
High-throughput RNAi screening by time-lapse
imaging of live human cells
Beate Neumann1,4, Michael Held1,4, Urban Liebel1,4, Holger Erfle1,4, Phill Rogers1, Rainer Pepperkok2 &
Jan Ellenberg2,3

RNA interference (RNAi) is a powerful tool to study gene

function in cultured cells. Transfected cell microarrays in

principle allow high-throughput phenotypic analysis after gene

knockdown by microscopy. But bottlenecks in imaging and data

analysis have limited such high-content screens to endpoint

assays in fixed cells and determination of global parameters

such as viability. Here we have overcome these limitations and

developed an automated platform for high-content RNAi

screening by time-lapse fluorescence microscopy of live

HeLa cells expressing histone-GFP to report on chromosome

segregation and structure. We automated all steps, including

printing transfection-ready small interfering RNA (siRNA)

microarrays, fluorescence imaging and computational

phenotyping of digital images, in a high-throughput workflow.

We validated this method in a pilot screen assaying cell division

and delivered a sensitive, time-resolved phenoprint for each of

the 49 endogenous genes we suppressed. This modular platform

is scalable and makes the power of time-lapse microscopy

available for genome-wide RNAi screens.

After the completion of the human genome sequencing project1,
the task of functional genomics is to discover protein function
genome-wide. Currently, RNAi is the method of choice to study
loss-of-function phenotypes in human cells by specifically suppres-
sing the expression of virtually any desired protein-coding gene.
Indeed, several RNAi screens in human cells have already been
reported2–5. These time-consuming and expensive primary screens
have typically been based on endpoint assays of cells transfected in
microtiter plates2–5. This allowed reasonable throughput but lim-
ited the information content of the phenotypic readout. This is
problematic for two reasons. Endpoint assays capture only pheno-
types for genes whose protein products are sufficiently reduced at
the time the assay is performed, which depends on the stability of
the targeted gene product. In a genome-wide screen this time varies
between one and several days and endpoint assays are therefore
typically scored late after RNAi transfection to detect as many
phenotypes as possible. At late time points, however, most assays
suffer from specificity problems, because for rapidly turned
over proteins they can no longer differentiate between primary

consequences of knockdown and secondary effects, and therefore
lead to misinterpretation of phenotypes.

In principle, these limitations of RNAi screening can be over-
come using the power of time-resolved live cell imaging, a strategy
that has been used very successfully but with an enormous labor
effort in the model system Caenorhabditis elegans6. Limitations in
manual data acquisition of live movies as well as manual, and thus
inherently biased and nonquantitative, data annotation have so far
precluded the use of live-cell imaging for RNAi screening in
vertebrate cell systems. Here we have overcome these bottlenecks
by taking advantage of the miniaturized RNAi delivery offered by
transfected cell microarrays, in which individually spotted siRNA
transfection mixes are directly taken up from the solid phase by cells
seeded on top of the array7,8. By spotting siRNA microarrays
directly in live-cell imaging chambers, we were able to perform
time-lapse microscopy of HeLa cells on the arrays. By massively
increasing the throughput of fluorescence imaging and developing
computerized analysis of the phenotypes by digital image proces-
sing, we established a fully automated high-throughput and high-
content workflow of RNAi screening by time-lapse imaging
(Fig. 1). We validated this method in a pilot experiment screening
49 endogenous human genes with a live-cell assay for chromosome
segregation and structure in HeLa cells stably expressing the core
histone 2B tagged with GFP. This platform is applicable to many
assays that can be scored by in vivo (or fixed-cell) imaging, and is
directly scalable to genome-wide RNAi screens.

RESULTS
siRNA validation
We chose to target 49 genes (Supplementary Table 1 online)
known or predicted to have a function in chromosome segregation
or nuclear structure by one chemically synthesized siRNA each. For
43 of these siRNAs, mRNA knockdown efficiency could be mea-
sured in transfected HeLa cells by quantitative reverse-transcriptase
PCR (qRT-PCR). We found that 74% (32) of the siRNAs sup-
pressed the mRNA of the targeted gene by more than 70%, 88%
(38) by at least 60% and all siRNAs showed partial knockdown
(Supplementary Fig. 1 online). In duplicate transfections of all
49 gene-specific siRNAs and one scrambled siRNA (randomized
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RNA sequence not targeting any human gene), we scored pheno-
types manually by fluorescence microscopy of HeLa cells stably
expressing H2B-GFP (see below). For 85% (42) of the targeted
genes, the siRNA caused reproducible defects in nuclear structure
or chromosome segregation, whereas cells transfected with the
scrambled siRNA had no detectable phenotype (data not shown).
We thus estimated the overall hit rate of this siRNA
design as 74–85% and decided to use the 50 validated siRNAs
(Supplementary Table 1) to develop the entire high-throughput
workflow of live-cell RNAi screening by time-lapse imaging.

siRNA microarrays for live cell imaging
Application of live-cell imaging to genome-wide RNAi screens
requires increasing the throughput of fluorescence microscopy by
miniaturizing and parallelizing the siRNA transfection in a format
compatible with imaging. We printed automatically prepared
transfection cocktails for each of the 50 siRNAs directly in one-
well live cell–imaging chambers with coverslip bottoms8,9 (Fig. 1).
A 400-mm spot size and 900-mm inter-spot distance allowed us to
observe B50 cells growing on each spot in a single field of view
using a 10� microscope objective, and provided 384 spots per
imaging chamber. The transfection efficiency of HeLa cells used in
this study was 99% judged by uptake of fluorescently labeled
scrambled siRNA (Supplementary Protocol online). In addition,
A549, RPE and U2OS cell lines as well as primary skin fibroblasts
could be transfected with more than 90% transfection efficiency
(Supplementary Protocol).

siRNA uptake in HeLa cells on microarrays led to depletion of
the targeted gene product as judged by immunofluorescence for
two proteins, TPX2 and COPB. In both cases, specific protein
staining was abolished in all (TPX2) or the majority (for the much
more stable protein COPB) of HeLa cells growing on the siRNA
spot (Supplementary Protocol). The siRNA microarrays could be

stored for more than 7 months without loss of transfection
efficiency as judged by B70% of prometaphase-arrested HeLa
cells after knockdown of PLK1 (Supplementary Protocol). This
has the advantage that the automated production of microarrays
(Supplementary Protocol) can be uncoupled from the phenotypic
analysis of the cells by imaging, allowing the use of replicates of
identical microarrays over long time intervals to control the
reproducibility of cell-based assays or the multiplexing of different
assays on the same set of targeted genes.

Time-lapse imaging of chromosomes to assay cell division
The biological problem we investigated in the pilot screen was
chromosome segregation during cell division. Fluorescent labeling
of chromosomes allows dynamic processes such as mitosis to be
phenotyped in great detail by fluorescence microscopy10. Mitosis is
a rare event with typically less than 5% of a population of log-
arithmically growing HeLa cells undergoing division at one time.
Furthermore, mitotic phenotypes such as chromosome segregation
defects can lead to programmed cell death11 and are often difficult
to interpret in endpoint assays. We therefore decided to implement
a time-lapse imaging assay for mitosis using a monoclonal HeLa
cell line stably expressing the core histone 2B tagged with GFP12,
which highlights chromosomes and nuclei in all cell cycle stages.
We imaged cells growing on scrambled siRNA every 30 min for 44 h
starting 20 h after seeding, long enough to observe at least one
division for each of the B50 cells transfected on the spot. This
provided the minimal temporal resolution to reliably score mitotic
phases based on the changes in chromosome morphology (Fig. 2a).
By starting the imaging 20 h after plating cells on siRNA micro-
arrays, the total observation period allowed the scoring of early as
well as late phenotypes (Figs. 2b–e and 3a; and below).

High-throughput time-lapse microscopy of cell microarrays
After establishing the assay conditions for a single spot, the next
step was to image as many microarray spots as possible within a
time lapse of 30 min for large-scale screening applications. By
further developing previously established hardware and software
methods13, we implemented a fully automated and 37 1C incubated
wide-field epifluorescence screening microscope. After an initial
autofocus of the entire microarray, we acquired single fluorescence
images of each spot sequentially throughout the array with minimal
illumination. Using real-time control of the fully motorized micro-
scope hardware we could revisit up to 1,536 positions (four siRNA
microarrays) every 30 min. To our knowledge, this is the first time
that such a throughput in live-cell imaging has been described and
makes live-cell imaging feasible for genome-wide RNAi screening.
We used this system to produce two-day time-lapse movies of HeLa
H2B-GFP cells on triplicates of a custom microarray that contained
one siRNA spot for each of the 49 endogenous genes and three
spots of a scrambled siRNA as negative controls (data not shown).
Notably, cells transfected by the scrambled siRNA proliferated
normally throughout the observation period (Supplementary
Protocol), showing no toxicity by the repeated illumination and
prolonged incubation on the screening microscope.

Automatic and quantitative phenotype annotation
After acquisition, the frames comprising each movie (89 per
siRNA) had to be scored for mitotic phenotypes. We developed
an automatic method also for phenotyping for two reasons. First,
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48 replicates
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~37,000 images
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t

Figure 1 | Workflow of high-throughput RNAi screening by time-lapse

imaging. Flowchart of the steps, including time lines of each process based

on one live-cell microarray containing 384 siRNAs.
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only automatic annotation by image processing allows the quanti-
tative, unbiased and reproducible analysis of phenotypes that can
later be easily parameterized and statistically evaluated to compare
phenotypic signatures of genes. Second, because genome-wide
RNAi screens would produce tens of thousands of movies, it was
clear that annotation would become the rate-limiting step in the
workflow for large-scale screening experiments.

The software we developed for automatic phenotyping proceeds
in three major steps: (i) location of chromosome sets within single
cells for each frame of the movie, (ii) classification of the chromo-
somes according to their morphology and (iii) detection of
cell-cycle phenotypes based on the classification results for the
entire movie.

For the first step, we defined the boundary of fluorescent
chromosomes by segmentation using optimized local adaptive
thresholding14, which identified both interphase nuclei and mitotic
chromosome sets with more than 99% accuracy compared to
manual image analysis (data not shown).

In the second step we computed the texture and shape properties
of each segmented set of chromosomes based on our past experi-
ence in identifying subcellular localization patterns15 and used
them to assign the cell to a biological class. The software distin-
guishes between ‘‘interphase,’’ ‘‘mitosis,’’ ‘‘apoptosis’’ and ‘‘shape’’

cells by machine-learning using multiclass
support vector machines (SVM; see Meth-
ods for details). The classification was 97%
accurate compared with manual annota-
tion. We carried out segmentation and
classification analysis for two normal cell
divisions on a scrambled siRNA spot
(Fig. 2a). The software correctly assigned
‘‘interphase’’ and ‘‘mitotic’’ chromosomes,

the latter including all stages of M phase from late prophase to
telophase. The correct identification of ‘‘apoptotic’’ cells was
illustrated for the two distinct cell death morphologies resulting
from suppression of the nuclear envelope proteins SYNE2 or PLK1
(Fig. 2b). By contrast, knockdown of the inner centromere protein
INCENP resulted in bi- and multinucleated cells as a result of
segregation defects that were correctly assigned to the ‘‘shape’’ class
(Fig. 2b). Examples of the automatic classification for three
additional gene knockdown experiments are shown (Supplemen-
tary Fig. 2 online).

Finally we analyzed the classification results for an entire movie
to decide whether the suppression of the targeted gene caused a
chromosome segregation or nuclear structure phenotype. The
software computes the number of cells in each biological class
relative to the total number of cells within the spot area of a movie.
We generated ‘‘mitotic,’’ ‘‘shape’’ and ‘‘apoptotic’’ index plots for
the PLK1 knockdown experiment (Fig. 2e). We then compared the
percentage of cells in a biological class to the three scrambled
siRNAs on the same cell microarray. If any of the three classes
showed a statistically significant difference to the controls, the
earliest time at which the difference became significant is defined as
the phenotype appearance and the maximum difference as the
phenotype penetrance. For example, suppression of the essential
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Figure 2 | Imaging of cell microarrays and

automatic phenotype analysis. (a) HeLa H2B-EGFP

cells on a scrambled siRNA spot (white circle

represents spot diameter; left). Division of two

cells (right, top row). Interphase and mitotic

chromosomes recognized by the automatic

classification are marked as indicated (right,

bottom row; Supplementary Video 1). (b) Mitotic

RNAi phenotypes followed by either binucleated

arrested cells (INCENP siRNA), or by apoptosis-like

SYNE2 siRNA and PLK1 siRNA. Interphase, mitotic,

apoptotic and binucleated (‘‘shape’’) cells are

automatically recognized and labeled in green,

yellow, red and blue, respectively (Supplementary
Videos 2–4). (c–e) Indices of ‘‘mitosis,’’ ‘‘shape’’

and ‘‘apoptosis’’ classes for three scrambled siRNAs

and one INCENP siRNA movie are plotted over

time. Data was smoothed and fitted with a third-

order polygon by local regression (solid line).

Divergence between the average scrambled siRNA

and the INCENP siRNA was computed for all 89

time points. The earliest statistically significant

divergence is marked as the ‘‘first phenotype

appearance’’ (arrows) and the maximal divergence

as the ‘‘phenotype penetrance’’ (double-headed

arrows) for each index. (d,e) The same analysis

is shown for exemplary SYNE2 (d) and PLK1 (e)

siRNA movies.
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mitotic kinase PLK1 led to prometaphase arrest11 and consequently
the mitotic index was elevated to 52% (compared to o5% in the
controls) at the beginning of the movie, and the first appearance of
the mitosis phenotype was thus calculated as 20 h after seeding
(Fig. 2e). The maximum mitotic index was reached at 27 h yielding
a phenotype penetrance of 48% (Fig. 2e). The apoptotic index plot
of the same movie reveals the long term consequence of the
prometaphase arrest. Corresponding to the decrease in mitotic
index after 27 h, the apoptotic index increased to a maximum
penetrance of 44% at 54 h (Fig. 2e). As expected, the shape index
indicative of binucleated cells was not affected, as cells lacking PLK1
do not initiate chromosome segregation but enter apoptosis
directly from prometaphase11 (Fig. 2e). We carried out an analo-
gous analysis for INCENP and SYNE2 knockdown (Fig. 2c,d). In
summary, time-resolved automatic phenotyping provides informa-
tion on when the suppressed gene product becomes limiting and
allowed us to distinguish between primary (for example, prome-
taphase arrest) and secondary (for example, apoptosis) phenotypes.

Time-resolved phenoprints can cluster genes by phenotype
We next used the quantitative image processing software to detect
phenotypes in the entire pilot screen dataset. We benchmarked the
automatic phenotyping against manual annotation of both mitotic
as well as apoptotic phenotypes in the same dataset, which we

assumed to be 100% correct. For mitotic phenotypes, automatic
and manual annotation agreed for 86% (42) of the targeted genes,
with a false-positive rate of 14% (7) and no false negatives. Similarly
for apoptosis, the automatic method had 88% (43) agreement with
10% (5) false positives and 2% (1) false negatives. Thus the
automatic phenotyping was highly accurate and delivered unbiased
and quantitative parameters about phenotype appearance and
penetrance that allowed us to cluster this set of candidate genes
according to phenotypic similarities. Genes were clustered by the
kind of phenotype they showed (increased mitotic, shape or
apoptotic index; Fig. 3a), by the mean maximal penetrance of
each phenotype (ranging from 2–38%; Fig. 3a) and by the relative
order in which multiple phenotypes, if present, appeared (Fig. 3b).
This multiparameter clustering (Fig. 3c) revealed groups of genes
related by their time-resolved phenotypic signature, or phenoprint.
For example, a large group of genes that initially caused a mitotic
phenotype followed later by apoptosis is represented by PLK1
(Fig. 2b,e) and CDC16 (Supplementary Fig. 2). Other groups of
genes produced only apoptotic phenotypes (for example, NUMA1,
Supplementary Fig. 2) or complex phenotypes in all classes, for
example the gene SYNE2, encoding a nuclear envelope protein
(Fig. 2d). It should be noted that the purpose of this study was to
develop and apply a fully automated method for high-throughput
RNAi screening by time-lapse imaging of live human cells and not
to fully define the biological phenotype of each single gene in our
pilot set. Because we only used one siRNA per gene, we cannot
exclude that some phenotypes are weak hypomorphs or may result
at least in part from off-target effects. But the high specificity of
our mitosis assay and the very good correspondence of our
data with previously published phenotypes (see below) make it
unlikely that off-target effects had a major contribution to the
observed phenotypes.

DISCUSSION
RNAi screening by time-lapse imaging of living cells has key
advantages over traditional endpoint assays. Most importantly, it
allows one to discriminate the primary phenotype caused by gene
suppression from secondary cellular responses. In addition it can
detect early as well as late phenotypes resulting from different
stabilities of the targeted gene product. Time-lapse imaging is also
very sensitive and can detect hypomorphic phenotypes such as
mitotic delays rather than arrest, which can occur with partial
depletion by RNAi. But phenotypes caused by partial depletion can
be very different from those caused by complete removal of a
protein16, and therefore a hit in a primary screening method as the
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a b c Figure 3 | Clustering of genes by time-resolved phenoprints. (a) Heat map of
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screen and the scrambled siRNA. Shown are mean penetrances of three movies

for each siRNA. The dynamic range of phenotype penetrance displayed in
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the maximal penetrance of each class, ‘‘mitosis’’ 30.3% (KIF11), ‘‘shape’’ 24.2%
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one presented here should be followed up by secondary
experiments in which the depletion level of individual proteins
can be quantitated. The three phenotypes shown (Fig. 2b) would all
be misinterpreted or missed in a typical endpoint determination
48 h after siRNA transfection. SYNE2 would already show more
apoptotic than mitotic cells; PLK1 would be wrongly scored as
an apoptotic phenotype, which is the secondary consequence
of the earlier prometaphase arrest. It is worth noting that the
HeLa cells we used in this study are known to have reduced
p53 levels, which has recently been reported to enhance the
apoptosis response caused by depletion of mitotic genes such
as PLK1 (ref. 17). It is therefore likely that the high percentage
of apoptotic phenotypes is at least in part due to this cell
type. INCENP would be scored correctly as a binucleated cell
phenotype, but the segregation defects causing this phenotype
would not be detected because they already occur 20 h after
seeding. The wide range of first phenotype appearances in our
pilot screen 20–44 h after seeding (Fig. 3b) demonstrates the
need to sample phenotypes at different times. In addition to
classification and penetrance of the primary phenotype itself, the
temporal sequence of phenotypes caused by suppression of a
gene gives important clues about its function and can therefore
be used to cluster genes into groups (Fig. 3b,c). We used only the
relative timing of phenotypes for hierarchical clustering because the
first appearance depends not only on stability of the targeted
protein but also on the efficiency of the siRNA knockdown.
Nevertheless we expect that in genome-wide screens the first
appearance will provide valuable, albeit indirect, clues about
average protein stability, as we find that genes encoding short-
lived cyclically regulated proteins, such as PLK1, AURKB andTPX2,
cause phenotypes early, whereas those encoding stable proteins,
such as CENPA and LMNA, cause late phenotypes (Fig. 3b).

The automatic phenotyping software we developed matched
manual annotation for 86–88% of the genes and correctly classified
many phenotypes known from the literature (for example, mitotic
phenotypes PLK1 (ref. 11), TPX2 (ref. 18), KIF11 (ref. 5) and KIF23
(ref. 19)). Machine learning, however, also has limitations, because
it will only correctly recognize phenotypes that were used to train
the classification software. This explains the up to 14% false-
positive rate of the automatic annotation we observed in this
pilot screen. An example of a false-positive mitotic recognition is
the gene NUMA1 (Fig. 3a,b).

In conclusion, we report for the first time an integrated high-
throughput workflow that combines two powerful methods of
functional genomics and cell biology: RNAi screening and live-cell
time-lapse microscopy. This method delivers detailed time-resolved
and quantitative phenoprints of human genes and is directly
scalable to genome-wide screens. This method is not limited to
HeLa cells, and can be applied to adherent cell lines derived from
different tissues (Supplementary Protocol). It is worth noting,
however, that a different cell line will require adaptation of the
imaging conditions (slower cell cycle, for example, in primary skin
fibroblasts, would require longer time-lapse sequences) and image
processing (a different nuclear morphology, for example, in RPE
cells, would have to be retrained for accurate classification). In
general, this method can be adapted to any assay that can be detec-
ted by fluorescence microscopy and scored by computerized image
processing, most prominently the host of GFP reporters available in
the cell biology community for diverse cellular functions.

METHODS
High-throughput time-lapse imaging. We acquired images with
an automated epifluorescence microscope (IX-81; Olympus
Europe) as described13 with the following new developments for
time-lapse acquisition and increased throughput. We implemented
stabilized light sources (MT20; Olympus Biosystems), firewire
cameras (DB-H1, 1,300 � 1,024, Olympus Biosystems) and an in
house–modified version of the ‘‘ScanR’’ software (now commer-
cially available with all new developments from Olympus Biosys-
tems), EMBL environmental microscope incubator (European
Molecular Biology Laboratory, GP 106) as well as a new objective
(Plan, 10�; numerical aperture (NA), 0.4; Olympus Europe) and
filter sets for GFP (Chroma Inc.). We used an image-based
autofocussing procedure13 to focus on the maximum number of
healthy cells (scoring size, intensity, contrast) in a field of view. The
focus z coordinates of the transfected cell microarray were saved
during the first round of imaging. The temperature stability of the
incubated system allowed us to reuse the saved focus map for 44 h
without further autofocussing between the 30-min imaging inter-
vals. As cells needed on average B1 h to go through mitosis, we
obtainedB2 mitotic images per cell that enabled us to detect delays
Z30 min, or a mitotic index change from 5% to 7.5%. Higher time
resolution would increase the sensitivity to subtle delays but reduce
throughput and increase overall data volume. We reduced illumi-
nation of the specimen to the minimum necessary for sufficient
signal-to-noise ratio for automated phenotyping (see below) with
exposure times of 18–50 ms (for GFP). Stage movements thus
limited throughput. Data was losslessly compressed on the fly and
continuously saved on a 5 Tb network-attached storage. We
connected microscopes via a 2 Gbit/s network to the network-
attached storage to sustain uninterrupted data flow.

Automated phenotyping by image processing. We segmented
chromosome sets by an optimized method of local adaptive thresh-
olding, reducing computational costs by 90% compared to the
original implementation20. We extracted numerical features of
shape and texture from each segmented set of chromosomes
resulting in a vector of 214 features each. Automatic classification
into biologically defined classes was by machine-learning using
multiclass SVMs14,15,21,22. Classes were ‘‘interphase,’’ ‘‘mitotic,’’
‘‘apoptotic’’ (several cell death phenotypes with supercompacted
or fragmented nuclei including, but not limited to, apoptosis),
‘‘shape’’ (nuclei of abnormal shape including, but not limited to, a
high percentage of binucleated cells), and ‘‘artifact’’ (containing
other objects). Feature selection was on B200 manually annotated
examples per class. We trained the SVM classifier on the 45 best-
ranked features of all B1,000 manually labeled cells. The classifier
achieved an overall accuracy of 97% on all samples measured by
fivefold cross-validation. In each single frame of time-lapse movies
for each spotting position, the classifier then automatically assigned
cells to the classes (Fig. 2a) resulting in kinetic plots of the fraction
of a given class relative to the total number of cells for the entire
movie (class index; Fig. 2c–e). Three classes ‘‘mitosis,’’ ‘‘shape’’ and
‘‘apoptosis’’ were mined individually for the presence of a cell-cycle
phenotype by statistical analysis. To increase the robustness and to
cope with occasional false classifications, the data of the knock-
down experiment of interest was first smoothed by local regression,
which provides a fitted value (Fig. 2e) and a confidence interval
(data not shown) for the fit at each time point. We then compared
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the fitted value to the mean value of the three regression fitted
control experiments on the same microarray, taking into consid-
eration the standard deviation (s.d.) of the controls. If the diver-
gence between the class index of the RNAi experiment and the
mean of the negative controls on the same cell array was above a
certain level of significance (‘‘mitosis’’ 2� s.d., ‘‘apoptosis’’ 3� s.d.,
‘‘shape’’ 2� s.d.), the earliest difference was calculated as the first
appearance of the phenotype and the maximum difference as its
maximal penetrance in the cell population (Fig. 2c–e). Besides
statistical significance, we also assessed biological significance by
requiring each phenotypic class index to be above a certain absolute
threshold (‘‘mitosis’’ and ‘‘apoptosis’’ at least 1%, ‘‘shape’’ at least
7%), which we determined empirically to remove false positives
resulting from noise in the data (experimental and classification
errors) that could not be removed by local regression smoothing.
We excluded mitotic hits with an onset of more than 6 h after
apoptosis based on a priori biological knowledge. We analyzed
triplicates separately and averaged the results. We applied hierarch-
ical clustering on relative phenotype sequence and maximum
penetrance for these three phenotypic classes to the entire pilot
screen dataset (Fig. 3c). We performed hierarchical cluster analysis
on a dissimilarity structure, which was generated by the Euclidean
distance between hextuples containing the maximum penetrance
and the relative phenotype appearance for the three classes ‘‘mito-
sis,’’ ‘‘shape’’ and ‘‘apoptosis.’’ As there was no a priori reason to
emphasize the categories penetrance and appearance or the classes
‘‘mitosis,’’ ‘‘shape’’ and ‘‘apoptosis,’’ all values of the hextuple were
equally weighted for clustering. The automatic phenotyping soft-
ware, which is coded in C++ and Python, is available upon request
for academic researchers.

Additional methods. See Supplementary Table 1 for siRNA
sequences and Supplementary Table 2 for reverse-transcriptase
PCR primers used in this study; the Supplementary Protocol for
description of the siRNA transfection methodology and its perfor-
mance in different cell lines; Supplementary Methods for details of
qRT-PCR; and Supplementary Videos 1–7 for sample images of
selected phenotypes.

Note: Supplementary information is available on the Nature Methods website.

ACKNOWLEDGMENTS
We thank S. Narumiya (Kyoto University, Kyoto) and T. Hirota (Institute of
Molecular Pathology; IMP; Vienna) for HeLa ‘Kyoto’ cells; W. Huber (European
Bioinformatics Institute; EBI; Hinxton) for advice on statistical analysis of kinetic
data; O. Gruss (Zentrum für Molekulare Biologie Heidelberg; ZNBH; Heidelberg) for
TPX2 antibody; J.-M. Peters (IMP; Vienna) for RPE cells; I. Hoffmann (Deutsches
Krebsforschungszentrum; DKFZ; Heidelberg) for U2OS cells; H. Runz (Univ.
Heidelberg) for primary human fibroblasts; Chroma Inc. for providing customized
emission filter sets free of charge; EMBL’s IT Services group (B. Kindler,
M. Hemberger, R. Lück) for support; Olympus Biosystems, Hamilton and Bio-Rad
for continuous support; Cenix BioScience GmbH for siRNA design and for providing
the A549 cells; and Ambion Europe, Ltd. for providing siRNAs for validation. This

project was funded by grants to J.E. within the MitoCheck consortium by the
European Commission (FP6-503464) as well as in part by the Federal Ministry of
Education and Research (BMBF) in the framework of the National Genome Research
Network (NGFN) (NGFN-2 SMP-RNAi, FKZ01GR0403 to J.E. and NGFN-2 SMP-Cell
FKZ01GR0423, NGFN-1 FKZ01GR0101, FKZ01KW0013 to R.P.).

COMPETING INTERESTS STATEMENT
The authors declare that they have no competing financial interests.

Published online at http://www.nature.com/naturemethods/
Reprints and permissions information is available online at
http://npg.nature.com/reprintsandpermissions/

1. International Human Genome Sequencing Consortium. Finishing the euchromatic
sequence of the human genome. Nature 431, 931–945 (2004).

2. Kittler, R. et al. An endoribonuclease-prepared siRNA screen in human cells
identifies genes essential for cell division. Nature 432, 1036–1040 (2004).

3. Berns, K. et al. A large-scale RNAi screen in human cells identifies new
components of the p53 pathway. Nature 428, 431–437 (2004).

4. Pelkmans, L. et al. Genome-wide analysis of human kinases in clathrin- and
caveolae/raft-mediated endocytosis. Nature 436, 78–86 (2005).

5. Zhu, C. et al. Functional analysis of human microtubule-based motor proteins, the
kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol. Biol.
Cell 16, 3187–3199 (2005).

6. Sonnichsen, B. et al. Full-genome RNAi profiling of early embryogenesis in
Caenorhabditis elegans. Nature 434, 462–469 (2005).

7. Ziauddin, J. & Sabatini, D.M. Microarrays of cells expressing defined cDNAs.
Nature 411, 107–110 (2001).

8. Erfle, H. et al. siRNA cell arrays for high-content screening microscopy.
Biotechniques 37, 454–458, 460, 462 (2004).

9. Wheeler, D.B., Carpenter, A.E. & Sabatini, D.M. Cell microarrays and RNA
interference chip away at gene function. Nat. Genet. 37 (Suppl.), S25–S30
(2005).

10. Gerlich, D. & Ellenberg, J. 4D imaging to assay complex dynamics in live
specimens. Nat. Cell Biol. 4 (Suppl.), S14–S19 (2003).

11. Sumara, I. et al. Roles of polo-like kinase 1 in the assembly of functional mitotic
spindles. Curr. Biol. 14, 1712–1722 (2004).

12. Kanda, T. & Wahl, G.M. The dynamics of acentric chromosomes in cancer cells
revealed by GFP-based chromosome labeling strategies. J. Cell. Biochem. (Suppl.)
35, 107–114 (2000).

13. Liebel, U. et al. A microscope-based screening platform for large-scale functional
protein analysis in intact cells. FEBS Lett. 554, 394–398 (2003).

14. Huang, K. & Murphy, R.F. From quantitative microscopy to automated image
understanding. J. Biomed. Opt. 9, 893–912 (2004).

15. Conrad, C. et al. Automatic identification of subcellular phenotypes on human cell
arrays. Genome Res. 14, 1130–1136 (2004).

16. Meraldi, P. & Sorger, P.K. A dual role for Bub1 in the spindle checkpoint and
chromosome congression. EMBO J. 24, 1621–1633 (2005).

17. Liu, X., Lei, M. & Erikson, L. Normal cells, but not cancer cells, survive severe plk1
depletion. Mol. Cell. Biol. 26, 2093–2108 (2006).

18. Gruss, O.J. et al. Chromosome-induced microtubule assembly mediated by Tpx2
is required for spindle formation in HeLA cells. Nat. Cell Biol. 4, 871–879
(2002).

19. Zhu, C., Bossy-Wetzel, E. & Jiang, W. Recruitment of MKLP1 to the spindle
midzone/midbody by INCENP is essential for midbody formation and completion
of cytokinesis in human cells. Biochem. J. 389, 373–381 (2005).

20. Hirota, T. et al. Distinct functions of condensin I and II in mitotic chromosome
assembly. J. Cell Sci. 117, 6435–6445 (2004).

21. Seul, M., Lawrence, O. & Sammon, M. Practical Algorithms for Image Analysis
(Cambridge Univ. Press, Cambridge, UK, 2000).

22. Huang, K. & Murphy, R.F. Boosting accuracy of automated classification of
fluorescence microscope images for location proteomics. BMC Bioinformatics 5,
78 (2004).

  
p

u
or

G  
g

n i
h si l

b
u

P er
u ta

N 600 2
©

e r
ut a

n/
m

oc.er
ut a

n.
w

w
w//:

ptt
h

s
d
o
ht

e
m

390 | VOL.3 NO.5 | MAY 2006 | NATURE METHODS

ARTICLES


