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Abstract

MicroRNAs (miRNAs) are non-coding RNAs of ~22 nucleotides in length that regulate gene

expression by interfering with the stability and translation of mRNAs. Their expression is

regulated during development, under a wide variety of stress conditions and in several path-

ological processes. In nature, animals often face feast or famine conditions. We observed

that subjecting early L4 larvae from Caenorhabditis elegans to a 12-hr starvation period pro-

duced worms that are thinner and shorter than well-fed animals, with a decreased lipid

accumulation, diminished progeny, reduced gonad size, and an increased lifespan. Our

objective was to identify which of the 302 known miRNAs of C. elegans changed their

expression under starvation conditions as compared to well-fed worms by means of deep

sequencing in early L4 larvae. Our results indicate that 13 miRNAs (miR-34-3p, the family of

miR-35-3p to miR-41-3p, miR-39-5p, miR-41-5p, miR-240-5p, miR-246-3p and miR-4813-

5p) were upregulated, while 2 miRNAs (let-7-3p and miR-85-5p) were downregulated in 12-

hr starved vs. well-fed early L4 larvae. Some of the predicted targets of the miRNAs that

changed their expression in starvation conditions are involved in metabolic or developmen-

tal process. In particular, miRNAs of the miR-35 family were upregulated 6–20 fold upon

starvation. Additionally, we showed that the expression of gld-1, important in oogenesis, a

validated target of miR-35-3p, was downregulated when the expression of miR-35-3p was

upregulated. The expression of another reported target, the cell cycle regulator lin-23, was

unchanged during starvation. This study represents a starting point for a more comprehen-

sive understanding of the role of miRNAs during starvation in C. elegans.
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Introduction

When cells are deprived of nutrients, they respond to starvation by changes in intracellular sig-

naling, in order to enhance their chances of survival [1]. One such response is metabolism

modulation by activating catabolic pathways and suppressing anabolic ones, generating neces-

sary metabolites to maintain core cellular activities [2]. If homeostasis cannot be re-established,

a new gene expression program is enforced to try to escape cell death. MicroRNAs (miRNAs)

are thought to help maintain homeostasis and/or reprogram gene expression [3].

miRNAs are non-coding, short RNAs of approximately ~22 bases that modulate stability

and translational capacity of their mRNA targets [4]. More than half of all mammalian

mRNAs are predicted targets of miRNAs [5]. Considering that the number of human miRNAs

already reported is 2,603 (miRBase Release 20 [6]), and maybe reaching over six thousand,

according to a recent analysis of sRNA-seq datasets from 13 human tissue types [7], they out-

number cellular kinases and phosphatases (more than 500 kinases and 150 phosphatases have

been predicted in the human proteome), emphasizing their importance in regulation. MiRNAs

also play key roles in mediating stress responses [8]. Paradoxically, inactivation of most indi-

vidual miRNAs in flies and worms has no effect on viability or development when assayed

under standard laboratory conditions [9–11]. In contrast, they seem to be indispensable when

mutant animals are subjected to stress conditions: e.g. miR-7 knockout flies are unable to prop-

erly develop their eyes if the flies are housed in an environment that shows cyclic temperature

variations [12]. Stress conditions can produce dramatic changes in miRNA biogenesis, subcel-

lular localization, activities of miRNA-protein complexes and the expression of their targets

[3].

Several fundamental phenomena were discovered in C. elegans such as programmed cell

death, RNAi and endogenous regulation by miRNAs. C. elegans is a relatively simple animal

formed by 959 somatic cells in the hermaphrodite and is widely used as an experimental model

due to the large amount of genetic tools and available mutants. It has a short generation time,

is easy to culture and has a fully sequenced genome. Because it is completely transparent, it

allows direct visualization of gene expression with reporters like GFP. In addition, it is simple

to perform high-throughput studies on gene expression using knockouts or knockdowns by

RNAi [13].

C. elegans develops from embryo to adult in 3 days, going through 4 different larval stages

(L1, L2, L3 and L4). The adults can live for up to 3 weeks under favorable conditions [14]. Like

many other animals, C. elegans responds to starvation by entering developmental arrest at dif-

ferent stages of its life cycle. When embryos hatch in the absence of food, they enter an L1 dia-

pause and can survive for about two weeks [15]. If late L1 worms are subjected to starvation,

they enter an alternative stage called dauer larvae (or dauer diapause), in which development is

arrested between L2 and L3 larval stages [16]. In the dauer state, larvae do not feed or move,

show a low respiratory rate, lower their ATP consumption and are highly resistant to external

conditions [16]. When food is available, worms exit diapause, resume larval development into

the adult stage with full reproductive capacity and a normal life span.

The participation of miRNAs in development has been extensively studied, but information

of how they are involved in other cellular processes is still scarce. Recently, a combination of

genetics, biochemistry and bioinformatics has been used to elucidate the physiological function

and biological relevance of several miRNA-target interactions, as well as to derive miRNA-tar-

get interaction networks that show how miRNAs are involved in robust cellular responses to

different environmental conditions [17]. Different diets, caused by augmented intake or defi-

ciency of nutrients such as carbohydrates, vitamins, fatty acids, and amino acids are also

known to produce changes in miRNA expression [18]. Several miRNAs have been reported to
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change their expression under starvation conditions. For example, miR-71 was shown to be

involved in L1 starvation survival as it interacts with several target genes from the Insulin/IGF-

1 signaling (IIS) pathway, in addition to its role in longevity [19–22]. Under dietary restriction

conditions, multiple miRNAs changed their expression level, including miR-71 and miR-228,

among others [23,24].

Fasting response studies have mostly focused on proteins, such as changes in activity and/or

abundance of metabolic enzymes, signaling pathways or transcriptional factors. These studies

have been performed only in a limited number of isolated tissues (muscle, liver, etc), and not

on the whole organism, that allows for a more convenient analysis of systemic effects. Nutrient

availability has profound effects on gene expression that involve the participation of different

pathways. Such a complex activity needs a set of regulatory factors that coordinate the

responses to starvation at the organismal level. miRNA-mediated regulation, in conjunction

with other mechanisms of gene regulation, such as transcriptional regulation and protein deg-

radation, participate to enhance the robustness of the response to different physiological condi-

tions [25]. In particular, miRNAs have the ability to adjust the expression of a large number of

proteins as each miRNA is able to target many different mRNAs, and each mRNA could be tar-

geted by several miRNAs at once [26]. Additionally, the expression of the miRNAs is tightly

regulated in response to different stress conditions [27,28]. Furthermore, the response medi-

ated by miRNAs occur in the timescale of hours, producing changes in metabolism and gene

expression that allow the organisms to circumvent different challenges [29–31].

Given the above-mentioned characteristics associated to miRNA-mediated regulation, we

think they could be key participants in the response to nutrient-deficiency. Recently, Larance

et al. [32] reported that approximately 5,000 proteins changed their abundance under starva-

tion conditions in C. elegans, most of them involved in central metabolic pathways, and others

including chromatin-associated proteins. It is possible that some of the changes observed in

the proteome are the result of regulation performed by miRNAs. Here, we addressed the ques-

tion of how miRNAs participate in the response to food deprivation in C. elegans L4 larvae. We

found that several miRNAs changed their expression under starvation conditions, among them

the miR-35-41 cluster that was unregulated. MiRNAs of this cluster are involved in regulating

the expression of gld-1 and lin-23, whose products are important for gonad formation and ovo-

genesis, and for cell cycle control, respectively.

Materials and Methods

Strains and Culture

The wild type strain N2 of C. elegans was grown under standard conditions at 18°C and fed

with Escherichia coli OP50 and cholesterol [33]. The worms were synchronized by killing all

the larval and adult worms by immersion in sodium hypochlorite, a condition in which only

eggs can survive [33]. After synchronization, worms were seeded on a Petri dish and fed with

E. coli OP50 until they reached early L4 larval stage; half of the larvae were washed with M9

buffer to eliminate all bacteria, after the washes the larvae were incubated on a Petri dish with-

out bacteria, while the other half were normally fed. After 12 hrs, both samples (well-fed and

12-hr starved) were washed with M9 buffer (42.26 mMNa2HPO4; 22.04 mM KH2PO4; 85.56

mMNaCl; 0.87 mMMgSO4).

Length measurement

One drop of M9 buffer-containing well-fed and 12-hr starved early L4 larvae were laid on a

Neubauer chamber for length measurements; 30 larvae were measured for each condition, and

photographed under a Nikon SMZ800 stereoscopic microscope.
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Body fat assessment

Well-fed and 12-hr starved early L4 larvae were washed three times in M9 buffer. The pellets of

larvae were resuspended in 120 ul of PBS 1X and an equal volume of buffer MRWB 2X (160

mM KCl; 40 mM NaCl; 14 mM Na2EGTA; 0.2% β-mercaptoethanol), containing 2% of para-

formaldehyde. The larvae were agitated at 1000 rpm for 1 hr at room temperature, washed 3

times with PBS 1X to eliminate the paraformaldehyde. Samples were suspended in isopropanol

60% to dehydrate, incubated for 15 min at room temperature and were suspended in 60% Oil-

Red-O stain (prepared as follows: from 0.5 g/100 mL isopropanol stock solution equilibrated

for several days, freshly diluted with 40% water, allowed to sit 10 min and filtered through 0.2

to 0.4 μm). Larvae were photographed under a 20X objective in an Olympus microscope

BX51W1 coupled to a Disk Spinning Unit.

Brood size quantification

Well-fed L4 larvae or larvae subjected to starvation as described previously, were placed on

individual 3-cm NGM plates and fed with E. coli OP50 strain (n = 21, three replicates for each

condition). After three days, larvae produced by each worm were counted under a stereoscopic

microscope (Nikon SMZ800).

Gonad size estimation

Well-fed and 12-hr starved L4 larvae were washed three times in M9 buffer; after the last wash,

the supernatant was drained and 300 ul of -20°C methanol was added and left for 5 min. Then

200 ul of PBS-T (PBS 1X, 0.1% Tween 20) were added and centrifuged at 3000 rpm for 1 min.

Two washes with 500 ul of PBS-T were performed. Finally, one drop containing the worms

plus one drop of 100% glycerol were placed on a microscope slide and covered with a cover

slip. The worms (n = 5) were observed under an Olympus Laser Scanning Confocal Microscope

(100X objective). Area estimation was calculated with the ImageJ program (http://imagej.nih.

gov/ij/), and reported as pixels/micron2.

Lifespan assessment

Well-fed and 12-hr starved early L4 larvae were fed until they reached the adult stage, then 100

worms from each condition were seeded on a Petri dish. Dead worms were counted daily, and

withdrawn with a platinum wire. To get rid of embryos and L1 larvae, the Petri dishes were

washed every other day.

RNA isolation, cDNA library preparation and Illumina deep sequencing

Small RNAs were purified and size-selected by using the miRNeasy mini kit and minelute col-

umns following manufacturer’s instructions (Qiagen). The cDNA libraries were prepared from

5 ug of RNAs<200 nt. Preparation of cDNA libraries for the Illumina deep sequencing experi-

ment was performed using the DGE-Small RNA Sample Prep Kit ver. 1.0 (Illumina) according

to the manufacturer’s instructions. Briefly, RNAs between 20 and 30 nt in size were purified

and ligated to adapters and amplified by RT-PCR. Purified DNA was captured on an Illumina

flow cell for cluster generation. Libraries were sequenced for 36 cycles on an Illumina Genome

Analyzer IIx using Illumina’s protocols for single-end reads (DGE-Small RNA Cluster Genera-

tion Kit and 36 Cycle Solexa Sequencing Kit). The raw deep-sequencing data and processed

data are available from GEO GSE67711.
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C. elegans genome and non-coding RNA annotation

The full genome, the protein-coding and non-coding transcripts annotation were downloaded

fromWormBase version WS235 in FASTA format [34]. Sequences for all known C. elegans

miRNA hairpins were obtained from miRBase version 20 [6]. Mature sequences were also

obtained from this database, but a Perl script was used to extend them by 3 bases at the 5’ end

and 5 bases at the 3’ end, when permitted by the length of the hairpin. This extension facilitates

sRNA-seq reads to map directly to mature miRNAs. All FASTA sequences were then

concatenated and converted into an index for bowtie version 0.12.9 [35].

Processing and mapping sRNA-Seq reads

An artificial hexamer (ACATCG) was present at the 5’ end of 6–8% of all reads, so a custom

Perl script was used to trim these occurrences. We then used Reaper to process the FASTQ files

[36], and remove the Illumina sRNA 3’ adapter sequence (ATCTCGTATGCCGTCTTCT

GCTTGC). Since we were interested in miRNAs, only cleaned reads between 16 and 28 nucleo-

tides were kept. These sequences were collapsed to unique reads using tally [36], assigning

their total counts to each sequence identifier. The resulting FASTA files were mapped to the

concatenated sequences described in the previous section using bowtie [35], searching for

end-to-end hits with at most 2 mismatches, and allowing reads to hit up to 100 different

locations. All further processing was performed with ad hoc shell and R scripts using several

packages from the Bioconductor project [37]. In particular, reads were first assigned to a

class with the following preference: miRBase mature microRNA>miRBase microRNA

hairpin>WormBase non-coding transcript>WormBase coding transcript>WormBase

intergenic. Reads assigned to a microRNA hairpin are those that mapped outside the annotated

mature regions; we expect these to mostly represent reads coming from the loop region, a

byproduct of miRNA biogenesis. Once a read was assigned to a class, the observed counts for

each unique read were divided between any multiple locations within the same class. Any read

that ended with a divided count of less than 1 was ignored. The collapsed sequences were also

processed with the miRanalyzer free-web server tool [38] to predict the presence of previously

unknown miRNAs candidates, using the default parameters, allowing 1 mismatches, and a

threshold of the posterior probability to consider a new miRNA of 0.9.

Differential expression of miRNAs

For differential expression analysis we only considered reads that preferentially mapped to

miRBase sequences. We only considered miRNA regions with at least 1 reads per-million from

one of the libraries. These were tested for differential expression using the edgeR package [39],

setting the common dispersion to 0.1 (since we did not have biological replicates) and normal-

izing with the TMMmethod. False Discovery Rates were calculated using the Benjamini &

Hochberg procedure [40].

Predicted miRNA-mRNA target interactions

We searched for predicted miRNA targets involved in metabolism or development, using

microRNA.org [41], miRanda [42] and TargetScan [43] websites. These results are presented

in S2 and S3 Tables, with references indicating the involvement of the target genes in metabo-

lism or development included in S1 File.
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qRT-PCR

Stem-loop qRT-PCR was used for the quantification of miRNAs, to provide an enhanced sensi-

tivity and specificity as compared to linear primers [44,45]. Stem-loop RT primers include a

modification to provide the Universal ProbeLibrary Probe #21 sequence binding site into the

primer stem region [46]. All reactions were carried out in triplicate, both biological and techni-

cal. Primers used for Reverse Transcription of miR-35-3p, miR-36-3p, miR-39-3p, miR-240-

5p, miR-246-3p, and miR-58-3p were RTCEL35, RTCEL36, RTCEL39, RTCEL240,

RTCEL246, and RTCEL58, respectively (S1 Table). Primers used for Reverse Transcription of

lin-23, gld-1 and β-actin were LIN23-reverse, GLD-reverse and ACT-reverse, respectively (S1

Table). For Reverse Transcription of miRNAs (miR-35-3p, miR-36-3p, miR-39-3p, miR-240-

5p, miR-246-3p, and miR-58-3p) and mRNAs (gld-1, lin-23 and β-actin), a total of 2000 ng

and 300 ng were used, respectively. The Reverse Transcription mix contained RNA, oligonucle-

otide (250 fmol) and water for a final volume of 4 ul, and was incubated at 70°C for 5 min.

Then, dNTPs, buffer for RT and Reverse Transcriptase (RevertAid HMinus Reverse Tran-

scriptase, Fermentas) were added and the mix was incubated at 37°C for 5 min, 42°C for 1 hr

and 70°C for 10 min.

For miRNA´s qPCR quantification, a total of 2000 ng of cDNA was used for each reaction

(each reaction was done in duplicate). Primers pairs were FCEL35/UPR, FCEL36/UPR,

FCEL39/UPR, FCEL240/UPR, FCEL246/UPR, and FCEL58/UPR for miR-35-3p, miR-36-3p,

miR-39-3p, miR-240-5p, miR-246-3p, and miR-58-3p, respectively (S1 Table). Primers and the

hydrolysis probe (Universal ProbeLibrary Probe #21, Roche) were used at 1 μM and 0.1 μM,

respectively. Reactions were done in a final volume of 18 ul, using Master Mix 1X (LightCycler

TaqMan Master) in a LighCycler 2.0 (Roche) equipment. The program used for qPCR was: 1

cycle (at 95°C for 2 min), 40 cycles (at 94°C for 15 secs, 45°C for 30 secs, 70°C for 30 secs), 1

cycle (at 70°C for 15 min). The expression of miR-58-3p was used as an endogenous control.

The quantification of miR-35-3p, miR-36-3p, miR-39-3p, miR-240-5p, and miR-246-3p

expression relative to miR-58-3p was calculated as in Pfaffl, 2001[47].

For gld-1, lin-23 and β-actinmRNA qPCR quantification, we used 100 ng of cDNA. Primer

pairs were LIN23forward/LIN23-reverse, GLD-forward/GLD-reverse, ACT-forward/ACT-

reverse, respectively (S1 Table). Primers were used at a concentration of 50 nM and SYBR

Green PCRMaster Mix (Applied Biosystems) was used. Reactions were run in a StepOne

Applied Biosystems equipment. The program used for qPCR was: 1 cycle (at 95°C for 2 min),

40 cycles (at 95°C for 15 secs, 50°C for 30 secs, 70°C for 1 min), 1 cycle (at 70°C for 15 min).

The β-actin gene was used as the endogenous control. The relative expression ratio of gld-1 and

lin-23mRNAs relative to β-actinmRNA expression was calculated as previously described[47].

Statistics

In this study, statistical analyses were performed using GraphPad Prism software (San Diego,

CA). AWilcoxon Signed Rank Test was used to compare length differences between well-fed

and 12-hr starved worms. For brood size analysis, a Student´s t-test was performed. The signif-

icance of analysis of longevity was performed using Kaplan-Meier survival curves method and

Log-rank (Mantel-Cox) test. Differential (upregulated or downregulated) expression of miR-

35-3p and target mRNAs gld-1 and lin-23 (qRT-PCR) was also analyzed using Wilcoxon

Signed Rank Test. A p-value� 0.05 was considered to be statistically significant.

Data deposition

All the raw deep-sequencing data and processed data are available from the NCBI Gene

Expression Omnibus (GEO) database under accession number GSE67711.
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Results and Discussion

Fasting for 12-hrs has dramatic effects on the physical appearance, lipid
accumulation, brood size, gonad size, and lifespan in early L4 larvae of
C. elegans

We determined the effect of fasting for 12-hrs on C. elegans larvae. Starved-larvae were thinner

and shorter in length compared to well-fed animals. The length of the animals was 0.75 ± 0.01

mm and 0.59 ± 0.01 mm (mean ± standard error of the mean) for the well-fed and starved ani-

mals, respectively (Fig 1A).

Because animals subjected to even 4–6 hrs of fasting can deplete their fat reserves [48], we

analyzed the amount of lipids in well-fed vs. 12-hr starved animals. Fasted animals showed a

significant decrease in the amount of lipids, maybe as a consequence of the catabolism of lipids

as a mechanism to re-establish homeostasis (Fig 1B). A similar result has been reported for

starved worms in feeding defective mutants [49]. These results show that starvation of early L4

larvae has dramatic effects on the physical appearance and the accumulated lipids in the worm.

We also observed a very dramatic effect on the fertility of L4 larvae subjected to a 12-hr starva-

tion, as the progeny diminished by 78% in contrast to the well-fed group. The brood size was

123 ± 5 and 27 ± 1 larvae, mean ± SEM) for the well-fed and 12-hr starved worms, respectively)

(Fig 2A). In general, a reduction in reproductive ability has been documented as a consequence

of the lack of food, since energy is allocated into cellular processes needed for survival [50]. In

particular, fecundity has been found to correlate with the amount of bacterial food source in C.

elegans [51]. Several pathways have been shown to be involved in such phenomena, such as the

Insulin/IGF, mTOR (let-363), and cytochrome P450 (DAF-9/CYP450), steroid hormone

Δ7-dafachronic acid (DA), and nuclear hormone receptor NHR-8 [52]. This result displays a

large effect on fertility produced by starvation.

Food-deprivation of L4 larvae can result in L4 or adult arrest, adult matricide of bagging,

adult reproductive diapause and eugenic germ line starvation response, causing defects in

gametogenesis, gonad development, reproductive competence and longevity [53,54]. Which of

the different outcomes arises depends on the precise time of starvation onset and its duration

Fig 1. Physical aspect, length and lipid content of well-fed and 12-hr starved early L4 larvae. (A) Length
of well-fed and 12-hr starved early L4 larvae, n = 30 early L4 larvae per group, mean ± standard error of the
mean, p < 0.0001 according to a Wilcoxon Signed Rank Test. (B) Lipid content of well-fed and 12-hr starved
early L4 larvae stained with Oil-Red-O (20X objective).

doi:10.1371/journal.pone.0142262.g001
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[53,54]. We found that after a 12-hr starvation treatment, the area occupied by the proximal

gonad was dramatically decreased (Fig 2B and 2C). A diminished gonad could represent one of

the many factors that could explain the reduction in progeny that we observed (Fig 2A). These

results are consistent with previous reports, as when L4 larvae were subjected to starvation, a

decrease in the size of their gonad was observed [54].

Another aspect that we wanted to examine was if starvation for 12 hrs produced changes in

the worm’s lifespan. Dietary restriction, a reduction in caloric uptake without malnutrition,

can increase the lifespan in different organisms such as yeasts, worms, flies, rodents, non-

human primates and possibly even in humans [55]. We found that early L4 larvae fasted for 12

hrs showed an increased lifespan (16.9 d), compared to that of well-fed worms (12.4 d). The

increase was 36% (Fig 3). This amount is comparable in magnitude to the lifespan extension

provoked from a complete removal of food during adulthood in C. elegans [56].

In summary, a 12-hr starvation period during early L4 larvae produced worms that were

thinner and shorter than well-fed animals, with a decreased lipid accumulation, diminished

progeny, reduced gonad size, and an increased lifespan.

Fig 2. Effect of a 12-hr starvation on brood size and gonad formation. (A) Total larval progeny per
hermaphrodite at day 3, n = 21, p-value<0.0001 according to a Student’s t-test. (B) Representative images of
the proximal gonad from 12-hr starved vs. well-fed early L4 larvae, as seen by DIC microscopy (100X
objective). (C) Estimated area of the proximal gonad, n = 5 early L4 larvae per group, mean ± SEM, p-value
<0.0079 according to a Wilcoxon Signed Rank Test.

doi:10.1371/journal.pone.0142262.g002

Fig 3. Kaplan-Meir survival curves of well-fed (n = 117) and 12-hr starved (n = 112) early L4 larvae.
Starved worms showed a significantly increased lifespan (*) compared to well-fed early L4 larvae, according
to a log-rank (Mantel-Cox) test (p < 0.0001).

doi:10.1371/journal.pone.0142262.g003
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Deep sequencing analysis of miRNAs from early L4 C. elegans
subjected to food starvation for 12 hrs.

Purified RNA, enriched in the range of 20 to 30 nucleotides, obtained from well-fed early L4

larvae and early L4 larvae starved for 12 hrs, was used to construct two independent libraries.

We obtained 30,270,857 and 29,656,856 total reads from the well-fed and fasted libraries,

respectively. After removing adapter sequences and selecting trimmed reads between 16–28

bases, we kept 23,724,403 and 22,626,023 reads, of which the fraction that mapped to mature

miRNAs was 92% and 89% for well-fed and starved early L4 larvae, respectively (see Fig 4A

and 4B). By far, the most highly-expressed miRNAs were miR-58-3p and miR-1-3p, account-

ing for 50.1% and 19.8%, respectively, of the reads that mapped to miRNAs in well-fed larvae

and 48.5% and 18.2%, under starvation (Fig 5). Neither miRNA changed in a significant man-

ner in well fed versus 12-hr starved larvae (Fig 5). These expression levels were similar to a pre-

vious report for normally fed L4 larvae stage worms [57]. In particular, the expression of miR-

58-3p was found to be in the range of 44–54% and that of miR-1-3p was between 22%-32%,

when measured in embryo, L1, L2, L3, L4 and adult worms [57].

Fig 4. Functional classification of sRNA-seq reads.Reads were classified according to the type of
sequence to which they mapped (see Materials and Methods). (A) Well-fed, and (B) 12-hr starved early L4
larvae.

doi:10.1371/journal.pone.0142262.g004

Fig 5. Themost abundant miRNAs in each library. The most abundant miRNAs in well-fed and 12-hr
starved early L4 larvae are represented as the percentage of reads that mapped to knownmiRNAs.

doi:10.1371/journal.pone.0142262.g005
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C. elegansmiR-58-3p is homologous to bantam in Drosophila that has the role of scaling

dendrite growth to larval growth in epithelial cells and also controls dendrite/axon regenera-

tion in the peripheral nervous system [58,59]. In C. elegans, miR-58-3p is a member of a highly

expressed family that also includes miR-80, miR-81, miR-82 and miR-1834 [60]. While miR-

58-3p single mutants show no developmental, functional or viability deficits, mutants deleted

for four members of the mir-58 family are deficient in body size, egg laying, locomotion and

cannot form dauer larvae [60]. Several mRNA targets have been identified, including an

mRNA cap-binding factor of the eIF4E family (ife-3), proteins involved in DNA replication,

repair and recombination (rpa-1), chromatin remodeling (isw-1), chromatin binding and regu-

lation of the RNAi mechanism (gfl-1), or in transcription like RNA Polymerase II (B) subunit

(rpb-7), among others [61]. It is interesting to note that other members of the mir-58 family

are also amongst the top 10 most abundant in our analysis, with miR-80-3p and miR-81-3p

each contributing about 1% of the miRNA-mapping reads. Comparing the abundances of

miR-58-3p to that of miR-81-3p and miR-80-3p, it is clear that the first dominates, contribut-

ing more than 90% of the reads assigned to the whole family, as reported by Kato et al. [57].

The second most abundant miRNA, miR-1-3p, functions at neuromuscular junctions and is

one of the most ancient animal miRNAs, with conserved expression during musculature differ-

entiation in bilaterians [62,63]. Mutants of miR-1-3p are resistant to levamisole-induced paral-

ysis mediated by the increased expression of its targets unc-29 and unc-63, coding for a non-

alpha and an alpha subunit of the nicotinic acetylcholine receptor, respectively. Both subunits

mediate fast actions of acetylcholine and bind levamisole [62]. In Drosophila, the homologue of

miR-1-3p is required for proper growth of larval muscle [64].

Members of the let-7 miRNA family, as well as miR-228-5p, miR-66-5p,
miR-70-3p and miR-59-3p were found to be highly expressed, but did
not significantly change their expression upon starvation

The third most expressed miRNA was miR-84-5p, that together with other abundant miRNAs

like miR-48-5p and let-7-5p, are members of the let-7 family, that also includes miR-7, miR-

241, miR-793, miR-794 and miR-795 [65]. Let-7 was one of the first identified miRNAs, and

targets the lin-41 3’UTR [66]. The name was given because of the lethal phenotype of worms

with ruptured vulva that die before reaching the adult stage [67]. It was found that mutations

in let-7 cause delayed temporal fates in the last larval stages and the accumulation of let-7 at the

end of the third larval stage causes downregulation of LIN-41 protein expression, leading to the

adoption of later larval and adult stages [66]. The let-7miRNA is also one of the most con-

served miRNAs in animals, as it has been found in all bilateria [63,68]. Although miRNAs

from the same family potentially regulate the same targets, masking the phenotype of individ-

ual mutants, a single let-7 mutation was sufficient to cause developmental anomalies and

lethality [66].

Let-7-5p is not expressed in embryo, L1 or L2 stages; its expression augments in L3 and con-

tinues high in L4 and adult stages [57]. Let-7 expression is regulated at both transcriptional and

post-transcriptional levels. For instance, LIN-28 binds endogenous let-7 pri-miRNAs, blocking

Drosha processing, leading to a reduction in mature let-7 [69]. Two transcription factors regu-

late let-7 expression: HBL-1, a zinc-finger transcription factor that is homologous to Drosophila

Hunchback that represses let-7 expression [70] and the nuclear hormone receptor DAF-12, a

regulator of dauer diapause that represses let-7 expression in the absence of its ligand, dafa-

chronic acid [71,72]. Several transcription factor transcripts, including daf-12, emerged as let-7

targets from an RNAi screen of candidate genes that contained predicted binding sites [73].

Additionally, in C. elegans, many of the well-established let-7 target sites, including those in
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lin-41, daf-12, and hbl-1, were detected by CLIP (cross-linking immunoprecipitation) [74]. As

the 3’UTR of the small GTPase let-60/RAS shows multiple binding sites for let-7 family miR-

NAs, the lethal phenotype of let-7mutants that rupture through the vulva could be caused by

abnormal regulation of let-60/RAS [75].

Another highly expressed miRNA is miR-228-5p (Fig 5). It is conserved in Caenorhabditis

briggsae and Ascaris lumbricoides [76–79], but has no assigned function yet. Similarly, the func-

tions of other abundant miRNAs like miR-66-5p, miR-70-3p and miR-59-3p are currently

unknown.

miRNAs that changed their abundance under starvation conditions

Differential expression analysis of the deep sequencing results shows that 13 miRNAs and 1

miRNA hairpin were upregulated, while 2 miRNAs and two miRNA hairpins were downregu-

lated in 12-hr starved vs well-fed early L4 larvae (Fig 6, Table 1).

As can be seen in Table 1, seven members of the miR-35 family (from miR-35-3p to miR-

41-3p; [80]) were upregulated from ~6- to 20-fold under starvation conditions. This result is

consistent with a previous study that found up regulation of the miR-35-41 family in a genetic

model of dietary restriction in C. elegans [24]. Another miRNA found to be upregulated was

miR-246-3p, that has been suggested to promote longevity, since mutants in this miRNA dis-

play a shorter lifespan and its overexpression leads to increased lifespan [81]. Although the tar-

gets of miR-246-3p have not been identified, aakg-1 (one of the five gamma subunits of AMP

kinase) and lin-37 (involved in larval, embryo and vulval development) have been predicted as

targets.

Fig 6. Differential expression analysis of miRNAs that changed their expression in 12-hr starved
compared to well-fed early L4 larvae.MA-plot showing the absolute and relative expression of all known
miRNAs with at least 1 read per million in one of the two libraries (well-fed and 12-hr starved worms). Positive
(negative) log2 fold-changes represent miRNAs with higher (lower) expression under fasting conditions.
Significantly differentially expressedmiRNAs (False Discovery Rate <5%) are shown as red circles. Grey text
indicates three miRNA hairpins (excluding annotated mature products) also found to be differentially
expressed.

doi:10.1371/journal.pone.0142262.g006
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miRNA “star” strands

We observed in our data that miR-34-3p, miR-39-5p, miR-41-5p, miR-240-5p, miR-48-13-5p

were upregulated upon starvation conditions, while let-7-3p and miR-85-5p were downregu-

lated (Fig 5, Table 1). All of them have in common that they represent the less abundant forms

of the two potential miRNAs encoded in each miRNA hairpin, previously referred to as the

“star” (�) strands. The miRNA star sequence is the strand complementary to the mature

miRNA in the miRNA duplex. Initially, star strands were considered to be by-products of the

miRNA processing steps that were rapidly degraded. But lately, star strands have been found

incorporated into Argonaute complexes in Drosophila [82–84]. In one report, the star strands

were found to interact with Drosophila AGO2, which is also associated with the siRNA path-

way while the mature strands bound to AGO1, involved in translational repression [83]. Addi-

tionally, the star strands were shown to repress the expression of synthetic targets in an in vitro

model, highlighting the capacity of star strands to act as regulatory molecules [85].

In C. elegans, star strands bind preferentially to the AGO protein RDE-1, which is required

during RNA-mediated interference (RNAi) for specific removal of the passenger strand [86].

Star strands have demonstrable impact on vertebrate regulatory networks and should be con-

sidered in studies of miRNA function and their contribution to disease states. We are still lack-

ing information about the importance of star strands in regulation, as well as the role, if any,

that they play in the siRNA pathway. Star strands are predicted to have targets that are different

from those of the mature strand and star strands could base pair with the mature strands and

interfere with miRNA-mRNA interaction. Because an RNA molecule can base pair with other

Table 1. Differentially expressedmiRNAs andmiRNA hairpins under starvation conditions.

microRNAs Well-fed norm counts per million 12-hr starved norm counts per million Log2FC p-value FDR1 FC2

cel-miR-39-3p 49.9 1008.5 4.3 6.9E-09 9.4E-07 20.2

cel-miR-37-3p 38.2 768 4.3 7.5E-09 9.4E-07 20.1

cel-miR-35-3p 230.1 4053.5 4.1 2.4E-08 2.0E-06 17.6

cel-miR-38-3p 41.3 636.1 3.9 8.4E-08 5.3E-06 15.4

cel-miR-41-3p 1.7 25.8 4.0 2.5E-07 1.3E-05 15.4

cel-let-7-3p 13.9 1.1 -3.7 1.7E-06 7.0E-05 -13.0

cel-miR-36-3p 133.3 1356.2 3.4 2.9E-06 1.0E-04 10.2

cel-miR-4813-5p 0.8 9.5 3.6 4.8E-06 1.5E-04 12.4

cel-miR-40-3p 34.3 296.4 3.1 1.2E-05 3.3E-04 8.6

cel-mir-85 2.2 0.1 -4.4 3.6E-05 9.1E-04 -20.6

cel-miR-34-3p 0.4 3.9 3.1 1.8E-04 4.1E-03 8.6

cel-miR-41-5p 2.4 15.5 2.7 2.3E-04 4.7E-03 6.4

cel-mir-35 0 1.2 4.6 4.9E-04 9.5E-03 24.0

cel-miR-359 2.6 13.9 2.4 8.2E-04 1.5E-02 5.3

cel-miR-85-5p 2.4 0.3 -3.0 1.3E-03 2.1E-02 -7.9

cel-miR-39-5p 2.1 10 2.2 1.9E-03 3.0E-02 4.7

cel-miR-240-5p 687.2 2784.7 2.0 2.9E-03 4.3E-02 4.1

cel-miR-246-3p 665.3 2646.1 2.0 3.3E-03 4.6E-02 4.0

cel-mir-79 1.0 0.1 -3.3 3.6E-03 4.8E-02 -9.7

List of differentially expressed miRNAs and miRNA hairpins deregulated during the starvation stress response in early L4 larvae of C. elegans, their

expression level (counts per million reads) and fold change.
1 False Discovery Rate
2 Fold-change was calculated by dividing the higher "counts per million" by the lower, but adding the sign from the logFC to indicate direction.

doi:10.1371/journal.pone.0142262.t001
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RNAs, and considering that most of the genome is transcribed, star strands may be part of a

complex regulatory network in which they compete for miRNA binding and amongst each

other, as has recently been postulated for competing endogenous RNAs or ceRNAs [87].

It will be interesting to discover the functions of the star strands that changed their expres-

sion under starvation conditions, whether they are bound by RDE-1 and consequently involved

in the endogenous siRNA pathway, interfere with the function of their mature counterparts or

have regulatory functions on their own.

miRNA hairpins

The cleavage of pre-miRNA hairpins by Dicer generates the mature miRNA, the miRNA�

(star) strand and the intervening terminal loop (loop-miR). Although miRNA� and loop-miRs

were largely regarded as processing by-products of miRNA biogenesis, their regulatory role has

now been demonstrated. Recently, selected loop-miRs were found enriched in Argonaute com-

plexes in multiple drosophilids and in humans. These molecules are competent for repressing

the expression of mRNAs by base pairing in standard luciferase assays [88,89]. In our analysis

we were able to detect three miRNA hairpins that were differentially expressed, even though

their absolute counts were quite low. This is the case of mir-35, which was upregulated, and

mir-79 and mir-85, both downregulated upon starvation. It remains to be seen if these loop-

miRs are incorporated into Argonaute complexes and to determine their possible regulatory

role.

Starvation-responsive miRNAs could target genes with metabolic and
developmental functions

The differentially expressed miRNA sequences were used as queries to search for targets using

microRNA.org [41], miRanda [42] and TargetScan [43] websites. We found several mRNAs

that code for proteins involved in metabolism and development as putative targets of miRNAs

that changed their expression under starvation conditions. For example, for those involved in

metabolic processes we identified genes involved in the Insulin/IGF-1 signaling (IIS) such as

ins-9, vang-1, skn-1, predicted mRNA targets of miR-39-5p, miR-41-5p, miR-240-5p, respec-

tively (S2 Table and S1 File). As they participate in the IIS pathway, the proteins are expressed

in response to nutrient availability and mutants in their coding genes show an increased life-

span. Such features could explain why L4 larvae that were starved for 12-hr showed an

increased lifespan.

Other mRNAs predicted as targets of differentially expressed miRNAs are involved in lipid

metabolism such as B0301.1 that encodes a protein involved in lipid accumulation and could

be targeted by miR-4813-5p, and nhr-28, that codes for a nuclear hormone receptor that func-

tions in lipid storage and could be targeted by miR-85-5p (S2 Table and S1 File). Predicted tar-

gets that are involved in lipid metabolism could help to explain the decrease of lipids shown by

worms that were starved for 12 hrs (Fig 1C). These predictions seem to be consistent with the

results reported by Van Gilst et al. [90], which showed that fasting produced changes in the

abundance of several mRNAs from genes involved in processes such as mitochondrial β-oxida-

tion and synthesis of mono and polyunsaturated fatty acids, whose expression could be regu-

lated by miRNAs.

Of the genes that are involved in development we found gck-4 as a predicted target of miR-

39-5p, and glh-2 and lag-1, predicted targets of miR-240-5p (S3 Table and S1 File). The pro-

teins coded by such mRNAs play important roles in the development of the germline, cellular

proliferation, fecundity, oogenesis and growth.
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miR-240-5p, miR-246-3p, and the miR-35-41 cluster were upregulated
under starvation conditions

We have shown that several miRNAs were differentially expressed in starved worms (Fig 5,

Table 1). We validated the reliability of the RNA-seq profiling data by quantifying transcript

abundances of selected miRNAs using qRT-PCR. We observed that the expression of miR-

240-5p and miR-246-3p was upregulated in 12-hr starved worms, as seen in the RNA-seq

experiments (Fig 7A). Also, we confirmed that the expression of three members of the miR-35-

41 family (miR-35-3p, miR-36-3p, and miR-39-3p) was upregulated in 12-hr starved worms,

consistent with the RNA-seq results in which the expression of all of the -3p forms of the miR-

NAs that constitute themir-35-41 cluster were upregulated from 6 to 20 times under starvation

conditions in early L4 larvae (Fig 7B). For these experiments, we used miR-58-3p as loading

control, since its expression was not significantly changed under starvation conditions.

Themir-35 family is composed of eight miRNAs,mir-35 tomir-42, all of them located on

chromosome II. One cluster containsmir-35 throughmir-41 (mir-35-41), while the other con-

tainsmir-42,mir-43 andmir-44, although the last two do not belong to themir-35 family [80].

Themir-35 family is conserved in worms and planaria [80,91]. In C. briggsae and C. remanei it

is composed by 17 members, while C. brenneri has 27 [92]. Most embryo cells expressmir-35

members, first at the onset of gastrulation, with a peak at the onset of elongation [11,57,60]. A

mutant with a deletion of all eight members of themir-35 family resulted in temperature-sensi-

tive embryonic or L1 larval lethality [60]. Since the individual expression of each of the mem-

bers of themir-35 family (but not the unrelatedmir-43 andmir-44) rescued the defects caused

by deletion of all family members, it appears that miRNAs of themir-35 family act redundantly

[60]. Themir-35-41 cluster genes were also found to be expressed specifically in oogenesis and

not in spermatogenesis [60]. In addition to its participation in germ cell proliferation, a key

role has been ascribed tomir-35 family members in the G1/S transition in intestinal cells, as

loss ofmir-35 shows a significant decrease of nuclei numbers in both the intestine and the dis-

tal mitotic gonad [93].

Fig 7. Expression of selectedmiRNAs andmRNAs involved in the fasting response as quantified by
qRT-PCR. Relative quantification of (A) miR-240-5p, miR-246-3p, and (B) miR-35-3p, miR-36-3p, miR-39-3p,
and gld-1 and lin-23mRNA abundance in well-fed and 12-hr starved early L4 larvae by qRT-PCR. For miR-
240-5p, miR-246-3p, miR-35-3p, miR-36-3p, miR-39-3p quantification, miR-58-3p was used as a control. For
gld-1 and lin-23mRNAs quantification, β-actinmRNA was used as a control. Error bars represent the
standard error of the mean of three independent experiments. (miR-240-5p) p = 0.03, (miR-246-3p) p = 0.03,
(miR-35-3p, SEM = 37.60) p = 0.03, (miR-36-3p, SEM = 14.33) p = 0.03, (miR-39-3p) p = 0.03, (gld-1,
SEM = 20.87) p = 0.03 and (lin-23, SEM = 19.74) p = 0.4, calculated by the Wilcoxon Signed Rank Test.

doi:10.1371/journal.pone.0142262.g007
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Recently, two other roles have been found for themir-35-41 cluster. Firstly, these miRNAs

are important for RNAi functions [94]. Worms lacking themir-35-41 cluster showed a reduced

expression of lin35/Rb, the C. elegans homolog of the tumor suppressor Retinoblastoma gene,

which is also involved in RNAi responsiveness [94]. The lin-35/Rb gene is a member of the syn-

thetic multivulva B (synMuv B) family, including transcriptional repressor and chromatin

remodeling genes [95]. Themir-35-41 cluster inhibits the exogenous RNAi pathway by posi-

tively regulating the expression of LIN-35/Rb protein, although the mechanism is not known

[94]. This result exemplifies the fact that miRNAs, besides regulating gene expression by direct

binding to mRNAs, also have the ability to affect the activity of other small RNA pathways

[94]. Secondly, themir-35-41 cluster miRNAs have important roles for full reproductive capac-

ity, as a temperature sensitive mutant (a deletion of themir-35-41 cluster) presents reduced

hermaphrodite fecundity as a result of sperm defects and somatic gonad dysfunction, and

showed morphogenesis defects of male-specific mating structures [96].

In our experiments, themir-35-41 cluster was up-regulated in early L4 larvae subjected to a

12-hr fasting. This contrasts with the normal expression of this family in the embryo stage

only. Given the functions ascribed to the members of themir-35 family, their up-regulation

can have effects on RNAi sensitivity and reproduction. In the 12-hr starvation condition, up-

regulation of miR-35-3p will negatively regulate G1/S transition in intestinal cells and will neg-

atively regulate oogenesis [93]. This makes sense under starvation, since cell division and

oogenesis are not essential, cells being focused on survival, not on making more cells or taking

part in reproductive functions. Sincemir-35-41mutants also show an increased sensitivity to

endogenous RNAi [94], we can predict that starvation should cause a reduction in sensitivity

to endogenous RNAi, since the expression ofmir-35-41members are enhanced under this con-

dition. If this is the case, it will be interesting to investigate what are the physiological conse-

quences of having reduced sensitivity to endogenous RNAi during starvation.

Changes in the abundance of gld-1 and lin-23mRNAs during starvation,
known targets of miR-35-3p

The gld-1 and lin-23mRNAs have been reported to be direct targets of miR-35-3p [93]. LIN-23

(abnormal cell LINeage) is the F-box component of the SCF (Skp1-Cul1-F box) complex

[97,98]. This complex shows activity of E3 ubiquitin ligase involved in the degradation of CYE-

1 (cyclin E-1) [99,100] and CDC-25.1 (cell division cycle related) [101], and participates in the

negative regulation of the G1/S transition. Consistent with this, a mutant in lin-23 develops

intestinal hyperplasia [101]. GLD-1 (defective in Germ Line Development) is an RNA-binding

protein, member of the STAR (for signal transduction and activation of RNA metabolism)

family that includes human/mouse QUAKING, SAM68, and Drosophila HOW [102]. The

STAR proteins contain a conserved region with a maxi-KH binding domain and two conserved

flanking domains (Qua1 and Qua2) [102]. The GLD family plays an important role in the

determination of meiosis start, by indirectly regulating mitotic proliferation of the germline

[103,104], and forms part of the regulatory network of GLP-1 (abnormal Germ Line Prolifera-

tion)/Notch signaling that promotes germ line cell divisions in the distal mitotic region of the

gonad [105,106]. In the adult hermaphrodite worm, germ cells that will develop into oocytes

are produced in the proliferative zone, the distal part of the gonad arm, and differentiate into

oocytes as they move away [107]. Since GLD-1 is an important regulator of the start of meiosis,

its expression is highly regulated at the level of mRNA stability and mRNA translation [108–

110]. A mutant of GLD-1 showed a defect in oogenesis and formation of tumors in the proxi-

mal part of the gonad [102].
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Taking into account the important functions of GLD-1 and LIN-23, we were interested in

assessing the expression of lin-23 and gld-1mRNAs in 12-hr starved L4 larvae. In the case of

lin-23mRNA, we did not detect a significant change in its level upon starvation (Fig 7B). This

could be explained if the binding of miR-35-3p to lin-23mRNA leads to translational repres-

sion [111,112]. In this context, it would be informative to experimentally assess if the LIN-23

protein level is affected by a 12-hr fasting.

In contrast, we found that whereas miR-35-3p expression was upregulated in 12-hr starved

larvae, gld-1mRNA was downregulated (Fig 7B), a result that is consistent with the idea that

an increase of miR-35-3p would lead to the degradation of its target gld-1mRNA. Such type of

regulation in which the binding of a miRNA to its target mRNA leads to a destabilization of

the message has been shown to be the predominant way by which miRNAs regulate gene

expression in mammalian cells [113,114]. It is important to experimentally elucidate if mRNA

destabilization is the mechanism used by miRNAs to regulate gene expression in C. elegans in

general, and, in particular, if the down regulation of gld-1mRNA observed under a 12-hr fast-

ing is mediated by a direct binding of miR-35-3p.

Role of microRNAs in Reproduction and Lifespan

The relationship between metabolism, reproduction and lifespan has been studied and involves

changes in the activities of signaling pathways like Insulin/IGF and TOR [115]. Different muta-

tions in the Insulin/IGF signaling pathway in genes like daf-2 (Insulin/IGF receptor ortholog)

and daf-16 (a FOXO like transcription factor) increase lifespan by affecting genes involved in a

diversity of process like metabolism, stress response, innate immunity, signaling, germ line

development, among others [44]. Dietary restriction is also known to increase lifespan in sev-

eral species and intervenes in the reproductive function by regulating DAF-9/CYP450, steroid

hormone Δ7-dafachronic acid/DAF-12, NHR-8/NHR and let-363/TOR [52]. Interestingly, in

such regulation the participation of miRNAs like miR-71, miR-84 and miR-241 is very impor-

tant as these miRNAs down regulate the expression of AKT-1 and LIN-14, resulting in the acti-

vation of DAF-16 [116]. With this in mind, we can assert that metabolism, reproduction and

lifespan are coordinately regulated by different molecules. We observed that the lack of food

produced a change in the expression of different miRNAs that could be important for the regu-

lation of these processes.

In our results, early L4 larvae subjected to a 12-hr starvation showed morphological alter-

ations in the gonad tissue and a lowered brood size, which can be in part explained by the

observed down regulation of gld-1mRNA, probably as a result of the increased abundance of

one of its regulators, the miR-35-41 family. So, low availability of nutrients in early stages of

development impacts the germ cell pool and indirectly lifespan, in a mechanism that is medi-

ated by miRNAs. In line with this concept is the low fertility rate, sperm defects and dysfunc-

tional development of male structures observed in mutants of themir-35-41 family [96].

Although there is still much to be discovered about the relationship between metabolism,

reproduction and lifespan, the regulation provided by miRNAs could help us understand the

interaction between these processes. Additionally, the knowledge of how microRNAs coordi-

nate gene expression in response to starvation could help us to further identify the molecular

mechanisms involved in aging, obesity and cancer.
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