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High throughput single cell multi-omics platforms, such as mass cytometry (cytometry by
time-of-flight; CyTOF), high dimensional imaging (>6 marker; Hyperion, MIBIscope,
CODEX, MACSima) and the recently evolved genomic cytometry (Citeseq or REAPseq)
have enabled unprecedented insights into many biological and clinical questions, such as
hematopoiesis, transplantation, cancer, and autoimmunity. In synergy with constantly
adapting new single-cell analysis approaches and subsequent accumulating big data
collections from these platforms, whole atlases of cell types and cellular and sub-cellular
interaction networks are created. These atlases build an ideal scientific discovery
environment for reference and data mining approaches, which often times reveals new
cellular disease networks. In this review we will discuss how combinations and fusions of
different -omic workflows on a single cell level can be used to examine cellular phenotypes,
immune effector functions, and even dynamic changes, such as metabolomic state of
different cells in a sample or even in a defined tissue location. We will touch on how pre-
print platforms help in optimization and reproducibility of workflows, as well as community
outreach. We will also shortly discuss how leveraging single cell multi-omic approaches
can be used to accelerate cellular biomarker discovery during clinical trials to predict
response to therapy, follow responsive cell types, and define novel druggable target
pathways. Single cell proteome approaches already have changed how we explore
cellular mechanism in disease and during therapy. Current challenges in the field are how
we share these disruptive technologies to the scientific communities while still including
new approaches, such as genomic cytometry and single cell metabolomics.

Keywords: CyTOF/mass cytometry, Cite/REAP-seq, high-dimensional analysis, bioinformatics, machine
learning, biomarker
INTRODUCTION

Since the early days of cell biology scientists have been using optical instruments to identify cell
types in homeostatic conditions and diseases. With the wide introduction of flow cytometry in the
early 70-ies markers and subsequent cell types have evolved but it was only in the last decade that
the introduction of single cell transcriptome sequencing, high dimensional cytometry and imaging
cytometry started revolutionizing the way we interrogate biological samples.
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Isolation of multiple types of molecules (DNA, RNA, or
protein) from a single cell simultaneously, stands at the
beginning of each approach and having standardized and
validated protocols for single cell solutions is surely the
foundation of all the herein described approaches. Utilizing
single cell genome, methylome, chromatin accessibility, while
RNA or protein from the same cell can be used to profile the
transcriptome, and proteome, different single cell omics profiles
alone or in combination can serve as building blocks to construct
a multi-omics profile for the same cell.

In this review article we will recapitulate the highlights of each
of these technologies, analysis pipelines and discuss their
potential to revolutionize future sample analysis, clinical trial
design and ultimately redefine clinical research.
A NEW ERA OF SINGLE CELL DATA
GENERATION

Pioneering Flow Cytometry
The first particle separator using the flow cytometry technology
was employed in 1965 at Los Alamos National Laboratory (1) for
sorting particles with different volumes to meet the needs of
Mack Fulwyler. Meanwhile, Len Herzenberg, who was interested
in a machine that could sort living cells based on their
fluorescence, applied the design of the Fulwyler particle
separator to build the first fluorescence activated cell sorting
(FACS) instrument at Stanford University in the late 1960s (see
the video Inventing the Cell Sorter, Herzenberg Lab, https://
www.youtube.com/watch?v=Ro8P3w9BPhg).

The HIV/AIDS pandemic in the 1980s then gave a dramatic
impulse to the technology of counting specific cells, since it
became clear that the quantification of peripheral blood CD4+ T
cells was crucial to follow the course of the infection, and
eventually for monitoring response to therapy (2). As a
consequence, the development of flow cytometers that had to
be easy-to-use in all clinical laboratories, mainly focused on the
proteome, and helped to widely disseminate this technology.
Nowadays, flow cytometry is a commonly used tool in the field of
immunology to finely dissect the diverse phenotypic and
functional properties of immune cells.

Decades of development have created very robust flow
cytometers aimed to deliver data from thousands to millions of
individual cells from tubes or multi-well plates at acquisition
rates of tens of thousands of cells per minute and expanding from
the proteome, over genes to reporters of transcription. In order
to have a wide dynamic range, the systems are designed for
optimal signal to noise ratios. Typically, fluorescence tagged
antibodies as well as molecular sensors (such as Ca2+-flux),
and genetically encoded reporters (GFP, tdTomatoe, RFP, etc.)
can be detected. The main limitation of this technology lies in the
amount of available dyes, lasers and comparable detectors.
Currently, up to seven lasers with emission wavelengths from
325nm to 650nm are used and tunable lasers are becoming
increasingly common. Nevertheless, the overlap in the emission
spectra limits the number of detectable markers.
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Flow cytometers use either photomultipliers or avalanche
diodes to convert fluorochrome-emitted light into electrical
impulse. The advent of advanced detectors, such as spectral
flow analyzers, first introduced in 1979 (3), allows the acquisition
of biological information over multiple channels/probes. Modern
high parameter flow cytometers, like the BD Symphony, the
Beckham Coulter CytoFLEX, or the Sony Spectral Cell Analyzer
easily allow the measurement of 20+ parameters in a single
sample at high throughput.

Prior to expert guided or automated analysis, data from flow
cytometers needs rigorous pre-processing, which includes
compensation and data normalization. To compensate the
spectral overlap automated approaches using fluorescence
beads and software solutions can be used. Normalization
represents a more complex issue. Traditionally, standardization
of flow cytometry data is difficult as flow cytometry settings
change over time also in the same instrument, therefore creating
batch effects when samples are analyzed days or even months
apart. This issue is also caused by the fact that in flow cytometry
samples cannot be acquired using a truly multiplexing approach,
rather they can only be acquired sequentially over days or weeks
if a plate reader is available. Therefore, curative naming and
metadata are necessary to identify sources of batch effects. To
date, several software solutions are available to normalize
fluorescence values between data sets (4, 5). Magnetic gates on
sub-population landmarks (6) are one of these solutions and
consist in expert-identification of cell sub-populations with
subsequent use of a software tool that automatically adjusts the
gate on the identified populations. However, while this and all
other available solutions are effective when minor shifts occur
during acquisition, they might not be suitable in case of more
substantial shifts occurring during time intensive acquisitions or
when multiple instruments or data from multiple sites are used.

Mass Cytometry: A Truly Multiplexing
Single Cell Technology
Mass cytometry is a new hybrid technology employing principles
of flow cytometry and mass spectrometry. Introduced in 2009
(7), mass cytometry (or Cytometry by Time-Of-Flight, CyTOF)
has pioneered a new era of high-dimensional single-cell analysis,
surpassing the limitations imposed by the spectral overlap in
conventional flow cytometry (8, 9). The new concept of mass
cytometry is the use of high purity, stable, rare earth metal
isotopes coupled to a target-specific probe for single cell labeling.
These probes are detected based on the metals’ mass/charge
ratios by inductively-coupled plasma time of flight mass
spectrometry (10). Among the advantages of this technology
are the absence of spectral overlap, which allows to realistically
measure over 40 markers on a single cell; absence of tissue auto-
fluorescence; true multi-plexing capacity using barcoding
matrices, which allow to run up to 100 samples in parallel
without compromising dimensionality. To date, mass
cytometry has not only been performed on leukocytes by using
antibody-labeled probes but also on cell lines, bacteria,
nanoparticles and beads (11–15). The core technology is
rapidly developing along with bioinformatics and reagent
March 2021 | Volume 12 | Article 590742
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FIGURE 1 | Four-step modular approach for high dimensional OMICS analysis for immune profiling during disease and (immuno)-therapy. Steps consist of (1) sample
preparation, (2) cell barcoding and staining, (3) sample acquisition, and (4) data analysis. Briefly, single cells or histologic slides are prepared from blood, or fixed tissue
samples. Single cells from blood or dissociated fresh tissues are barcoded, stained for live/dead, surface and/or intracellular markers and acquired using single cell solution
mass cytometry. As an alternative CiteSeq can be utilized. Tissues on histologic slides are stained and acquired using imaging mass cytometry. For mass cytometry, data is
bead-normalized and randomized. After de-barcoding data can be loaded in the bioinformatic analysis platform of choice.
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chemistry, thereby creating a largely universal and extendable
next generation platform for multiplexing high-dimensional
single-cell cytometry applied to translational research, systems
biology, and biomarker discovery.

Mass cytometry is ideally applied to research requiring high
parametrization at single-cell resolution such as: (i) resolving
cellular heterogeneity in complex mixtures of cells (e.g. bone
marrow, blood or tissue); (ii) delineating complex phenotypes of
isolated cell types, such as T-cell or myeloid subsets (16–19); or
(iii) extracting maximum information out of limited (clinical)
samples, such as tissue biopsies, blood samples from cancer
patients and children (20–22). This latter makes mass
cytometry ideal for large-scale immune monitoring and drug
screening studies in clinical/translational research and systems
immunology (Figure 1). The type of probes (antibodies) used by
mass cytometry are the same as the ones used in flow cytometry
with the caveat that mass cytometry is less sensitive than
flow cytometry.

Multiparametric Tissue Imaging
More recently, multiparametric (>6 markers) imaging using
immunofluorescent or metal-labeled probes has been
translated to tissues. Currently there are four commercially
available systems: the Hyperion technology (Fluidigm), the
MIBIscope system (Ionpath), the CO-Detection by indEXing
(CODEX, Akoya) instrument platform and the MACSima
(Miltenyi). The concept behind all of these technologies arose
from Stanford University with the idea to extend high
dimensional studies from solution mass cytometry to tissues,
thus allowing efficient spatial resolution.

Mass spectrometry-based instruments like the Hyperion and
MIBIScope vaporize histologic samples previously tagged with
rare metals conjugated-antibodies and analyze their content in a
mass spectrometer. The Hyperion system is an appendix to the
Helios solution mass cytometer and can be operated using the
same instrument with the addition of a laser ablation table to
vaporize histologic samples (23). The MIBIScope is a stand-alone
instrument, which uses an Ion beam for ablating rare metal
stained tissues and needs special gold-coated slides for sample
preparation (24, 25). The administered energy and speed of the
ion beam can be regulated thus enabling different ablation speeds
and tissue resolutions. Most importantly, the ion beam can reach
sub-cellular resolution, therefore allowing the study of
intracellular organelles and structures. The CODEX as well as
the MACSima technologies use antibodies conjugated to unique
oligonucleotide sequence barcodes. Target-specific barcodes with
a dye-labeled reporter allow for highly specific detection.

All data generated on imaging platforms are displayed as data
spots per area revealing the amount of probe that was bound to
Frontiers in Immunology | www.frontiersin.org 4
that spot when the tissue section was stained and ablated/
screened. By plotting the data so that the single-spot data
points are next to each other in the order they were originally
sampled, highly multiplexed images of the tissue sections can be
reconstructed. Together with the spatial information, whole
tissues are electronically reassembled by using bioinformatics.
By employing tissue microarrays and standardized staining
panels, these technologies can be high throughput. Sensitivity
for some probes on Hyperion is low. Due to a higher amount of
energy transferred to the probe, the MIBIscope may offer higher
sensitivity. As for the CODEX platform, this technology has just
become commercially available and evaluation of performance in
terms of sensitivity is still premature. Of note, the MIBIscope and
CODEX systems are less tissue destructive, therefore allowing
downstream use of the tissue for microdissection and further
analyses. All technologies are relatively new to the broad
scientific community and time and user preferences will clarify
which technology is best to address each individual
scientific question.

Genomic Cytometry
Due to its long history and multiple validated analysis workflows,
single cell (sc) RNA sequencing (scRNASeq) in combination
with unsupervised machine-learning bioinformatics is nowadays
the preferred approach to in-depth reveal the complexity of the
cellular landscape in multiple diseases. In 2011 a pioneering
study from Wigler and colleagues using scRNASeq showed that
the metastatic dissemination is the consequence of a single clonal
expansion (26). Increasing scRNASeq throughput (27) (28), has
enabled the identification and characterization of novel or rare
cell types (29), in addition to providing insights into the
underlying mechanisms of cellular development (30) and
response to therapeutic interventions (31).

However, proteins, not mRNAs, are the primary targets of
drugs and protein abundance cannot necessarily be inferred
directly from mRNA abundance (32–35). An unbiased view of
proteins is thus necessary to model cellular dynamics and
response to environmental and therapeutic perturbations. To
address this need, recently, new cross over technologies using
specific protein-targeted tags and untargeted transcriptomic or
targeted genomic approaches have been developed. Cellular
Indexing of Transcriptomes and Epitopes by Sequencing
(CITE-seq) (36) and its sister technology RNA Expression and
Protein Sequencing assay (REAP-seq) (37) use DNA-barcoded
antibodies to convert detection of proteins into a quantitative,
sequenceable readout. CITE-seq uses biotin-conjugated
barcodes, while in the REAP-seq technology barcodes are
directly bound to the probes. These antibody-bound oligos act
as synthetic transcripts that are captured during most large-scale
March 2021 | Volume 12 | Article 590742
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oligodT-based scRNA-seq library preparation protocols (e.g. 10x
Genomics, Drop-seq, ddSeq).
BIOMARKER DISCOVERY AND NOVEL
TARGET IDENTIFICATION

scRNA-Seq in Biomarker Discovery
According to the DNA-RNA dogma, DNA provides the code for
RNA, which in turn is translated into protein (38). The majority
of cell populations studies from complex heterogenous tissues
such as cancer has been conducted on bulk samples, which read
the average signal within a population thus preventing
measurements of the single cell variation. The widespread
knowledge of transcriptomic analysis fueled the study of single
cell genes, transcriptomes and proteomes in several different
diseases and cell types.

Non-invasive single cell-based sequencing of liquid biopsy
has been proposed to screen circulating clonal population of
cancer cells (39). For these reason, sophisticated methods to
capture, enrich and sequence circulating tumor cells (CTCs)
have been optimized. In metastatic breast cancer, scRNA analysis
of CTCs has been performed using Hydro-Seq: high-efficiency-
cell-capture-contamination free scRNA-seq. Using this powerful
method, the authors revealed clinically relevant markers to
identify CTCs and, interestingly, inter- and intra-patient
transcriptome heterogeneity (40). In addition, the use of single
cells sequencing enabled the identification of disease-associated
cellular profile and interactome, which have been subsequently
validated across 13 different diseases such as asthma,
atherosclerosis, breast cancer, chronic lymphocytic leukemia
(CLL), Crohn’s disease, eczema, obesity, influenza, psoriasis,
seasonal allergic rhinitis, type 1 diabetes, tonsillitis and
ulcerative colitis. This further supports the universality and the
power of scRNA-seq for biomarkers detection and identification
of therapeutic targets (41). The breakdown of immune cells
activation and interaction have been analyzed by single cells
studies during bacterial infection: over 7000 human PBMC ex-
vivo infected with Salmonella have been sequenced using 10X
Genomics with the aim to generate a detailed picture of
infection-induced cell states (42).

A similar dynamic of the immune cells can be investigated in
the tumor microenvironment. In hepatocellular carcinoma the
combination of two scRNASeq technologies, SMART-Seq2 and
drop-based platform, revealed six different macrophage clusters
and a novel class of LAMP3+ mature dendritic cells, which
dampens T cell antitumor functions. Additionally, the analysis of
cell populations in multiple organs and body sites has revealed
both the migration paths of immune cells and their origins (43).
Single cell studies of lymphoid cells in cancer are also leading to
the discovery of stronger predictors for disease and treatment
outcomes. TCGA multi-omic data was collected across several
cancers to identify novel markers from tumor infiltrating
lymphocytes as key indicators for prognosis. Protein and
mRNA expression profiles were correlated with survival curves
leading to the discovery of GPR18 as a better prognostic indicator
Frontiers in Immunology | www.frontiersin.org 5
over the previously established CD20+ (44). The interaction
between immune cells and cancer can also be useful to identify
novel therapeutic strategies. In this context, using scRNA-seq,
lymphoid cells generated in the gut mucosa have been proposed
as modulators in colorectal cancer. Various differentiation states
can also play significant roles in the tumor microenvironment
and be potentially relevant for novel immunotherapy strategies
(45). In addition to the interaction among different immune cell
subsets, scRNA-seq has proved valid to investigate the
interaction between immune cells and non-immune cells such
as tumor cells and stroma (46). The power of scRNA-seq in
exploring cell heterogeneity within the same population has been
also applied to the analysis of HIV permissiveness in CD4+ T
cells. In this study CD298, CD63 and CD317 have been identified
as a biomarker signature of cell permissiveness to the viral
infection (47).

Besides study focusing on CTC and immune cells in the
context of cancer, scRNA-seq has recently been used to unearth a
range of clinically relevant non-immune markers from tumor
samples. Recent work has defined cell populations within
malignant osteosarcoma using scRNA-seq and Monocle 2 for
pseudo-time analysis. Markers identified with this method were
accurate in predicting metastases and disease recurrence (48).
Similar techniques were applied to existing data to define novel
biomarkers for hepatocellular carcinoma (49). Zhao et al.
exposed glioblastoma samples to different chemotherapeutics
and used scRNA-seq expression profiles to predict drug
response in individual patients (50). A different study focused
on glioma used existing multi-omic data, including scRNA-seq,
to identify novel biomarkers in cerebrospinal fluid that can be
used to assess diagnosis, prognosis, and directions for therapy
(51). In patients with lung adenocarcinoma, scRNAseq on
samples collected at different time points during disease,
including at the time of metastases formation, enabled the
identification of markers of cellular reprogramming and
immunosuppression (52).

Lately, single cell methods have been employed to
characterize SARS-CoV-2. Using scRNA-seq on COVID-19
positive patient bronchoalveolar lavage fluids (BAL), key
immune cell populations were found to predict disease severity
(53). In another study, peripheral blood mononuclear cells
(PBMC) were collected from patients in the early recovery
phase and using scRNA-sequencing Wen et al. showed a pro-
inflammatory state following the primary infection, therefore
suggesting that patients should be monitored for up to one week
after the primary infection wanes (54). Using previously
collected scRNA-seq data, one study developed a pipeline for
identifying drug targets for COVID-19 and another combined
this data with viral receptor interaction information to identify
mechanisms of COVID entry across multiple organs (54, 55).

Single Cell Proteomics in Biomarker
Discovery
The Nolan laboratory has conducted pioneer work to adapt
analysis of single cell proteomes to immunology using CyTOF.
The more abundant proteomic information from each single cell
March 2021 | Volume 12 | Article 590742
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enabled by mass cytometry provides a much broader landscape
for different types of biological questions such as the frequency of
immune cells in response to a stimulus (56) and the correlation
between tumor pathology and phosphoproteins signaling (57).
Relevant clinical information such as immune response during
diseases (58, 59), assessment of clinical recovery after surgery
(60), and guidance to effective therapy (22, 59) has also been
obtained using this method. Over time, several research groups
have combined this technology with clinical samples, clinical
data and novel functional assays to assist easier disease diagnosis
(61). Mass cytometry has been crucial in deciphering dendritic
cell ontogeny (19, 62), B cell development (63) and in
characterizing the human mucosal immune system in
gastrointestinal pathologies (64). Krieg et al. used high-
dimensional single-cell mass cytometry to characterize subsets
of immune cells in the peripheral blood of metastatic melanoma
patients before and during anti-PD-1 immunotherapy (20).
Thirty surface markers were first assayed in the leukocytes and
a set of T cell subsets at the different stages of differentiation and
activation. Then, functional phenotypes of T cells and myeloid
cells were extensively characterized with single-cell proteomic
profiling to discover the difference between responders and non-
responders to anti-PD-1 immunotherapy. This study showed for
the first time that the frequency of CD14+ CD16− HLA-DRhi

monocytes may serve as a prognostic biomarker of progression-
free and overall survival before immunotherapy (20). Wei et al.
characterized single tumor-infiltrating T cells (TILs) with mass
cytometry by assessing 33 surface and 10 intracellular markers,
including non-T cell lineage markers, T cell differentiation and
activation markers, and T cell lineage transcription factors. This
study showed that both anti-CTLA-4 and anti-PD-1 antibodies
expand exhausted-like CD8 T cells, and that anti-CTLA-4
antibody modulates an ICOS+ Th1-like CD4 effector subset for
engaging exhausted-like CD8 T cells. Wei et al. discovered the
distinct cellular mechanisms of antitumor immune responses
induced by CTLA-4 and PD-1 blockade in the preclinical and
clinical analysis (65). Recently, Spitzer et al. proposed that
effective cancer immunotherapy depends on systemic
immunity. To validate this hypothesis, they assessed antitumor
immune response in lymph node, spleen, blood, and bone
marrow in mouse models of breast cancer using 39 immune
markers for surface and intracellular proteins. This study
provided evidence that a population of CD4+ T cells in
peripheral blood could predict systemic active immunity
required for tumor rejection (66). In addition, Becher et al.
showed circulating auto-reactive T cells in patients suffering
from narcolepsy and multiple sclerosis (21, 67).

Compared to scRNAseq and fluid phase mass cytometry,
imaging mass cytometry (IMC) is still in its infancy mainly
because of the still limited distribution of the technology and
expert laboratories across the world. To date, the most exhaustive
results obtained using IMC have been produced by the
Bodenmiller laboratory using the Hyperion system and focused
on the characterization of immune contexture and tumor
microenvironment in breast cancer (23, 68). We envisage a
widespread dissemination of high dimensional imaging using
Frontiers in Immunology | www.frontiersin.org 6
the Hyperion and previously mentioned sister technologies. This
in turn will contribute to the generation of very comprehensive
atlases, which will be of great value for a deeper understanding of
cellular interactions during health and disease.
INTEGRATION USING BIOINFORMATCS

Pre-print Platforms
One of the biggest challenges posed by single-cell-omic
approaches is the simplification of data processing and
analysis, so that workflows can become readily available not
only for research purposes but also for clinical application.
Several solutions for data storage and processing are nowadays
free or commercially available via subscription or licensing.

Free platforms are FlowRepository (www.flowrepository.org),
ImmPort (import.niaid.nih.gov), and ImmuneSpace (www.
immunespace.org). One commercial service, CytoBank, offers
a cloud-based network that allows easy accessibility to data and
code in a user-friendly format. Online support for analysis or
workflow problem solving is also available. CytoBank includes
analysis packages for FlowSOM and CITE-seq, which are used
for proteomic and transcriptomic data sets, respectively.

FlowJo and SeqGe are two additional large platforms from
BD, which offer user-friendly workflows. Each of these
applications uses extension plugins that can provide quality
control, data analysis, and visualization tools. Because of the
user-friendly data analysis, there are far more limitations on how
the user controls the data meaning that the preprocessing of
single cell data files requires higher refinement prior to using
such a service and often may still require some expertise to
ensure the analysis is robust and significant. Much of the
preprocessing and detailed aspects of data organization are not
controllable within such platforms, which means there is still
room for mistakes.

VDJViewer was specifically developed with the intention to
provide single cell data processing for users that do not have
advanced bioinformatic expertise, therefore making
immunologic single cell data more accessible (69). In addition
to modeling antigen markers, scRNA seq, and meta data, this
application can also perform pseudo-time analysis and
dimensionality reduction (69). As more data and platforms like
VDJViewer become available, there is also a need to improve the
models that operate within a given platform.

While these platforms are undoubtedly allowing wet
laboratories to successfully analyze complex -omic data sets
with minimal assistance of trained bioinformaticians, they are
often limited in their application especially when dealing with
complex datasets.

An alternative approach to commercially available solutions
is the use of preprint platforms, which rely on community
feedback for rapid development of data processing solutions.
Because there is no “universal standard method” to process
single cell data from different experiments and combining
these large data sets requires creative and strategic
methodology, actively seeking user feedback can streamline
March 2021 | Volume 12 | Article 590742
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solutions. The use of these platforms is free and only requires
updated software and operation systems. Further, it ensures
reproducibility, which is essential when the aim is the
generation of a data cloud containing standardized cell and
diseases atlases as references.

There are several leaders in preprint workflows, including
Bioconductor and F1000. F1000 is a life sciences publisher with
four primary divisions. F1000Research is the branch that focuses
on data sharing. Bioconductor is a ready to download software
package available within F1000Research, written in R and used as
a bioinformatics community platform. Bioconductor offers free
download of user-friendly workflows, sample data sets, and data
analysis software packages. Additionally, an updated package is
released every six months. Some of the common workflows
within Bioconductor include scRNAseq and proteomic
differential analysis. One example is Catalyst, a software
program within Bioconductor developed by Mark Robinson
laboratory. This program was specifically developed to offer a
simplified way to analyze single cell mass cytometry data. One
recent application of Catalyst allowed the identification of
immunologic phenotypes pertinent to lung cancer prognosis
(70). Other software programs within Bioconductor optimize
single cell RNA-seq and epigenomic data. Among these
softwares, the ChAMP software program recently allowed the
identification of novel epigenomic biomarkers in colorectal
cancer (71).

Another preprint leader, the 10X genomics platform, is an
organization focused on the development of single cell
technologies and analysis pipelines. Although CellRanger is
best used by commercially available kits, the free available
software is gauged at the analysis of single cell data. Recent
technologies within the 10X genomic project include the Visium
Spatial Gene Expression Solution, which was developed for
spatial resolution of transcriptomic data. In this assay, total
mRNA samples are collected and processed by linking the
transcriptomic barcode to a defined region of interest on the
slide, thus providing spatially relevant information. In addition
to technology development, 10X has led efforts to expand the
power of single cell analysis. In 2017, 10X initiated a project in
partnership with the Human Cell Atlas to create a single-cell
based atlas available as a reference, which would initially include
scRNA-seq data.

CHALLENGES

The field of high dimensional data poses several challenges,
which in our view limit the accessibility of high dimensional
technologies to clinical trial evaluation and drug discovery. The
challenges are mostly related to three major areas: 1) data quality,
2) computational tools, and 3) training of the end user and
generating the infrastructure.

Challenge One—Data Quality
Examples of high dimensional data include genomic,
transcriptomic, proteomic, and microbiome data, which are
derived from different sources and are collected in a variety of
Frontiers in Immunology | www.frontiersin.org 7
distinct formats and often over several sites. This data is
complemented by patient data/medical records. Errors
occurring during measurement or during processing can
compromise the reproducibility and the use of the generated
data. To overcome this hurdle, details about data collection and
generation must be transparently reported and each processing
step must be documented to avoid or minimize data alteration.
Additionally, wet laboratories must follow strict standards
during sample collection, storage, processing and acquisition. It
is also important that data collection, processing and
management follow pre-defined national or international
standards. The national FAIR (findable, accessible,
interoperable, reusable) initiative is one attempt to imply such
a standard (72). Notably, attempts in ensuring procedural
standards must be supported by the application of ethical
standards to protect the privacy of the participating patients
(73). Furthermore, throughout processing and management data
must remain reliable and therefore be complete, of high quality,
diverse, relevant to the question asked, timeless and accurate
(74). Furthermore, data quality must be maintained upon data
compression, storage, transfer and analysis and the entire process
must be reproducible.

Challenge Two—Computational Tools
A desirable goal in the clinics is the creation of a FDA-approved
software that can support clinical decisions (75). A prerequisite
to this is the development of well tested wet lab protocols and
computational tools, which can be easily used by users with a
diverse knowledge level encompassing computational scientists,
wet lab scientist and medical personnel (76). Open shared
resources and code transparency as well as snapshots of
program development can vastly enhance computational tool
development and make the field more attractive to a wide group
of users. Most importantly, wet lab protocols must be developed
and pre-tested over several sites. Docker engines, which allow
running software in a container, therefore making its installation
independent on the environment, resulted in the use of software
by a larger community (77). In this context, it will be of utmost
importance having accessible, large and free data sets to allow for
the testing and validation of software tools on real world data
(78). Approaches such as the moonshot atlas initiative and the
whole genome sequencing project are some of the examples.

Challenge Three—Training of the End User
and Generating the Infrastructure
With the continuous growth of the big data field, the training of
wet lab and clinical scientists in computational sciences becomes
essential (76). Ideally the training should be multi-disciplinary
and cover a broad array of concepts such as molecular diagnosis,
cellular immunology, computer programming, system biology
and patient care. This broad rather than specialized knowledge
will empower the next generation of students to use new software
tools with ease. This can be done in specialized PhD programs or
in the form of on job training degrees. Most importantly, to
optimally achieve these objectives, hospitals and universities
should provide the infrastructure, such as cloud computing,
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high speed internet connections in central as well as rural areas,
easy access to the necessary software and sufficient support staff.
CONCLUSION

There are endless challenges facing multi-omic data processing,
as it is critical to consistently assess analysis methods and avoid
over fitting. Part of this challenge is interpreting how the
individual cell features and their interaction with other cell
types contributes to specific outcomes and therefore designing
appropriate algorithms. Such theory is relevant in economics and
consumer behavior and many of these models have operated as
examples for single cell analysis. For instance, economic game
theory models weigh the net effects of individual decisions and
small subgroups to understand what drives certain economic
trends and this type of strategy has been used to create novel
analysis methods for single cell data (79).

Furthermore, when dealing with multi-omic approaches
layers of single cell data need to be stacked. Therefore, another
challenge is the creation of robust systems to process individual
data sets as well as effective strategies to combine multiple data
sets and produce meaningful outcomes. Novel technologies like
single cell proteomics, single cell sequencing, and single cell
spatial resolution are rapidly developing. As more and more
laboratories world-wide get access to these technologies, network
like the Immuno-Oncology Translational Network (IOTN)
Frontiers in Immunology | www.frontiersin.org 8
develop reference atlases of tissues and lay the basis to
analytical tools. With these atlases as reference we are
witnessing the beginning of tremendous insight into immune
and disease mechanisms during (immuno)therapy.
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