
Vol:.(1234567890)

MRS Advances (2021) 6:32–36

https://doi.org/10.1557/s43580-021-00008-1

1 3

ORIGINAL PAPER

High‑throughput prediction of stress–strain curves of thermoplastic 
elastomer model block copolymers by combining hierarchical 
simulation and deep learning

Takeshi Aoyagi1 

Received: 10 December 2020 / Accepted: 13 January 2021 / Published online: 5 February 2021 

© The Author(s) 2021

Abstract 

We achieved high-throughput prediction of the stress–strain (S–S) curves of thermoplastic elastomers by combining hierar-

chical simulation and deep learning. ABA triblock copolymer with a phase-separated structure was used as a thermoplastic 

elastomer model. The S–S curves of the ABA triblock copolymers were calculated from the hierarchical simulation of self-

consistent field theory calculations and coarse-grained molecular dynamics simulations. Because such hierarchical simula-

tions require considerable computational resources, we applied a deep learning technique to accelerate the prediction. Sets of 

phase-separated structures and the S–S curves obtained from the hierarchical simulation were used to train a 3D convolutional 

neural network. Using the trained network, we confirmed that the predicted S–S curves of the untrained structures accurately 

reproduced the simulation results. These results will enable us to design novel polymers and phase-separated structures with 

desired S–S curves by high-throughput screening of a wide variety of structures.
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Introduction

Thermoplastic elastomers (TPEs) are typical industrial prod-

ucts, in which the process of microphase separation of block 

copolymer is utilized [1, 2]. The products have many appli-

cations in daily life—e.g., elastic fibers, films, and adhesives. 

Dynamic properties such as non-linear stress–strain (S–S) 

behaviors are key to the design of such industrial products. 

Phase-separated structures and polymer chain structures 

affect S–S behaviors. However, industrial products often 

have complicated metastable structures, and it is difficult 

to determine the relationship between such phase-separated 

structures and S–S behavior.

Aoyagi et al. [3, 4] have proposed hierarchical simula-

tions to study the mechanical properties of ABA triblock 

copolymers such as those found in TPEs. The simulations 

combine self-consistent field theory (SCFT) calculations 

and coarse-grained molecular dynamics (CGMD) simula-

tions. They constructed the spherical phase of the ABA tri-

block copolymers for CGMD simulations from the segment 

distribution obtained from the SCFT calculations. Using 

the initial structure, CGMD simulations were conducted 

and S–S curves were obtained under tensile deformation. 

This approach can be extended to study the S–S behavior of 

metastable structures. However, considerable computational 

resources are required to cover a wide variety of structures.

Recently, machine learning has been widely used in mate-

rials science, including in the study of polymeric materi-

als [5–7]. With regard to polymeric materials, higher-order 

structures such as phase-separated structures in addition to 

chemical structures must be considered if structure–property 

relationships are to be determined by machine learning. The 

convolutional neural network (CNN) [8] is one of the most 

popular deep neural networks and widely employed for 2D 

image recognition. CNN methods can be extended to 3D 

images (3DCNN) [9], and the 3DCNN is potentially useful 

for the study of higher-order structure–property relationships 

[10–12].

In the present study, we introduce the high-throughput 

prediction of S–S curves of ABA triblock copolymers by 

combining hierarchical simulation and 3DCNN.
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Materials and methods

Hierarchical simulation

Figure 1 is an overview of the hierarchical simulation used 

to obtain the S–S curves of the block copolymers.

The following is a brief description of the method; the 

details are available in the literature [3, 4]. In the first step, 

SCFT calculations are conducted to obtain the phase-sep-

arated structures of the block copolymers. Next, the chain 

configurations for the CGMD simulations are generated by 

the density biased Monte Carlo algorithm (DBMC) proposed 

by Aoyagi et al. [13]. The generated structures were relaxed 

with the NVT ensemble followed by the NPT ensemble. 

The temperature T was set to 0.3 [ε/kB], which is below the 

glass transition temperature of the glassy A domain (ε is the 

energy unit of the Lennard–Jones potential). The pressure 

for NPT was set to maintain the density at approximately 

0.85 [m/σ3], where m is the mass of the bead and σ is the 

length unit of the Lennard–Jones potential.

The system was subjected to tensile deformation to elu-

cidate its elastic behavior. The unit cell was elongated in 

one direction with constant deformation speed. We used the 

Parrinello–Rahman constant stress algorithm with fixing the 

cell angles to control the stress in the directions perpendicu-

lar to the deformation. The deformation speed was set so that 

the initial deformation rate was 1.0 × 10−4 [τ−1], where τ is 

a time unit of the system, and deformation continued up to 

a strain of 3.0.

All calculations were conducted using the OCTA system 

[14], which is a platform for the simulation of soft material. 

The SUSHI [15] and COGNAC [13] programs within the 

OCTA system were used for SCFT calculations and CGMD 

simulations respectively.

Deep learning

Figure 2 shows the 3DCNN architecture used in the pre-

sent study. The training data were sets of the local volume 

fractions of the A segment fA(r) in each 64 × 64 × 64 grid 

point (obtained from the SCFT calculations) and the array 

of stress at strains from 0 to 3.0 at intervals of 0.03 (a total of 

101 points). Four convolutional layers and two max-pooling 

layers were followed by flatten and dense layers. A rectified 

linear unit (ReLU) function was used to activate each layer 

except the last one. Dropout with a 0.5 drop rate was applied 

after each of the two max pooling layers and the first dense 

layer to avoid overfitting.

The 3DCNN was implemented using TensorFlow 2.3.0 

[16]. We assigned 80% and 20% of all the data for training 

Fig. 1  Overview of hierarchical simulation. (1) Phase-separated 

structures of block copolymers are obtained by self-consistent field 

theory (SCFT) calculations. (2) Initial configurations for coarse-

grained molecular dynamics (CGMD) are generated by density 

biased Monte Carlo (DBMC). (3) Tensile deformations are conducted 

by CGMD

Fig. 2  The three-dimensional convolutional neural network (3DCNN) architecture used in the present study
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and validation, respectively. The training step was executed 

for 1000 epochs with a batch size of 32.

Polymer models

This study focuses on the elastic property of TPEs, in which 

the glassy (A) segments are minor components, and phase-

separated structures are observed. The total volume fractions 

of the A segments fA of the ABA copolymers were set at 

values between 0.15 and 0.50 with intervals of 0.05. The χNs 

for the SCFT calculations were set to 80 for fA values less 

than or equal to 0.2, and to 40 for the remaining fA values. 

The chain length N for CGMD simulations was set to 80, and 

the numbers of A and B segments in a chain are determined 

from the fA. The total number of chains was set to 2970.

The physical properties and miscibility were controlled 

by the cutoff distances of the Lennard–Jones potential. The 

cutoff distances between the A-A and B-B segments were set 

to 2.5 and  21/6 σ to demonstrate glassy and rubbery proper-

ties, respectively. The cutoff distance between A and B was 

set to maintain phase-separated structures. Twenty phase-

separated structures were obtained for each fA with differ-

ent initial random seeds for the SCFT calculations. Tensile 

deformation was applied to the x-, y-, and z-directions, and 

three S–S curves were obtained from one structure. A total 

of 480 sets of structures and S–S curves were prepared.

Results and discussion

Figure 3 shows examples of phase-separated structures 

obtained from the SCFT calculations. Normally, SCFT cal-

culations with homogeneous initial state produce various 

metastable structures depending on the initial random seeds.

Figure 4 shows the S–S curves for all the samples. The 

figure includes 480 plots. Although the plots with the same 

fA values are bundled together and separated from those with 

different fA values, the S–S curves also depend on the phase-

separated structures.

We trained the 3DCNN using these phase-separated 

structures and S–S curves. After training, the S–S curves 

were predicted from the untrained phase-separated struc-

tures. Mean square errors of stress for both trained and 

untrained data were less than 0.001, and no obvious overfit-

ting was observed. Figure 5 shows the S–S curves of some 

of the untrained samples. The predicted S–S curves agreed 

very well with those obtained by CGMD simulations, and 

we confirmed that the dependency of a phase-separated 

structure on the S–S curve was reproduced. The prediction 

by trained 3DCNN was completed in a second, whereas the 

hierarchical simulation required more than 1 week of com-

putational time using a single CPU with eight cores.

Conclusion

We performed high-throughput prediction of the S–S curves 

of TPEs by combining hierarchical simulation and 3DCNN. 

We produced the S–S curves of an ABA triblock copoly-

mer—which served as a model TPE—by the hierarchical 

simulation of SCFT calculations and CGMD simulations. 

The 3DCNN was trained using sets of phase-separated struc-

tures and S–S curves, and the trained 3DCNN was able to 

accurately predict the S–S curves of untrained phase-sepa-

rated structures.

This is a promising result for the study of higher-order 

structure–property relationships, and the technique enables 

the rapid screening of the physical properties of polymeric 

materials with various structures and morphologies. In this 

report, only phase-separated structures were used for the 

training of deep neural network. We are studying to include 

the polymer chain structure for the training set. With this 

extension, polymers with desired structures, morphologies, 

and properties can be designed by optimization using the 

trained neural networks.

Fig. 3  Examples of phase-separated structures. Each structure is 

metastable structure obtained from different volume fraction and ini-

tial random seed for the SCFT calculations. Isodensity surfaces of 

fA(r) = 0.5 are shown

Fig. 4  Stress–strain (S–S) curves of all the samples obtained by 

coarse-grained molecular dynamics (CGMD) simulations
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volutional neural network (3DCNN) predictions. The figure shows arbitrary chosen 48 plots out of 96 untrained samples
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