained” to recognize texture relating

to breast cancer status of the women. Their texture-

resemblance marker significantly improved the ability to

discriminate disease status in a sample of 245 breast

cancer cases and 250 healthy controls, independent of a

computer-based PD score resembling Cumulus. It

appears that predictive accuracy for breast cancer is

increased by adding a “qualitative” measure, akin to pre-

vious methods described by Wolfe [6] and Tabar [7], to

quantitative estimates of MD.

We based our method on an established and depend-

able image-processing program developed at the National

Institutes of Health (NIH) that is freely available. ImageJ

can automatically open, process, and analyze a digitized

mammogram in less than 12 seconds, offering a huge

advantage over time-consuming measurements using

Cumulus, which typically takes a reader between 2 and 5

minutes to achieve the same result. The software runs on

Java and is thus not based on any specific platform and is

inexpensive in terms of expertise needed to run the

macros for processing mammograms. Its open-source

design makes ImageJ more easily evolvable and correct-

able than many proprietary packages, allowing the fine-

tuning of parameters for nonstandard mammograms or

potentially, with further development, non-film mammo-

grams. As the PD estimates are derived from a machine-

learning-based method, the data can be easily retrained

to output other measures, such as absolute dense and

nondense areas. An additional strength includes our

large population-based breast cancer case-control study,

which allows us to apply and validate ImageJ PD along-

side Cumulus PD in the estimation of breast cancer risk.

A robust, automated thresholding method would

shorten the time and cost needed to acquire MD data via

parallel processing of the images. Large archives of film

mammograms could then be rapidly revisited and read to

answer epidemiologic research questions. Images from

current and future studies may also be read at the same

time as they are acquired, and the resultant readings,

which could encompass both PD and additional mammo-

graphic features, could perhaps be used to estimate

breast cancer risk better for each individual when incor-

porated into current breast cancer prediction tools, such

as the Gail or the Claus models.

We acknowledge the weakness of using a largely post-

menopausal study population, which, on average, has

lower mammographic density than do premenopausal

women. Caution is needed when evaluating mammo-

grams with very high density values with the new

method. In addition, the generalizability of the new

automatic mammographic density thresholding method

is currently limited to the MLO images (taken from an

oblique or angled view) analyzed in this study. In many

countries, the MLO view is preferred over lateral, per-

pendicular projections during routine screening mam-

mography, as more of the breast tissue is visible in the

upper outer quadrant of the breast and the axilla.

Further work is required to extend the application of

the method to other projections (for example, cranial-

caudal, mediolateral). The high-throughput capacity of

an automated method makes it feasible to base future

assessments of MD on more than one view.

The generalizability of our new MD measurement

method is at present confined to digitized screen film

mammograms. With the paradigm transition from analo-

gue to digital mammography, it is of high clinical rele-

vance to extend the use of the automated PD thresholding

method to digital mammograms. In contrast with current

applications used to determine MD from digital mammo-

grams, which have to be present as the image is being

acquired by the machine, ImageJ can be applied at any

time after image acquisition, making it feasible to read

digital images retrospectively. However, many concerns

Li et al. Breast Cancer Research 2012, 14:R114

http://breast-cancer-research.com/content/14/4/R114

Page 10 of 12



must be addressed before MD can be confidently mea-

sured from processed digital mammograms in general. A

more detailed discussion of this topic is beyond the scope

of this article. Nevertheless, the availability of phenomenal

archives of unread film mammograms for historical

cohorts with good follow-up data justifies the development

of an automatic tool.

Despite the remarkably strong influence of MD on

breast cancer risk, it has had limited influence in clinical

decision making and has not yet been included in any

established risk-prediction tool. It is, however, likely that

the purpose of future mammography screening pro-

grams will not be limited to the detection of early breast

cancers, but also to stratify women according to their

individual risk of breast cancer. Such stratification will

make it possible to tailor screening intervals based on

individual risk, add complementary diagnostic techni-

ques (for example, ultrasound or magnetic resonance

imaging), and select high-risk women for appropriate

preventive interventions (for example, pharmacoprophy-

laxis). A robust, fully automated thresholding technique

that can assess density in an objective and high-through-

put manner is the first step to achieving these goals,

with the ultimate aim of reducing the incidence of and

mortality from breast cancer.

Conclusions
We describe a novel method for using a public domain

software for the automated analysis of mammographic

density, with the intent of duplicating the findings of an

established method (Cumulus), and improving the risk

associations of mammographic density and breast cancer

risk. Further work is required to validate and extend the

application to mammographic images of other views

and those produced by a digital mammography system.

Additional material

Additional file 1: Figure S1. An example of a digitized mammogram

before and after thresholding and application of the watershed

algorithm by using different global thresholding algorithms.

Additional file 2: Figure S2. Scree plot showing the proportion of

variance explained for from principal component analysis of 772

ImageJ variables. PC, Principal component.

Additional file 3: Table S1. Weights of original variables. Each

principal component (PC) is a linear combination of the original

variables. Loading values represent relative contributions of the original

variables to each PC. “Total” measurements are made on particles of at

least 5 pixels. Particles1, -2, and -3 denote measurements on particle size

ranges of 5 to 100, 101 to 1,000, and at least 1,001 pixels, respectively.

Additional file 4: Table S2. Descriptive characteristics of study

population by training or test subgroups.

Additional file 5: Nonzero coefficients of penalized regression

models.
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