
HIGH THROUGHPUT, PARALLEL, SCALABLE LDPC
ENCODER/DECODER ARCHITECTURE FOR OFDM SYSTEMS

Yang Sun, Marjan Karkooti and Joseph R. Cavallaro
Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005

{ysun, marjan, cavallar}@rice.edu

ABSTRACT

This paper presents a high throughput, parallel, scal-
able and irregular LDPC coding and decoding system hard-
ware implementation that supports twelve combinations of
block lengths 648, 1296, 1944 bits and code rates 1/2, 2/3,
3/4, 5/6 based on IEEE 802.11n standard. Based on
architecture-aware LDPC codes, we propose an efficient
joint LDPC coding and decoding hardware architecture.
The prototype architecture is being implemented on FPGA
and tested over the air on our wireless OFDM testbed,
which is a highly capable, scalable and extensible platform
for advanced wireless research. The ASIC resource require-
ments of the decoder are reported and a trade-off between
pipelined and non-pipelined implementation is described.

1. INTRODUCTION

Low density parity check (LDPC) codes have received
major attention in the research community in recent years
because of their excellent error correction capability and
performance. Several architectures have been proposed for
LDPC decoders [2][4]. Most of these architectures support
just one specific type of LDPC codes or a family of codes
with a fixed block length and code rate. At Rice University,
a flexible high throughput LDPC decoder that supports a
family of codes with different block lengths and code rates
has been proposed in [5]. In this work we propose a joint
LDPC encoder and decoder based on the IEEE 802.11n
draft specification [1]. The encoder/decoder pair supports
twelve combinations of block lengths 648, 1296, 1944 bits
and code rates 1/2, 2/3, 3/4, 5/6. The parity check ma-
trices of these codes are irregular block-structured codes as
defined in [1]. The layered belief propagation algorithm [7]
is used in our design because it converges twice as fast as
the standard belief propagation algorithm resulting in twice
the throughput. A prototype of the encoder/decoder archi-
tecture is implemented in Verilog HDL and tested on FPGA
and also synthesized on 0.13 µm ASIC. The logic synthe-

sis report shows a better performance in terms of area effi-
ciency and throughput than the currently reported works on
IEEE 802.11n LDPC decoder [5][6].

2. EFFICIENT LDPC ENCODER

An LDPC code is a linear block code specified by a very
sparse parity check matrix (PCM). LDPC codes are usually
represented by a bi-partite graph in which a variable node
corresponds to a ’coded bit’ or a PCM column, and a check
node corresponds to a parity check equation or a PCM row.
There is an edge between each pair of nodes if there is a
’one’ in the corresponding PCM entry. In a general analysis
an (n, k) LDPC code has k information bits and n coded
bits with code rate r = k/n. The parity-check matrix H is
of dimension (n− k) × n, and it defines a set of equations.

H · vT = 0 (mod 2) (1)

Denote H = [H1 H2], where H1 and H2 have dimen-
sions (n − k) × k and (n − k) × (n − k), respectively.
Denote codeword v=[s p], where s is the k information bits
and p is the n− k parity bits. From (1), we have

H1 · sT +H2 · pT = 0 (mod 2) (2)

pT = H−1
2 H1 · sT (mod 2) (3)

High encoding complexity arises from the high density
of H−1

2 [8]. However, for the IEEE 802.11n proposed
check matrix, H2 has a simple deterministic structure, and
encoding can be performed recursively. As shown in Fig. 1,
H2 is anm×m array of S×S sub-matrices, where S could
be 27, 54 or 81 depending on the different code lengths. The
first column h = [h0, h1, ..., hm−1]T satisfies that 1) hi is
either a S×S zero matrix or a S×S shifted identity matrix
and 2)

∑m−1
i=0 hi = Is×s (mod 2).

Based on IEEE 802.11n[1], H1 consists of a m × b
array of S×S sub-matrices, which are either zero or shifted
identity matrices. Given a block of information bits s, if
we decompose s into 1 × b array of 1 × S sub-matrices,

1-4244-0670-6/06/$20.00 ©2006 IEEE



I

I

I

II

I

.

..

.

.

.

h0

h1

I

I

.

.

.

hm-1 0

0 I = S x S identity matrix

h i = S x S shifted identity matrix

S = 27/54/81

Figure 1. Parity matrix H2

and also decompose parity bits p into 1 ×m array of 1 × S
sub-matrices, from (2) and H2, we can prove that

pT
0 =

m−1∑
i=0

H
(row i)
1 · sT (mod 2)

pT
1 = H

(row 1)
1 · sT + h0 · pT

0 (mod 2)

pT
2 = H

(row 2)
1 · sT + h1 · pT

0 + pT
1 (mod 2)

...

pT
m−1 = H

(row m−1)
1 · sT + hm−2 · pT

0 + pT
m−2 (mod 2),

Since H1 consists of either zero or shifted identity sub-
matrices, H(row i)

1 sT can be efficiently implemented by a
S-bit barrel shifter, a S-bit XOR and a S-bit Register, as
shown in Fig. 2. With all the H(row i)

1 sT determined, the p0

through pm−1 can be found recursively.

XOR Reg

Barrel shifter ... s2 s1 s0

...
shift 2
shift 1
shift 0

S bit
S bitS bit H(row i).sT

Figure 2. Circuit to calculate H(row i)
1 sT

3. LDPC SOFT DECODING ALGORITHM

The decoder architecture proposed in this paper utilizes
the iterative layered belief propagation (LBP) algorithm as
defined in [7]. Fig. 3 shows a block-structured parity-check
matrix, which is a D×B array of S×S sub-matrices, each
sub-matrix is either a zero or a shifted identity matrix with
random shift value. In every layer, each column has at most
one 1, which satisfies that there are no data dependencies be-
tween the variable node messages, so that the messages flow
in tandem only between the adjacent layers. The block size
S could be 27, 54 or 81 corresponding to the code lengths-
648, 1296 and 1944 respectively [1].

I 0

I 0 I 0

I 0

I 0

I 0

I 1

I 1

 I 0

I 0

I 22 I 0

I 6

I 2

I 9

I 5

I 17

I 13

B = n /S

D
= (n

-k) /S

S

S

.

.

Layer D-1

Layer 0

Layer 1

Figure 3. Block-structured irregular matrix,
where Ix is an identity sub-matrix right
shifted by x

Let L(qmj) denote the variable node log likelihood ratio
(LLR) message sent from variable node j to the check node
m, then:

L(qmj) = L(qj) −Rmj , (4)

Rmj =
∏

j′∈N(m)\{j}
sign (L(qmj′)) Ψ

⎡
⎣ ∑

j′∈N(m)\{j}
Ψ (L(qmj′))

⎤
⎦ , (5)

Ψ(x) = − log
[
tanh

( |x|
2

)]
,

L(qj) = L(qmj) +Rmj , (6)

in which Rmj is the check node LLR message sent from
the check node m to the variable node j and L(qj) (j =
1, . . . , N ) represent the a posteriori probability ratio (APP)
for all variable nodes. The APP messages are initialized
with the channel reliability values of the coded bits. N(m)
is the set of all variable nodes connected to the check node
m. To simplify the hardware implementation of the non-
linear function ψ(x), updating of the check node messages
in (5) is replaced with the modified min-sum approxima-
tion [3]. According to this solution, the updating of check
node messages in themth row of the PCM is determined as:

Rmj ≈
∏

j′∈N(m)\{j}
sign (L(qmj′))×max

(
min

j′∈N(m)\{j}
|L(qmj′)| − β, 0

)
.

where β is a correcting offset equal to a positive constant.
With a properly chosen β, the modified min-sum approxi-
mation exhibit only about 0.1 dB of degradation in perfor-
mance [3].

Hard decisions can be made after every horizontal layer
based on the sign of L(qj). If all parity-check equations are
satisfied or the pre-determined maximum number of itera-
tions is reached, then the decoding algorithm stops. Other-
wise, the algorithm repeats from Eq. (4) for the next hori-
zontal layer.



APP [647 :0]

CHECK [647:0]

APP dual port 
Memory

(24 X 648 bits)

CHECK dual port
Memory

(96 X 648 bits)

Flexible
Permuter

DFU0 DFU1 DFU80

CTRL

X 81...

ROM

waddr
raddr

shiftX

CHECK_out [647:0]

APP_out [647:0]

Parallel Decoding

Lqj Rmj

Lqj_new from DFU Rmj_new from DFU

Lqj_new Rmj_new

Figure 4. LDPC decoder architecture

4. PARALLEL DECODER

Fig. 4 shows the block diagram of the LDPC decoder
based on the layered BP decoding algorithm. Depending on
the block lengths, S(27/54/81) parallel variable node mes-
sages are read out from APP memory and passed through a
flexible permuter to be routed to the correct decoding func-
tion unit (DFU) for calculating new variable node messages.
The shift values of the matrices are fetched from ROMs to
generate appropriate addresses to the APP and Check mem-
ories. The DFUs are the central processing unit of the ar-
chitecture since they calculate and update APP and Check
memories based on equations (4)-(6). For the code size of
1944, all the 81 DFUs are used, for the code size of 1296, 54
DFUs are used, and for the code size of 648 only 27 DFUs
are used. A pseudo-code for this DFU is shown in Algo-
rithm 1.The decoding algorithm will require Memory Read
+ Memory Write + Processing = 2 * Wr + 1 clock cycles to
finish one layer of decoding. (Wr is equal to the number of
non-zero sub-matrices in a layer).

Algorithm 1: Pseudo code for layered LDPC decoding:

for iteration = 0 to P

for layer = 0 to M − 1

for j = 0 : n − 1

Read L(qj) and Rmj from memory
Calculate equation (4) − (6), update new L(qj) and Rmj

to memory
end

end
end

4.1. Pipelined decoder architecture

In this section, we propose a pipelined decoding algo-
rithm as well as a hardware implementation. Fig. 5 shows a
two-stage pipeline decoding. Instead of waiting for layer i
to update all the APP node messages, the next layer i+1 can
start to read APP node messages slightly after layer i begins
to update new APP node messages. Due to the random lo-
cations of non-zero sub-matrices in each layer, it might have
a pipeline hazard which is shown in Fig. 6 as an example.
The cross signs in Fig. 6(a) indicate non-zero sub-matrices.
As shown in Fig. 6(b), at clock cycle 6, layer i + 1 is try-
ing to read memory location 3, which will not be updated
until clock cycle 8 (we assume 1 clock cycle SRAM write
latency). In order to avoid memory conflicts, two memory-
read stalls are inserted at clock cycle 6 and cycle 7.

Writing APP
message to Memory

Reading APP 
message from Memory

Writing APP
message to Memory

Reading APP
message from Memory

Layer i

Layer i+1

Figure 5. Two stage pipelining decoding

XLayer i

Layer i+1

Memory addr 0 1 2 3 4 5

R0 R2 R3 R5 P W0 W2 W3 W5

R1 ST ST R3 P W1 W3 W4

Clock
cycle

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Layer i

Layer i+1

memory read stall

R4

R = Read, W = Write
P = Process
ST = Stall

(a) Two adjacent layers of the check matrix

(b) Read and Write pipeline stage

X X X

X X X

Figure 6. Pipelining hazard

A hardware implementation of this pipelined DFU is
shown in Fig. 7. A local FIFO will be needed to buffer
the next layer’s data while processing the current layer’s
data. The proposed pipeline decoding can increase the over-
all throughput by about 1.5 to 2 X, depending on the code
rates.



FIFOapp[7:0]

chk[7:0]

ABS FMIN

DFFXOR
XORsgn bit

abs
to2s

Lqmj Lqmj_fifo

sgn

- + app_o[7:0]

chk_o[7:0]
sgn

min1
min2

push
pop

Rmj

Figure 7. Pipelined DFU

5. DECODER ASIC IMPLEMENTATION
AND PERFORMANCE ANALYSIS

The LDPC Decoder architecture was implemented in
Verilog HDL and synthesized on a TSMC 0.13µm standard
cell library. Table 1 shows a summary of synthesis results.
Complexity is measured in equivalent gates for logic and
in bits for memories. An overall complexity of 90 K logic
gates is measured for non-pipelined implementation, plus
77, 760 bits RAM. While 195 K logic gates is measured for
pipelined implementation, plus 77, 760 bits memories.

A Verilog RTL simulation model was used to measure
average throughput v.s. SNR level. For instance, at a rather
low SNR 1.0 dB, the pipelined decoder can achieve 150
Mbps. While at SNR 2.2 dB, the pipelined decoder can
achieve about 1 Gbps.

Table 1. LDPC decoder design statistics.
Non-pipeline Pipeline

Frequency 400 MHz 400 MHz
Area 1.3 mm2 1.9 mm2

Logic gates 90 K 195 K
Total memory 77, 760 bits 77, 760 bits

Throughput@2.2dB SNR 500 Mbps 1 Gbps
Throughput@1.0dB SNR 80 Mbps 150 Mbps

6. LDPC ENCODING/DECODING
TESTING ON WIRELESS TESTBED

In order to explore LDPC encoding and decoding per-
formance, we have been conducting over the air OFDM ex-
periments using the Rice Wireless Open Access Research
Platform. As shown in Fig. 8, the Rice WARP Plat-
form (http://warp.rice.edu) is reconfigurable and consists of
FPGA baseband processors along with multiple attached 2.4
GHz radio subsystems, which enables quick prototyping of
wireless communication algorithms. Proposed LDPC en-
coding and decoding is currently being tested on the WARP
platform.

Figure 8. Wireless OFDM testbed

7. CONCLUSION

We have presented a high throughput parallel LDPC
decoder and an efficient LDPC encoder based on the
IEEE802.11n standard. The encoder/decoder is based on
block structured irregular codes that can be extended to sup-
port other code lengths and code rates. The LDPC encoder
and decoder is being implemented in FPGA and tested on
our wireless testbed. Future applications will be LDPC real
time encoding and decoding for MIMO OFDM.

REFERENCES

[1] IEEE 802.11n Wireless LAN Medium Access Control MAC
and Physical Layer PHY specifications. IEEE 802.11n-D1.0,
2006.

[2] A.J. Blanksby and C.J. Howland. A 690-mW 1-Gb/s 1024-b,
rate-1/2 low-density parity-check code decoder. IEEE Journal
of Solid-State Circuits, 37(3):404 – 412, 2002.

[3] J. Chen, A. Dholakai, E. Eleftheriou, M. Fossorier, and X. Hu.
Reduced-complexity decoding of LDPC codes. IEEE Trans-
actions on Communications, 53:1288 – 1299, Aug 2005.

[4] Y. Chen and D. Hocevar. A FPGA and ASIC implementation
of rate 1/2, 8088-b irregular low density parity check decoder.
In IEEE Global Telecommunications Conference, 2003, Dec.
2003.

[5] M. Karkooti, P. Radosavljevic, and J. R. Cavallaro. Config-
urable, High Throughput, Irregular LDPC Decoder Architec-
ture:Tradeoff Analysis and Implementation. In IEEE Interna-
tional Conference on Application-specific Systems, Architec-
tures and Processors (ASAP 06), 2006. Accepted.

[6] F. R. M. Rovini, N. L’Insalata and L. Fanucci. VLSI Design of
a High-Throughput Multi-Rate Decoder for Structured LDPC
Codes. Proceedings of the 2005 8th Euromicro conference on
Digital System Design, pages 202–209, Aug 2005.

[7] M. M. Mansour and N. R. Shanbhag. High-throughput LDPC
decoders. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 11:976–996, Dec. 2003.

[8] T.J. Richardson and R. Urbanke. Efficient Encoding of
Low-Density Parity-Check Codes. Information Theory, IEEE
Transactions on,, 47(2):638 – 656, 2001.


