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Abstract

Recently developed technologies have enabled multi-well measurement of O2 consumption, facilitating the rate of
mitochondrial research, particularly regarding the mechanism of action of drugs and proteins that modulate metabolism.
Among these technologies, the Seahorse XF24 Analyzer was designed for use with intact cells attached in a monolayer to a
multi-well tissue culture plate. In order to have a high throughput assay system in which both energy demand and substrate
availability can be tightly controlled, we have developed a protocol to expand the application of the XF24 Analyzer to
include isolated mitochondria. Acquisition of optimal rates requires assay conditions that are unexpectedly distinct from
those of conventional polarography. The optimized conditions, derived from experiments with isolated mouse liver
mitochondria, allow multi-well assessment of rates of respiration and proton production by mitochondria attached to the
bottom of the XF assay plate, and require extremely small quantities of material (1–10 mg of mitochondrial protein per well).
Sequential measurement of basal, State 3, State 4, and uncoupler-stimulated respiration can be made in each well through
additions of reagents from the injection ports. We describe optimization and validation of this technique using isolated
mouse liver and rat heart mitochondria, and apply the approach to discover that inclusion of phosphatase inhibitors in the
preparation of the heart mitochondria results in a specific decrease in rates of Complex I-dependent respiration. We believe
this new technique will be particularly useful for drug screening and for generating previously unobtainable respiratory data
on small mitochondrial samples.
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Introduction

Enhanced appreciation of the role of altered mitochondrial

function in metabolic and cardiovascular disease, tumorigenesis,

aging and degenerative diseases, and cell signaling has stimulated

the development of a variety of new approaches for the assessment

of mitochondrial function [1–4]. As the field has moved rapidly

toward the discovery of mitochondrial-related molecular mecha-

nisms underlying disease, as well as drugs to prevent or reverse

disease development [5–12], the demand for more flexible and

higher throughput methods of assessing mitochondrial function

has increased. As well, the importance of screening potential drug

candidates for mitochondrial toxicity is being recognized [13].

Measurement of rates of O2 consumption are extremely valuable

in this regard, as electron transport and oxidative phosphorylation

reflect the concerted function of both the mitochondrial and

nuclear genomes to express functional components of oxidative

phosphorylation. In addition, intact cell respiration reflects the

influence of multiple hormonal effects, regulated transporters and

pathways, and signaling cascades, and is a telling measure of the

overall health of cells, particularly due to the susceptibility of

mitochondria to oxidative injury.

In recent years, a number of methodologies have been developed

to enable more efficient and higher throughput acquisition of O2

consumption data [1–2,4]. Of these, the Seahorse XF24 Analyzer

was developed to assay cultured cells in a conventional microplate

format [4], representing a significant advance in throughput for

assessment of cell monolayers rather than cell suspensions as

typically done with conventional Clark electrode-based methods.

There are strengths and weaknesses of measurements of intact

cell respiration versus isolated mitochondria. The rate of oxygen

consumption by intact cells reflects a complex interplay of

biological parameters, including the rates of energy demand and

production, as well as the nature, availability, and transport of

oxidizable substrates, the effects of signaling cascades that impinge

on mitochondrial function, and the overall mass/volume of

mitochondria per cell. With intact cells, the endogenous rate of

respiration can be measured, as well as state 4o (resting respiration
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in the presence of oligomycin) and uncoupler-stimulated respira-

tion. However, an observed change in the rates of respiration of

intact cells (e.g. as a function of treatment with a drug or altered

expression of a gene of interest) can be somewhat difficult to

interpret. A change in intact cell respiration may owe to multiple

potential alterations that cannot be distinguished without further

experimentation, including the rate of ATP utilization, and the

transport, storage and mobilization of added and endogenous

substrates. As a result, it is often desirable and most informative to

also collect respiratory data with isolated mitochondria and thus

be able to control the availability of substrates and ADP. Assays

with isolated mitochondria allow more direct determination of the

potential site of action of a compound or gene product that affects

mitochondrial bioenergetics. Further, there are many instances in

which valuable information can be obtained from characterizing

mitochondria isolated from a limited amount of tissue, for

instance, from tissues of transgenic or knockout animal models,

or animals in which tissue-specific toxicity of drug candidates need

to be characterized.

As a result, we focused our efforts on developing an assay using

isolated mitochondria in the XF24 analyzer, and have successfully

devised a protocol that allows measurement of mitochondrial O2

consumption with as little as 1 mg of mitochondrial protein per

well in a multi-well format, facilitating the quantity of information

and minimizing the time it takes to gather respiratory data from

small tissue samples.

Methods

Materials
Fatty acid-free BSA and a protein phosphatase inhibitor cocktail

(Phosphatase Inhibitor Cocktail Set II) were purchased from EMD

Biosciences. Cell-TakH was purchased from BD Biosciences.

Purified H2O purchased from Thermo Scientific was used for

respiratory media and reagents. Bradford Assay reagent was

purchased from Bio-Rad. All other chemicals were purchased

from Sigma-Aldrich.

Reagent and Solution Preparation
Mitochondrial isolation buffer (MSHE+BSA) is composed of

70 mM sucrose, 210 mM mannitol, 5 mM HEPES, 1 mM EGTA

and 0.5% (w/v) fatty acid-free BSA (pH 7.2). Mitochondrial assay

solution (MAS, 1X) comprises 70 mM sucrose, 220 mM mannitol,

10 mM KH2PO4, 5 mM MgCl2, 2 mM HEPES, 1 mM EGTA

and 0.2% (w/v) fatty acid-free BSA, pH 7.2 at 37uC. A 2–3X

stock of MAS was prepared for dilution of substrates, ADP and

respiration reagents. Stocks of succinate, malate, glutamate,

pyruvate (0.5 M) and ADP (1 M) were made in H2O and adjusted

to pH 7.2 with potassium hydroxide. Stocks of 10 mM FCCP

[carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone], 2 mM

rotenone, 5 mg/ml oligomycin and 40 mM antimycin A were

made in 95% ethanol. All reagents were stored at 220uC, except

pyruvate, which was prepared fresh on the day of each

experiment.

Isolation of Mouse Liver Mitochondria
Ethics Statement: Animal housing, euthanasia, and tissue

harvest procedures were conducted in accordance with and

approved by the UCSD Institutional Animal Care and Use

Committee (protocol #S09186) and the Buck Institute Animal

Care Committee (protocol #10180). Mitochondria from C57bl/6

(male and female) mice aged 4–6 weeks were isolated by two

similar differential centrifugation methods, based upon Schnait-

man and Greenawalt [14] or Chappell and Hansford [15].

Specifically, the liver was extracted and minced in ,10 volumes of

MSHE+BSA (4uC), and all subsequent steps of the preparation

were performed on ice. The material was rinsed several times to

remove blood. The tissue was disrupted using a drill-driven Teflon

glass homogenizer with 2–3 strokes. Homogenate was centrifuged

at 800 g for 10 min at 4uC. Following centrifugation, fat/lipid was

carefully aspirated, and the remaining supernatant was decanted

through 2 layers of cheesecloth to a separate tube and centrifuged

at 8000 g for 10 min at 4uC. After removal of the light mito-

chondrial layer, the pellet was resuspended in MSHE+BSA, and

the centrifugation was repeated. The final pellet was resuspended

in a minimal volume of MSHE+BSA. Total protein (mg/ml) was

determined using Bradford Assay reagent (Bio-Rad). Typically,

,7.5 mg of mitochondria (100 ml volume) was obtained from a

single mouse liver. In separate studies in which respiratory rates in

the Seahorse and the Rank Clark electrode system were

compared, mouse liver mitochondria were isolated according to

Chappell and Hansford [15] in 250 mM Sucrose, 5 mM Tris and

2 mM EGTA (STE) on ice. Tissue was homogenized 10 times

with a Teflon-glass homogenizer, and the homogenate was

centrifuged at 1000 g for 3 minutes (4uC). The supernatant was

collected and centrifuged at 11,600 g for 10 minutes. The pellet

was resuspended in STE after discarding the whitish layer. The

above step was repeated two times to get the final mitochondrial

pellet. 8–10 mg of mitochondrial protein was obtained from each

mouse liver and resuspended in 400–500 ml of STE.

Isolation of Rat Heart Mitochondria and Phosphatase
Inhibitor Treatment
Ethics Statement: Animal housing, euthanasia, and tissue harvest

procedures were conducted in accordance with and approved by

the UCSD Institutional Animal Care and Use Committee (protocol

#S09184). Hearts were harvested from adult male (approx. 300 g)

Sprague Dawley rats. Mitochondria from two hearts were isolated

by differential centrifugation similar to Sordahl [16]. The tissue

was minced and then disrupted with a polytron (IKA Works,

Wilmington, NC) at 4uC in MSHE containing 0.5% BSA. The

disrupted tissue was centrifuged at 27,000 g for 10 min. The pellet

was resuspended and centrifuged at 500 g, and the supernatant

filtered through cheesecloth and then centrifuged at 10,000 g. The

mitochondrial pellet was resuspended and the centrifugation was

repeated. The final pellet was resuspended in a minimal volume

of MSHE+BSA. Typically, ,2.5 mg of mitochondria (,50 ml

volume) was obtained from two rat hearts. Where indicated, the

minced tissue was split into two aliquots. To one aliquot, a 1:400

dilution of phosphatase inhibitor cocktail Set II (EMD Chemicals,

Cat. No. 524625) was included in the MSHE+BSA for the

remainder of the preparation. At this dilution, the final concentra-

tions of phosphatase inhibitors present in the isolation medium were

0.5 mM imidazole, 0.25 mM sodium fluoride, 0.3 mM sodium

molybdate, 0.25 mM sodium orthovanadate, and 1.0 mM sodium

tartrate.

Clark Electrode Assays
Clark electrode assays performed for comparative purposes

utilized a Hansatech Oxytherm apparatus (PP Systems, Amesbury,

MA) for rat heart mitochondria or a Rank system (Rank Brothers,

Bottisham, Cambridge, England) for mouse liver mitochondria. For

rat heart mitochondria, assays were performed in parallel with the

same mitochondrial preparation, MAS, substrates and compounds

as for the XF24 assays. Typically 62.5–125 mg of mitochondria were

used in a volume of 500 ml MAS plus the appropriate substrate.

Respiration was initiated by adding mitochondria, and followed by

sequential addition of ADP, oligomycin and FCCP. Concentrations

High Throughput Mitochondrial Respiration
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of substrate, ADP, oligomycin, and FCCP were identical to those

used in the XF24 experiments. For mouse liver mitochondria,

assays were performed in parallel the same mitochondrial

preparation, MAS, substrates and compounds as for the XF24

assays with the following modifications: substrate was 5 mM

succinate, 2 mM rotenone and 300 mM ADP was used. Typically,

0.3 mg/ml of mitochondria were used in a volume of 2.0–3.5 ml

MAS plus the appropriate substrate. Respiration was initiated by

adding mitochondria, followed by sequential addition of ADP,

oligomycin and FCCP. Concentrations of oligomycin and FCCP

were identical to those used in the XF24 experiments. Oxygen

consumption rates were converted from nmol O/min/ml to pmol

O2/min/mg mitochondrial protein.

The XF assay using isolated mitochondria
All XF assays were performed using an XF24–3 Extracellular

Flux Analyzer (Seahorse Bioscience). The assay is based upon

fluorimetric detection of O2 and H+ levels via solid state probes on

a sensor cartridge that lowers to within 200 microns of the well

bottom during a measurement cycle, creating a transient micro

chamber (,7 ml) [4]. After a measurement cycle, the sensor

cartridge rises, and the medium is re-oxygenated through

mechanical mixing, thus allowing repeated measurements of O2

and pH over time. The sensor cartridge is equipped with four

reagent delivery chambers per well for injecting compounds into

the wells during an assay. Either rates of O2 consumption (OCR,

oxygen consumption rate in pmoles O2/min) and changes in pH,

or absolute levels of O2 and pH can be visualized in the data

output.

A schematic diagram of the assay is presented in Fig. 1.

Compounds to be injected were prepared in 1X MAS at 10X the

final concentration required for the assay. Compounds were

loaded into the injection ports at the following volumes: Port A,

50 ml; Port B, 55 ml; Port C, 60 ml and Port D, 65 ml, which yields

an ,10X dilution for each injection. Just before attachment of the

mitochondria to the XF plate, the loaded cartridge was placed into

the XF24 instrument and calibrated.

To minimize variability between wells, mitochondria were first

diluted 10X in cold 1X MAS + substrate, then subsequently

diluted to the needed concentration required for plating. Next, 25

or 50 ml of this mitochondrial suspension was delivered to each

well (except for background correction wells) while the plate was

on ice. Note that substrate was included in the initial dilution and

was present during centrifugation, as this improved the respiratory

control ratios obtained in the assay. Centrifugation in larger

volumes of mitochondrial suspension resulted in lower maximal

respiratory rates, likely due to loss of mitochondria to the sides of

the wells. The plate was transferred to a centrifuge equipped with

a swinging bucket microplate adaptor, and was spun at 2000 g for

20 minutes at 4uC. After centrifugation, 450 or 475 ml of 1X MAS

Figure 1. Schematic flowchart for the isolated mitochondria assay using the Seahorse XF24 Analyzer. Mitochondria are diluted into 1X
MAS containing the substrate of choice. Initial conditions refer to any additives or compounds present at 1X at the start of the assay in addition to the
substrate (e.g. drug candidate, etc.).
doi:10.1371/journal.pone.0021746.g001
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+ substrate (at room temperature) was added to each well. The

mitochondria were viewed briefly under a microscope at 20X

magnification to ensure consistent adherence to the well, then

placed at 37uC for 8–10 minutes to allow the plate to warm. The

plate was then transferred to the XF24 instrument and the

experiment initiated. For comparison of adhesion with polyethy-

leneimine (PEI) and Cell-TakH, plates were coated with PEI as

described in Gerenscer et al [17] and plates were coated with Cell-

TakH per manufacture’s instructions.

Experimental Design
Two types of experiments are presented with isolated mito-

chondria. In the first, respiration by the mitochondria (5 mg/well)

was sequentially measured in a coupled state with substrate present

(basal respiration), followed by State 3 (phosphorylating respira-

tion, in the presence of ADP and substrate), State 4 (non-

phosphorylating or resting respiration) following conversion of

ADP to ATP, State 4o (induced with the addition of oligomycin),

and then maximal uncoupler-stimulated respiration (State 3u).

This allows respiratory control ratios (RCR; State 3/State 4o, or

State 3u/State 4o) to be assessed [18–20]. Unless otherwise noted,

the substrate was 10 mM succinate plus 2 mM rotenone. Injections

were as follows: port A, 50 ml of 40 mM ADP (4 mM final); port B,

55 ml of 25 mg/ml oligomycin (2.5 mg/ml final); port C, 60 ml of

40 mM FCCP (4 mM final); and port D, 65 ml of 40 mM antimycin

A (4 mM final). The second type of experiment examined

sequential electron flow through different complexes of the

electron transport chain. With the initial presence of 5 mg mito-

chondria per well, 10 mM pyruvate, 2 mM malate and 4 mM

FCCP, injections were made as follows: port A, 50 ml of 20 mM

rotenone (2 mM final); port B, 55 ml of 100 mM succinate (10 mM

final); port C, 60 ml of 40 mM antimycin A (4 mM final); port D,

65 ml of 100 mM ascorbate plus 1 mM N,N,N9,N9-Tetramethyl-

p-phenylenediamine (TMPD, 10 mM and 100 mM final, respec-

tively). Typical mix and measurement cycle times for the assays are

illustrated in Table 1 and are common to all experiments

presented unless otherwise noted.

XF data treatment
XF oxygen consumption rate (OCR) raw data was transformed

using the ‘‘Level(Direct)Akos’’ algorithm that is a component of

the Seahorse XF24 1.5.0.69 software package. This algorithm is

fully described in Gerencser et al [17]. The software may be

configured to show kinetic data in a ‘‘point-to-point’’ or ‘‘middle

point’’ mode. The point-to-point mode (e.g. Figs. 2, 3) displays

OCR as a series of rates across the measurement period and can

show changes of the rate across the measurement period (e.g.

Fig 3A). The middle point mode shows a single OCR value for the

measurement period, and is the average of the point-to-point rates

(e.g. Fig. 4A) Note that if the point-to-point rates are stable

(relatively constant) across the measurement period, then point-to-

point and middle point modes will provide equivalent rate data.

All experiments described and shown were repeated at least 3

times with similar results based on respiration rates and RCR

values obtained. Figures presented are representative graphs of the

illustrated assay.

Results

Validation of the XF method
The XF24–3 Analyzer is a 24 well microplate-based instrument

that was designed to measure in real time the kinetics of O2

consumption and H+ production of a monolayer of cells attached to

the wells of an XF24 microplate. Our aim in these studies was to

find conditions that might allow use of the XF24 with isolated

mitochondria. Following the successful introduction of centrifuga-

tion as a means to attach suspended synaptosomes to XF24

microplates [21], we used the same approach to attach mitochon-

dria to the plate by centrifugation and measured OCR. We

ultimately identified conditions that allowed for sequential mea-

surement of basal respiration (in the presence of substrate but no

ADP), State 3 (+ADP), State 4o (+oligomycin), and State 3u (+FCCP)

by the protocol described in Fig. 1, and these differ significantly

from typical conditions for conventional O2 electrode measure-

ments [22]. Table 1 outlines the general mix and measure cycle

times used for the assays. The results using 5 mg mitochondrial

protein per well in Fig. 2A (5 mg group) show the optimal result: a

steady low rate of respiration with substrate before addition of ADP;

a substantial increase in rate to a high sustained state 3 rate after

addition of ADP; a substantial decrease in rate to a low state 4o rate

after addition of oligomycin; a high stimulation by FCCP to state 3u,

and strong inhibition to a near zero rate after addition of the

complex III inhibitor, antimycin A (AA).

In Fig. 2, determination of an optimal quantity of mitochondria

per well is demonstrated, with the objectives to ensure robust

signal, minimal noise, as well as keeping OCR values within the

linear range of response of the mitochondria and within the

dynamic range of the instrument and algorithms employed to

Table 1. Mix and Measure Cycle Times.

Command Time (min) Port

Calibrate

Mix 1.0

Wait 3.0

Mix 1.0

Wait 3.0

Mix 0.5

Measure 3.0

Mix 1.0

Measure 3.0

Mix 0.5

Inject A

Mix 0.5

Measure* 3.0–6.0

Mix 1.0

Inject B

Mix 0.5

Measure 3.0

Mix 1.0

Inject C

Mix 0.5

Measure 3.0

Mix 1.0

Inject D

Mix 0.5

Measure 3.0

*Measure times for State 3 respiration may be extended beyond 3 min to
observe the transition from State 3 to State 4 due to exhaustion of ADP in the
microchamber.
doi:10.1371/journal.pone.0021746.t001
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calculate respiration rates. Increasing amounts of mouse liver

mitochondria from 1.25–40 mg per well were attached to a plate as

described in the Experimental section and basal respiration, States

3, 4o, 3u, and non-mitochondrial O2 consumption were sequen-

tially measured. Basal rates of respiration were linear from 1.25 to

5 mg. The sequentially measured rates as ADP, oligomycin, FCCP,

and antimycin A were injected into the wells were generally linear

with respect to mg mitochondria used per well. However, for 10 mg

or greater per well, the response of the mitochondria for various

respiration states became non-linear (note 10, 20 and 40 mg

amounts in Fig. 2A). To explain this behavior, the O2 concen-

tration (oxygen tension as measured in mm Hg) values were

reviewed (Fig. 2B). These data illustrate the result of overloading

the wells, and show that with mouse liver mitochondrial samples of

10 mg or greater per well, a) O2 can be completely depleted from

the microchamber (0.0 O2 tension), and b) the system does not

have an adequate time to recover to normoxia (return to ambient

O2 tension, ,158 mm Hg) before the next measurement cycle.

These two factors prevent accurate measurement of OCR at

higher concentrations of mitochondria, with State 3 being

underestimated and apparent poor response of the mitochondria

to oligomycin and FCCP. Thus, when adapting this method to

mitochondria isolated from other species/tissues, it is critical to

ensure that an optimal amount of mitochondria are used per well.

It is suggested that basal respiratory rates be kept between 100–

200 pmol/min/well to afford the best signal-to-noise ratio and

dynamic range for the assay, and we find that, depending on tissue

and species used, 1–10 mg of isolated mitochondria is optimal for

the assay.

Our initial use of typical concentrations of ADP (,200 mM) was

unsuccessful at eliciting State 3 rates. Instead, much higher

concentrations of ADP were required to obtain stable State 3 rates.

This is due to the very small effective volume of the microchamber

(,7 ul) during the measurement cycle (see Discussion). To

investigate the effects of ADP concentration, the measurement

time for State 3 respiration was extended to 6 minutes and ADP was

titrated from 0.0 to 4.0 mM. The point-to-point rate data in Fig. 3A

clearly reflects the exhaustion of ADP at lower concentrations

(0.25–1.0 mM). Thus, the transition from State 3 to State 4

respiration upon conversion of the pool of ADP to ATP is evident

(Fig. 3A), and therefore a respiratory control ratio as defined by

State 3/State 4 can be calculated. If a stable State 3 rate is desired,

Figure 2. Optimization of isolated mitochondria XF assays. 2A–B, Determination of optimal mg amount of mitochondria/well. 1.25–40 mg/well
of mouse liver mitochondria were attached to a V7 polystyrene XF24 plate and the coupling experiment was performed as described in Methods in
the presence of succinate/rotenone. Blue vertical lines denote injections of indicated compounds. 2A shows OCR for 1.25–40 mg samples. 2B shows
the absolute O2 tension (in mm Hg) in the microchamber for 1.25–40 mg samples. Note that samples at 10 mg and above show unstable State 3 rates
for OCR and depletion of O2 in the microchamber in panels A and B, respectively. Lettering within data points indicates the group identification
number.
doi:10.1371/journal.pone.0021746.g002

Figure 3. Characterization of mitochondrial activity. 3A, Titration of ADP using 5 mg mouse liver mitochondria/well. ADP (0–4 mM) was
injected via port A to initiate State 3 respiration and the measurement time was extended to 6 minutes. Note that 2–4 mM ADP is sufficient to
maintain a relatively stable State 3 respiration rate for the duration of the measurement period, while lower concentrations show exhaustion of ADP
and transition to State 4 respiration. 3B, Alkalinization of the media during phosphorylating respiration (note that unlike the OCR tracings, this data
reports absolute pH rather than a rate of change in pH).
doi:10.1371/journal.pone.0021746.g003
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2–4 mM ADP is required to sustain State 3 respiration over a

measurement period of 6 minutes. Note that the decrease in rate at

lower ADP concentrations is not the result of O2 exhaustion in the

microchamber (Fig. 3A versus Fig. 2B, 5 mg). In addition, experi-

ments in which the concentration of phosphate was varied, 10 mM

proved optimal and ensures a saturating concentration of phosphate

for ATP synthesis (data not shown). Thus, the method provides the

ability to record State 3 respiration followed by exhaustion of ADP

to State 4 given an appropriate length of measurement cycle.

Another interesting aspect of the assay is the ability to monitor

changes in pH. In conventional use of the XF24, changes in

extracellular pH act as an indirect monitor of lactate production via

glycolysis [4,23–24]. Viewing the correlating pH data from the ADP

titration (Fig. 3D), it is observed that an increase in pH occurs

during the phosphorylation reaction (after ADP injection) that is

quickly abrogated upon the addition of oligomycin. This reflects

that the ATP synthesis reaction consumes protons as the ADP is

phosphorylated to ATP: MgADP2 + Pi
21.5

+0.5H+
RMgATP22

+

H2O (assuming Pi is an approximate 50:50 mixture of Pi
21 and Pi

22

at neutral pH).

A critical element of the method was to ensure that the

mitochondria adhere tightly to the wells and do not detach from

the plate during the mixing action of the instrument over the

course of the assay. While this has been previously demonstrated

using polyethyleneimine (PEI) as a surface coating [17], we wished

to test if a plate coating was necessary, or if other coatings may be

more optimal for adhesion. Four distinct methods were employed

to investigate adherence of the mitochondria to the well plate.

First, it was assessed whether repeated measurement cycles, each

associated with a mixing/reoxygenation step, resulted in a loss of

mitochondria and therefore a loss in respiratory rate. Figure 4A

(no plate coating used) illustrates via repeated measurements of

State 3 respiration (12 repeated measurements over ,50 minutes)

that the ADP-stimulated rates remain consistent throughout the

assay, strongly suggesting that mitochondria remained attached to

the well for the duration of the assay. Note that each point shows

the average OCR for each 3 minute measurement cycle (as

opposed to point-to-point rates, see ‘‘data treatment’’ in the

Methods section). Second, experiments were performed with no

coating, or plates coated with PEI or Cell-TakH. Coating with

Cell-TakH or PEI did not alter State 4o rates compared to rates

with no coating used (Fig. 4B). Third, phase contrast images of the

same well immediately before and after the experiment indicated

that there were no noticeable differences in the appearance or

Figure 4. Isolated mitochondria remain attached to the plate for the duration of the experiment. A, The coupling experiment was
performed using 5 mg mouse liver mitochondria per well as described in Methods, however, State 3 respiration was allowed to proceed for multiple
measurement periods (average OCR per measurement period shown). Note that State 3 respiration does not diminish over multiple mixing and
measuring periods, indicating that the mitochondria remain attached to the well for the duration of the assay. B, State 4o rates using different plate
coatings in the presence and absence of 0.2% BSA. No significant differences in State 4o rates were observed among different plate coatings [none,
polyethyleneimine (PEI), and Cell-TakH]. Note that the absence of BSA resulted in elevated rates of State 4o respiration, indicative of respiratory
uncoupling. C–D, Isolated mitochondria adhered to the XF24 plate as imaged by phase contrast microscopy at 20X magnification before (4C) and
after the XF assay (4D).
doi:10.1371/journal.pone.0021746.g004
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density of the mitochondria, indicating that the mitochondria

remained tightly attached to the well plate (Fig. 4C and D, no

plate coating used).

Experiments that measured any potential release of total

mitochondrial protein during the assay were performed by

comparing the total protein concentration in the supernatant of

replicate wells before and after the experiment. These parallel

assays were performed in the absence of BSA to allow accurate

quantification of small concentrations of protein. Greater than

95% of the total mitochondrial protein was adhered to the plate

before the experiment, and ,10% of total adhered protein was

detectable in the supernatant after the assay (data not shown).

It was also determined that mouse liver mitochondria required

the presence of BSA in the assay medium to prevent mitochondrial

uncoupling (Fig. 4B). State 4o rates were significantly higher in the

absence of BSA, and further experiments testing a range of 0.0 to

0.8% BSA indicated that 0.2% BSA is required to obtain minimal

basal and State 4o rates (data not shown).

We next compared the rates of mitochondrial respiration

obtained from experiments in the XF24 to those obtained in more

conventional measurements of oxygen consumption using a Clark-

type electrode. Respiratory rates (basal, State 3, State 4o, and State

3u) of isolated rat heart mitochondria oxidizing glutamate/malate

(Fig. 5A) or succinate with rotenone (Fig. 5B) measured in the

XF24 were in a similar range to those obtained using a Hansatech

Oxytherm apparatus under similar conditions (37uC in MAS

buffer). In addition, respiration rates of isolated mouse liver

mitochondria were comparable using the XF24 and a Rank

system (Fig. 5C).

Applying the XF method
To demonstrate the potential utility of this method for

determining the effects of agents on mitochondrial respiration, a

series of experiments were conducted examining 1) the level of

respiratory coupling (the ‘coupling experiment’) and 2) the

sequential determination of complex I, II, III and IV-dependent

respiration (the ‘electron flow experiment’). Fig. 6 demonstrates

the effects of known respiratory inhibitors on the pattern of

respiration. For the coupling experiment (Fig. 6A, C), mouse liver

mitochondria were incubated with substrate (10 mM succinate

+2 mM rotenone) during the centrifugation step. ADP, oligomycin,

FCCP, and antimycin A were then sequentially injected, and

measurements of OCR were taken after each injection. The

electron flow experiment (Fig. 6B, D) is designed to follow and

interrogate each complex of the electron transport chain. This

experiment begins with the mitochondria utilizing Complex I

respiration in an uncoupled state (10 mM pyruvate, 2 mM malate

plus 4 mM FCCP, final concentrations). The following compounds

(final concentrations) are then added sequentially: rotenone

(2 mM), succinate (10 mM), antimycin A (4 mM) and ascorbate/

TMPD (1 mM and 100 mM, respectively). Because oxidation of

pyruvate/malate is mediated via Complex I, injection of rotenone

inhibits this and respiration stops. Injection of succinate allows the

mitochondria to respire via Complex II, and OCR values increase.

Electron flow is then inhibited at Complex III by antimycin A, and

respiration stops as expected. Finally, addition of ascorbate and

TMPD (which act as electron donors to cytochrome C/complex

IV) elicits an increase in the OCR.

By using these two assays in tandem in a single microplate, it

now becomes possible to pinpoint sites of action of unknown

compounds (e.g. potential drug candidates) on mitochondrial

function, and this data is presented in Fig. 6A–D. To illustrate the

method, we have chosen five well-described compounds that affect

mitochondrial function to represent the ‘‘unknown compounds’’.

Each of these compounds was added to the wells as ‘‘initial

conditions’’ when the additional 450 ml of MAS + substrate was

added after the centrifugation step (Fig. 1).

Figure 6C–D show the effects of rotenone (a Complex I

inhibitor) on coupling and electron flow. As expected, there is no

effect on the OCR values in the coupling experiment, as rotenone

was already present and respiration was being driven by Complex

II-IV activity. However, it was observed in the electron flow

experiment that pyruvate/malate-dependent respiration was

inhibited at the beginning of the assay in contrast to the control,

in which robust respiration was present. The fact that the control

and the group to which rotenone was added show identical

subsequent responses upon injections B–D suggests, as anticipated,

that the remainder of the electron transport chain is functioning

properly.

The effects of including malonate or antimycin A (Fig. 6, panels

C–D or A–B, respectively) in the initial conditions of coupling and

electron flow assays are shown. Malonate is a competitive inhibitor

of succinate dehydrogenase (complex II), and antimycin A inhibits

complex III. For malonate, as anticipated, all the respiratory rates

are inhibited except for the respiration driven by pyruvate/malate

at the start of the electron flow experiment, and the ascorbate/

TMPD-driven rate mediated by complex IV. Like malonate, the

effect of antimycin A in the coupling experiment was complete

respiratory inhibition and no response to ADP, oligomycin, or

FCCP. However, unlike malonate, antimycin A prevents both

complex I- and complex II-mediated respiration due to inhibition

of complex III, resulting in complete inhibition of respiration

throughout the electron flow portion of the assay until addition of

ascorbate/TMPD, indicating that complex IV remains active.

Figure 6, panels A–B or C–D show the effects of the azide anion

or oligomycin on respiration, respectively. Azide, like carbon

monoxide and cyanide, is an inhibitor of complex IV. This is

demonstrated in both the coupling and electron flow experiments,

with reduced respiration throughout the assay. Note that while

complete inhibition is not observed due to sub-saturating concen-

trations of azide, overall respiration is decreased. Most instructive

is the fact that addition of ascorbate/TMPD could not increase

electron flow (and in turn O2 consumption) at Complex IV.

Finally, oligomycin, an inhibitor of the ATP synthase (complex V)

prevents only ATP synthesis (the ADP-stimulated rate, State 3) in

the coupling experiment, but does not affect electron flow through

the complexes under uncoupled conditions.

The coupling and electron flow experiments were also used to

demonstrate intra- and inter-assay variability. Typically, 3–5

replicate wells per group were used on a plate. Figure 7A shows

average rate data from 3 individual wells of an electron flow and a

coupling assay, with mean, standard deviation and% coefficient of

variation (CV) presented in the corresponding table. Intra-assay

rates are very consistent, with CVs of 10.3% and 4.6% for State 3

and State 4o rates, respectively. RCR values were 4.260.6 and

6.260.6 for States 3/4o and 3u/4o, respectively. Basal and State 3u
values showed #15% CVs. The electron flow assay also exhibited

consistent results, with CVs ,14%. The high CVs reported for

antimycin A (coupling) and rotenone (electron flow) treatment arise

from the very low OCR levels. To illustrate inter-assay reproduc-

ibility, the average of four different mouse liver mitochondrial

preparations (different animals/different days) are presented in

Fig. 7B. Rates of basal, State 3, and State 3u were reproducible

with low standard deviations (CVs ,20%). Expressed in more

conventional units of respiration, the State 3 rate of respiration on

succinate (8366133 pmol O2/min/5 mg mitochondrial protein,

Fig. 7B) is 334654 nmol O/min/mg of mitochondrial protein. The

RCR value as calculated by State 3/State 4o over the four

High Throughput Mitochondrial Respiration

PLoS ONE | www.plosone.org 7 July 2011 | Volume 6 | Issue 7 | e21746



High Throughput Mitochondrial Respiration

PLoS ONE | www.plosone.org 8 July 2011 | Volume 6 | Issue 7 | e21746



independent experiments with succinate as substrate was 3.960.6

and RCR as calculated by State 3u/State 4o was 5.260.6.

We have additionally applied this methodology to test the effects

of a commercially available cocktail of protein phosphatase

inhibitors (PPI) on rat heart mitochondrial respiration. The effect

of the PPI was tested by adding a 1:400 dilution of the premixed

cocktail to the mitochondrial isolation medium immediately prior

to disruption of the tissue with the polytron, and the inhibitors

were included throughout the subsequent steps of the isolation,

and were included in the MAS during the experiment. At the

concentrations used, this cocktail would be expected to inhibit

primarily protein tyrosine phosphatases. As indicated in Fig.8,

rates of State 3, 4o, and 3u respiration with succinate (plus

rotenone) were unaffected by PPI treatment. In contrast, rates of

glutamate/malate-driven State 3 and 3u were significantly lower as

a result of the inhibitor treatment. This approximate 50%

reduction suggests that PPI treatment affects either the activity

of complex I, or the metabolism or transport of glutamate or

malate.

Discussion

We describe the development of a robust and high throughput

assay to measure mitochondrial respiration using the XF24

Analyzer. The major advantage of the method described is the

ability to run multiple samples (20) simultaneously using very small

quantities of material (1–10 mg per well). As a result, it is now

possible to perform types of investigations that require higher

throughput (for instance, drug screening and/or characterization)

and/or studies in which only a small amount of biological material

is available (e.g. a single mouse heart or a human muscle biopsy).

The optimal conditions for performing the assay were not

initially obvious, and they differ significantly from conventional

procedures using a chamber with a Clark-type oxygen electrode.

First, the mitochondria must be captured at the bottom of the

XF24 plate as opposed to being in suspension for conventional

polarography. Second, significantly higher levels of ADP, sub-

strates, and phosphate must be present to sustain respiratory rates.

This difference owes to the small volume of the chamber that is

Figure 6. Using the Coupling and Electron Flow assays in tandem to elucidate mechanistic activity of test agents. Coupling (A, C) and
electron flow experiments (B, D) were performed as described in Methods. Initial conditions are as follows (with final concentrations listed): A–B,
Controls (no additives) or 20 mM sodium azide or 4 mM antimycin-A; C–D, Controls (no additives) or 10 mM malonate or 2.5 mg/ml oligomycin or
2 mM rotenone. See text for further explanation of results.
doi:10.1371/journal.pone.0021746.g006

Figure 5. Comparison of Clark electrode and XF technology shows comparable respiration data between the methods. Mitochondria
isolated from rat heart and mouse liver were used in parallel coupling experiments using either a Hansatech or Rank Clark type electrode or the XF24.
Assays were performed as described in Methods for each platform, respectively. Comparison of Basal, State 3, State 4o and State 3u rates between
the Hansatech and XF with rat heart using or glutamate/malate as substrate (5A) or succinate/rotenone (5B), respectively. Comparison of Basal, State
3, State 4o and State 3u rates between the Rank and XF with mouse liver mitochondria using succinate/rotenone (5C). Data are expressed as mean 6
SD from 3 separate experiments in Fig 5A and B, and mean6 SD from 4 experiments in 5C. The high SD in 5C owes to higher rates obtained with one
of the four mouse liver preps, rather than variation between methodologies on a given day. Data were analyzed using a two-factor ANOVA with
repeated measures on one factor. An interaction was detected only in the data of Fig. 5A, and post-hoc paired comparisons detected lower rates in
the XF24 of State 3 and 3u, and a higher rate of State 4o respiration with rat heart mitochondria oxidizing glutamate and malate (p,0.05).
doi:10.1371/journal.pone.0021746.g005
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created during the measurement cycle in the XF24 (approximately

7 ml). With 5 mg of mitochondria/well, the protein concentration

is 0.7 mg/ml, which is in the range of conditions employed in an

electrode chamber (typically 0.25–1 mg/ml depending upon the

mitochondrial tissue type). However, the total number of moles of

ADP, substrate or phosphate available over the measurement cycle

in this small volume is much less than a typical chamber of larger

volume. For instance, the total quantity of ADP available during

the measurement using 0.5 mM ADP in the assay medium is

only 3.5 nanomoles. If the State 3 rate of respiration of the

mitochondria is 836 pmoles/min (Fig. 6B), and provided that the

P:O ratio is approx 1.3 with succinate as substrate [25], then the

mitochondria have only enough ADP to sustain State 3 respiration

for approximately 2 minutes, which is evident in the tracing in

Fig. 3A. Thus, this small ‘closed’ chamber during measurement

accounts for the requirement of high concentrations of substrates,

phosphate and ADP.

It was necessary to include BSA in the experimental medium

with mouse liver mitochondria, as there was significant

uncoupling in its absence (Fig. 4B). This may relate to the length

of time that the mitochondria spend at 37uC over the course of

the experiment, which may be longer than in a conventional

electrode chamber. Such a requirement for BSA has generally

Figure 7. Assay Reproducibility. In 7A, intra-assay reproducibility is demonstrated. Assays used 3–5 replicate wells and well-to-well variation
within electron flow and coupling assays shows coefficients of variation (CV) ,17% in all measurements (except where OCR has been reduced to
minimal levels with rotenone or antimycin-A). In 7B, inter-assay reproducibility is demonstrated. Four separate uncoupling experiments from four
different preparations of mouse liver mitochondria were averaged to illustrate reproducibility of the assay over multiple days/preparations and shows
CVs ,20%. The corresponding table indicates the means, standard deviations and% CV, average RCR values are given in the text.
doi:10.1371/journal.pone.0021746.g007

Figure 8. Effects of Phosphatase Inhibitor (PPI) treatment on
rat heart mitochondrial respiration. Mitochondria were treated
with a cocktail of phosphatase inhibitors during the isolation procedure
as described in the Methods. Respiratory States 3, 4o and 3u were
measured in the presence (+PPI) or absence (-PPI) of phosphatase
inhibitor treatment in the presence of either succinate/rotenone (3 mg/
well) or glutamate/malate (6 mg/well) as oxidizable substrates, and rates
are expressed per mg mitochondrial protein.
doi:10.1371/journal.pone.0021746.g008
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been attributed to binding of free fatty acids being liberated as

a function of ongoing phospholipase activity. It should be

mentioned that the presence of BSA in the experimental media

shifts the dose response curve to FCCP (a hydrophobic

compound) far to the right, thus requiring higher concentrations

of FCCP to reach a maximal state 3u rate than in the absence

of BSA. It would be expected that the dose response curve of

other hydrophobic compounds in the assay would be similarly

affected.

We also did not anticipate that mitochondria would be

effectively captured and remain adherent throughout repeated

mixing and measurement cycles (Fig. 4). Like other tissue culture

plastic, the XF24 plates are plasma treated to create a hydrophilic

surface for cell adhesion. Tissue culture cell attachment is initially

tenuous, after which cells secrete extracellular matrix proteins for

which they express protein receptors that mediate spreading and

firm adhesion. The surface charge of mitochondria is negative,

largely as a result of the polar head groups of phospholipids [26].

This charge, similar to that of other biological membranes, is

apparently sufficient to allow mitochondria to adhere on the XF24

plate, and adhesion appeared to be unaffected by the reagents

added from the ports or by depolarization with uncoupler.

Surprisingly, we did not observe that coating the XF24 plate with

polyethyleneimine (a cation), or Cell-TakTM (a bioadhesive that

is a mixture of polyphenolic proteins from a marine mussel)

enhanced the maximal rate of respiration after centrifugation of

the mitochondria onto the plate (Fig. 4), thus implying that coating

did not increase mitochondrial adsorption. We did find that mouse

liver mitochondria that had been washed in a physiological salt-

containing buffer did not adhere as well as those isolated

exclusively in sucrose/mannitol (data not shown). Thus, the

adsorption of salt-washed mitochondria might benefit from the use

of an adhesive coating.

The respiratory rates with isolated rat heart and mouse liver

obtained with the XF24 using the described methodology were

generally comparable to rates obtained in Clark-type oxygen

electrode apparatuses (Fig. 5). The respiratory control ratio (state

3/state 4o) measured for mouse liver mitochondria at 37uC with

succinate as substrate was 3.960.6 (Fig. 7B). Most literature

values are based upon polarographic experiments performed at

either room temperature or at 30uC, which is generally

protective to mitochondria compared to 37uC, however, the

respiratory rates and RCR values reported here are comparable

to other reports of polarographic experiments performed at 37uC

[27–29]. Therefore, we believe that the method described here

can yield similar results to more conventional measures of mito-

chondrial oxygen consumption. In adapting this approach to

mitochondria from other tissues and species, mitochondrial

quantity, centrifugation volume, content and concentrations of

reagents in the assay medium, concentrations of respiratory

modulators (ADP, oligomycin, uncoupler) will need to be

optimized. Particular attention should be paid to incubation

conditions and the overall length of the experiment if using

mitochondria that rapidly decline in functional quality with time

after isolation.

In addition to demonstrating how this method could be used to

characterize potential toxicity or the mechanism of action of

compounds (Fig. 6), we also applied the approach to characterize

the effects of a cocktail of protein phosphatases on isolated rat

heart mitochondrial respiration (Fig. 8), in which we identified

a decreased rate of respiration with glutamate and malate but

not succinate as oxidizable substrates. During preparation of

this manuscript, a similar observation was reported by Hoppel

and colleagues [30]. Since early mass spectrometry-based

characterization of the heart mitochondrial proteome [31–32],

understanding of the complete set of proteins involved in the

function and regulation of heart mitochondria has rapidly

advanced [33–34]. Endogenous phosphorylation of multiple

mitochondrial proteins and complexes have been described

[35–41], and characterization of regulatory post-translational

modifications that integrate bioenergetics and cell signaling is an

area of active discovery. Here, we demonstrate how the

described method could be used to assess functional consequenc-

es of manipulation of post-translational modifications in isolated

mitochondria. As employed, the mixture of protein phosphatases

likely inhibited ongoing protein tyrosine phosphatase activity,

and members of the protein tyrosine phosphatase family have

been localized to mitochondria [36,37,42,43]. Phosphotyrosine

modification has been documented in complex I and in specific

steps of the pathway of glutamate/malate oxidation in the TCA

cycle [40,41] that could potentially account for our observed

alterations in respiratory rates. Further proteomic analysis would

be required to establish how the phosphatase inhibitor treatment

employed here altered the phosphorylation status of mitochon-

drial proteins. As well, the assay described here could be

performed with alternative Complex I dependent oxidizable

substrates to further identify the locus of the effects of phos-

phatase inhibitors.

In summary, this report provides details of a powerful and novel

approach for monitoring mitochondrial respiration and peri-

mitochondrial pH changes in relative high throughput with

minute quantities of isolated mitochondria. Such an assay lends

itself to drug screening or identification of effects of altered gene

expression or in vivo treatment on the function of subsequently

isolated mitochondria. In fact, preliminary data suggest that the

XF96 analyzer can be similarly employed with isolated mitochon-

dria. The basic workflow and assay design is identical, however, as

the wells of the XF96 plates are 40% of the surface area of the

XF24 well plates, it was observed that optimal quantities of

mitochondria to use ranged from ,0.5–5 mg per well (data not

shown). In general, the small amounts of mitochondria required

for this new assay make it possible to simultaneously gather

information on mitochondria isolated from single organs of a

mouse or from cultured cells. Within the same plate, as

demonstrated in Fig. 6, effects on different sites in the electron

transport chain can be probed, and the mechanism of action of a

drug or gene product on oxidation of a variety of substrates (such

as pyruvate/malate, fatty acyl carnitine/malate, glycerol-3-phos-

phate, etc) can be determined simultaneously. The concurrent

acquisition of data is advantageous in particular for mitochondria

that decline in quality over the course of the experimental day

following isolation. Overall, we propose that this new methodology

can be a valuable tool for the discovery of mitochondrial-targeted

therapeutics and the elucidation of mitochondrial-related cell

signaling, as well as pathogenesis in a broad variety of conditions

including metabolic,cardiovascular and mitochondrial diseases,

neurodegeneration, and cancer biology.
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