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Ion channels are involved in a variety of fundamental physiological processes, and their malfunction causes numerous human 

diseases.  Therefore, ion channels represent a class of attractive drug targets and a class of important off-targets for in vitro 

pharmacological profiling.  In the past decades, the rapid progress in developing functional assays and instrumentation has enabled 
high throughput screening (HTS) campaigns on an expanding list of channel types.  Chronologically, HTS methods for ion channels 

include the ligand binding assay, flux-based assay, fluorescence-based assay, and automated electrophysiological assay.  In this review 
we summarize the current HTS technologies for different ion channel classes and their applications.
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Introduction
Ion channels are a very important membrane protein family 

involved in a variety of fundamental physiological processes.  

Their malfunction causes a variety of human diseases.  There-

fore, ion channels represent a class of attractive drug targets[1-4] 

and a class of important off-targets for in vitro pharmacologi-

cal profiling[5].  Traditionally, patch clamp electrophysiology 

is the gold standard for ion channel studies.  However, the 

method is labor-intensive with a low throughput and requires 

highly trained staff to perform the experiments.  Ion channels 

are difficult targets to be investigated using high throughput 
approaches, which hinders the use of ion channels compared 

with other targets.  Recently, the rapid progress in develop-

ing functional assays and instrumentation has enabled high 

throughput screening (HTS) campaigns on an expanding list 

of channel types.  Consequently, HTS was designed to iden-

tify active compounds for ion channel targets, which are of 

great interest to academic and industrial researchers.  The 

methodologies for studying ion channels can be divided into 

non-electrophysiological and electrophysiological methods.  

This review will summarize the current technologies and 

commonly used screening methods for different ion channel 

classes.

High throughput screening technologies
In the past, HTS methods for ion channels have been exten-

sively developed and applied to most ion channels.  In chron-

ological order, the approaches include: the ligand binding 

assay, flux-based assay, fluorescence-based assay and auto-

mated electrophysiological assay.

Ligand binding assays

Ligand binding assays have been widely used to screen for 

ion channel modulators.  However, these assays are not con-

sidered as functional assays because they detect the binding 

affinity of a compound to an ion channel rather than the abil-
ity of altering channel function.  Ligand binding assays require 

a previous knowledge of the target binding sites and of the 

formation of a radio-labeled ligand which is specific to those 
binding sites.  Activity of the test compound is indicated by 

the displacement of the labeled ligand.  Consequently, conven-

tional instrumentation may be used, in which throughput rep-

resents its major strength.  Because the method only discovers 

compounds that influence radioligand binding, it misses allo-

steric modulators of ion channels[6-9].  Binding assays identify 

affinity data but do not identify the functional change of ion 
channels.  For example, an agonist cannot be distinguished 

from an antagonist in a binding assay.  Secondary assays are 

necessary to determine if the compound is an agonist, antago-

nist or neither.  Furthermore, the scope of binding assay is lim-

ited by the availability and affinity of radio-labeled ligands[7-9].  
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The sensitivity of a binding assay is often determined by the 

affinity of a known labeled ligand.  A high-affinity ligand may 
not allow the detection of weak binders.  However, the use of 

a low-affinity ligand can lead to an increased detection of non-
specific binding.  When the ligand affinity is within a certain 
range (eg, from nano- to micro-molar concentration), the IC50 

values obtained from binding assays have a reasonable cor-

relation[10] with those obtained from patch clamping.  Thus far, 

the assay format has been rarely used for general screening 

but is still good for identifying modulators specific to some 

given ligands.

Flux-based assays

Ion flux assay has been successfully applied to directly access 
a functional change of ion channel activity.  Radioactive iso-

topes have been used to trace the cellular influx or efflux of 

specific ions, such as 22Na+, 45Ca2+ and 86Rb+, for the studies of 

Na+, Ca2+ and K+ channels, respectively.  A commonly used 

assay format is the 86Rb+ efflux for K+ channels or non-selective 

cation channels.  In this format, the cells that express the ion 

channel of interest are incubated with a buffer that contains 
86Rb+ for several hours before they are washed and stimulated 

with an agonist to allow for 86Rb+ efflux.  Then the cells and 

supernatant are collected for radioactive counting[11, 12].  How-

ever, radioactive-efflux assays suffer from the inconvenience 
and cost associated with the handling of radioactive materials.  

Additionally, it is necessary to use different radioisotopes for 

channels that are selective for different ions.  Therefore, a non-

radioactive Rb+ efflux assay was developed that uses atomic 

absorption spectroscopy to detect rubidium[13].  The flux assay 
is a format preferred by many screening laboratories because it 

measures ionic flux that better correlates with the activity[14-16].  

This assay technology is widely applied in the pharmaceuti-

cal industry for both drug discovery and hERG-related drug-

safety screening to identify potential QT liabilities that might 

cause lethal arrhythmias[6, 17].  However, these assays have the 

disadvantages of low temporal resolution (typically from sec-

onds to minutes), uncontrolled membrane potential, less infor-

mation content compared with voltage-clamping and lower 

throughput compared with fluorescence-based assays.  Fur-

thermore, this assay generates a very weak signal for some ion 

channels, which requires a high level of channel expression to 

achieve an acceptable signal-to-noise ratio.

Fluorescence-based assays

Fluorescence-based methods do not directly measure ionic 

current.  Rather, they measure either the membrane-potential-

dependent or ion-concentration-dependent changes of fluo-

rescence signals as a result of ionic flux.  Because fluorescence-
based methods produce a robust and homogeneous cell 

population measurement, these assays are similar to those for 

other protein classes.  Therefore, more instrument choices and 

expertise are available.  Consequently, these assays are rela-

tively easy to implement and to optimize to achieve a higher 

throughput.

Voltage-sensitive dye assays

Fluorescent voltage-sensitive dyes measure voltage changes 

across the cellular membrane using either the potential-depen-

dent accumulation and redistribution[18] or the fluorescence 

resonance energy transfer (FRET) mechanism[19].  Oxonol 

derivatives, such as bis-(1,3-dibutylbarbituric acid) trimethine 

oxonol [DiBAC4 (3)], are lipophilic and negatively-charged 

dyes that display an increased quantum yield in an aqueous 

environment upon binding to hydrophobic intracellular mole-

cules instead of weak fluorescence.  Because the change in flu-

orescence occurs minutes after the change in membrane poten-

tial, these dyes are best suited to detect a steady state instead 

of kinetic changes of membrane potential.  These dyes cannot 

detect second and sub-second resolution changes of mem-

brane potential.  In contrast, the FMP dye, another anionic 

membrane potential dye from the FLIPR Membrane Potential 

Assay Kit (Molecular Devices, Sunnyvale, CA, USA), provides 

a faster response time (in tens of seconds) than DiBAC4 (3)[20] 

and is good for detecting kinetic signal changes.

The lipophilic character of DiBAC4 (3) and the FMP dye is 

associated with a lack of membrane selectivity, which indi-

cates that these voltage-sensitive dyes can respond to a mem-

brane potential change from both the plasma membrane and 

the endo-membrane.  For FRET-based assays, the negatively 

charged, membrane-soluble oxonol dyes (bis-(1,3-dialkylthio-

barbituric acid) trimethine oxonol [DiSBACn (3)]), are used as 

voltage-sensing FRET acceptors.  The FRET donors are couma-

rin-tagged phospholipids (CC2-DMPE) that are integrated into 

the outer leaflet of the membrane when loaded into the cells.  
An increase or decrease of FRET in response to membrane 

hyperpolarization or depolarization produces fast, ratiometric 

changes.  The ratiometric nature of the assay helps to eliminate 

many artifacts associated with DiBAC assays.  Unlike DiBAC 

assays, the use of phospholipid-anchored FRET donor restricts 

the location of FRET in the plasma membrane, which ensures 

that the measurement of potential changes occur at the cell 

membrane rather than in other subcellular compartments, 

such as the mitochondria.  In addition, FRET-based voltage 

sensors produce sub-second temporal resolution, which allows 

for kinetic reading.  Because the mobile oxonol molecules are 

charged, a dye-concentration-dependent dye-current may 

interfere with the change of membrane potential caused by the 

ionic current through the ion channels, especially when the 

current is less than a few hundred pico-amperes.  One way to 

reduce this interference is to use less dye, which may cause a 

decrease in the signal-to-noise ratio if the dye concentration is 

below a certain limit.

Ion-specific fluorescent probes
The assays that measure intracellular ionic concentrations 

are widely used in research and pharmaceutical screenings 

for ion channels.  Different ion-specific synthesized probes 

have been developed, such as calcium indicator dyes (Fura-

2, Fluo-3, Fluo-4[21, 22]), potassium indicator dyes (FluxOR[23, 24] 

and PBFI[25]) and sodium indicator SBFI[26].  In addition to the 
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synthesized ion indicator dyes, a genetically-coded fluorescent 
protein can be used as an indicator of ion channels.  Specifi-

cally, mutations of YFP (H148Q and I152L) further increase 

the YFP-halide sensitivity, which is suitable for chloride-

involved channel assay[27−29].  These indicators are usually used 

in conjunction with a FLIPR-type kinetic fluorescent reader to 
achieve high throughput, low-noise detection of both absolute 

levels and changes of cytosolic corresponding ionic concentra-

tions.

Overall, ion channel assays that use ion indicator dyes are 

largely limited to the availability of high performance ion-

specific indicators.  To date, calcium indicators are most exten-

sively utilized and provide a robust performance that can be 

used for HTS of calcium channels or non-selective cation chan-

nels[30−33].

Automated electrophysiological assays

Patch-clamp has been widely considered as the gold standard 

to directly record ion channel activity.  This technology pro-

vides high quality and physiologically relevant data of ion 

channel function at the single cell or single channel (within 

a small patch of membrane) level.  For pharmacological test-

ing of compounds, it provides a standard for measuring the 

potency of compound–channel interactions.  Although the 

conventional patch-clamp offers a direct, information-rich and 

real-time method to study the channel function, it has very 

low throughput and a labor-intensive nature, which requires 

highly skilled and trained personnels.  Over the last decade, 

the development of an automated planar patch clamp has 

been a breakthrough.  Many automated electrophysiology 

platforms have been developed and are commercially avail-

able.  They either provide a giga-ohm seal quality of data com-

parable to a manual electrophysiology recording, or they rely 

on the use of a perforated patch clamp technique with higher 

throughput that does not compromise data quality and phar-

macology.

The IonWorks platform was the first commercially available 
automated electrophysiological screening platform to gain 

widespread utility and validation in the field.  It is now avail-
able in its second generation, the IonWorks QuattroTM, and a 

more recent generation, the IonWorks Barracuda™[34−36].  The 

system operates in a 384-well format in two modes, single-hole 

mode and population patch clamp mode (PPC).  In single-hole 

mode, one cell per well is recorded in a 384-well plate.  In PPC 

mode, the instrument reports average currents from record-

ings of up to 64 cells per well.  The data recorded using single-

hole mode achieved a lower success rate with a considerable 

well-to-well variability.  However, it is the preferred mode for 

clonal screening and selection during cell line development[37].  

PPC mode provides an improved data consistency and suc-

cess rate in the measurement of ionic currents[34].  A common 

limitation has been observed for lipophilic compounds with 

right-shifted potencies due to the use of plastic materials for 

the plates[36, 38].  However, with good assay optimization, an 

acceptable correlation between compound potencies derived 

from IonWorks assays and manual patch clamp electrophysi-

ology can be achieved[36, 39].  The system can not only be uti-

lized to voltage-gated channels but also for fast-desensitizing 

ligand-gated channels[38, 40].  In addition, ion channel-targeted 

drug-discovery efforts on a number of diverse ion channel 

subtypes have benefited from the availability of the IonWorks 
platform with robust assay properties[35, 40-46].  Thus, the major 

limitation for Ionworks systems is to establish giga-ohm seals.

To gain a giga-ohm level of seals, several planar array-based 

automated electrophysiology systems have been developed 

to incorporate the precision and accuracy of manual electro-

physiology recording.  The platforms provide a giga-ohm seal 

with compromised low throughput.  However, the platforms 

have gained prominence and acceptance in the pharmaceuti-

cal industry.  Some of these platforms are PatchXpress and 

IonFlux (Molecular Devices, LLC, Sunnyvale, CA, USA), 

QPatch HT/HTX (Sophion, Copenhagen)[47, 48], and Nanion’s 

Patchliner and SynchroPatch (Nanion Technologies GmbH, 

Munich)[49].  The rapid solution exchange time (50–100 ms) and 

perfusion capability of these systems have made them amena-

ble for ligand-gated ion channel investigations.  Furthermore, 

Nanion’s Patchliner offers a primary cell recording capabil-

ity with both the voltage clamp and current clamp recording 

modes.  Recently, automated patch clamp instruments with a 

much higher throughput and  giga-seal have been launched 

that bridge the gap between the high-throughput and high 

quality of ion channel assays, including Sophion’s Qube (384-

well) and Nanion’s SyncroPatch 384PE and 768PE.

High-throughput electrophysiology has many theoretical 

advantages and holds much promise.  The continued evolu-

tion of existing and new platforms for automated ion channel 

screening will keep up with the demand both for ion channel 

safety profiling and for ion channel-targeted drug discovery.

Prevalent HTS methods for the specific ion channel 

families
Before choosing the ideal screening method(s), it is important 

to determine what to look for when comparing technologies 

and their applications.  Eight parameters commonly consid-

ered include sensitivity, specificity, throughput, temporal 

resolution, robustness, flexibility, cost, and physiological rele-

vance.  Among all the assay formats of ion channels, undoubt-

edly, the automated patch clamp assay is the best choice that 

provides a good quality of data and allows a higher through-

put.  Currently, an automated electrophysiology assay remains 

expensive.  Thus, not every laboratory can afford it.  Therefore, 

as a compromise, a combination of fluorescence-based screen-

ing technologies and an automated patch clamp has become 

the most commonly used method for ion channel-targeted 

drug discovery.  With cost reduction and technology improve-

ment, automated electrophysiology will become the dominant 

assay format for most ion channel subtypes.  For different ion 

channel subclasses, the high-throughput screening methods 

differ due to ion selectivity, channel activation kinetics and a 

consideration of whether a ligand is needed.  For a selected ion 

channel target, the flowchart of the high-throughput screen-

ing is summarized in Figure 1.  It is divided into 3 stages: a 
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fluorescence-based assay for primary screening, an automated 
patch clamp validation for secondary screening and a manual 

patch characterization for tertiary screening.  Because there are 

many ion channel families and subclasses available, the most 

commonly used screening methods will be discussed based on 

ion selectivity or permeability.  The diagrams for the represen-

tative screening methods are displayed in Figure 2.

Potassium-selective channels

Potassium-selective channels are the largest and most diverse 

group among the ion channel families.  The classes of channels 

include voltage-gated (Kv), inward-rectifying (KIR), two-pore 

(K2P) and Ca2+-activated (KCa) potassium channels.  Multiple 

assay formats have been applied to this large family, including 

the ligand binding assay, 86Rb+ flux assay, voltage-sensitive 

dye-assay and Tl+ flux assay.  Among them, the Tl+ flux assay 
is most often used to identify potassium channel modula-

tors[24].  In this assay, Tl+ is used as a surrogate ion for K+, 

and its influx into cells is initially measured using a thallium-
sensitive fluorescent dye benzothiazole (BTC)[24, 50], which is a 

Ca2+ indicator with a low Ca2+-binding affinity (Kd=7 μmol/L).  
Using a commercially available thallium assay kit (FluxORTM, 

Life Technologies), the method has been successfully devel-

oped for a number of potassium channels.  The Tl+ flux assay 
has been extensively used in potassium channel screenings, 

such as Kv
[24, 51-56], KIR

[57-59], K2P
[60-62] and KCa

[63, 64] channels.  It 

should be noted that a variety of off-target pathways (eg, 

Na+/K+ ATPase) from the native HEK-293 or CHO-K1 (these 

two parental cell types are most commonly used) cells could 

interfere with the Tl+ influx, which will cause a higher false-
positive or false-negative hit rate.  Therefore, a counter screen-

ing against parental cells is necessary to eliminate the false hits 

interacting with parental cells.  In addition, the assay should 

be handled with great care due to toxicity of thallium.

Ca2+-involved ion channels

An intracellular calcium ion (Ca2+) is a universal second mes-

senger that controls both physiological and pathological pro-

cesses.  Among the mentioned ion indicators, calcium indicators 

are most commonly used[65] because they alter their fluorescence 

Figure 1.  Pipeline of high-throughput screening targeting ion channels.  (A) For a large compound library, the compounds are first screened using the 
fluorescence-based flux assay on an ion channel-expressed stable cell line, and the identified hits are confirmed on the same cells and are counter-
screened on the parental cells to exclude non-specific hits.  (B) Second, active hits are tested using an automated patch clamp for validation and, the 
active hits are pharmacologically evaluated for structure-activity relationship (SAR) until lead compounds are identified.  (C) Finally, a manual patch 
clamp is used to characterize biophysical properties on stable cell lines and native cells.



38

www.nature.com/aps

Yu HB et al

Acta Pharmacologica Sinica

npg

emission upon calcium binding.  Currently, over one hundred 

chemically synthesized and genetically encoded indicators are 

available[66].  Chemical indicators that are most commonly uti-

lized include Fura-2, Indo-1, Fluo-3 and Fluo-4, which are the 

derivatives of a Ca2+ selective chelator BAPTA[30, 67].

Depending on the application, calcium dyes are available in 

a range of affinities to calcium ions[68], excitation and emission 

spectra, and chemical forms (membrane permeable or not).  

They show different temporal resolution (from milliseconds, 

such as Fluo-3 and Fluo-4, to tens of seconds, such as Fura-

2), and different degrees of accuracy for each range of calcium 

concentrations.  For example, Indo-1 is preferable to Fluo-3 

for measuring large and relatively slow intracellular calcium 

transients that are associated with cellular contraction.  In con-

trast, Fluo-3 is preferred for measuring small, fast transients 

that are associated with calcium “sparks”[69].  Therefore, Fluo-3 

(including its derivative Fluo-4) is more suitable for detecting 

Ca2+-involved ion channel signals.  For the high-throughput 

screening of Ca2+-involved ion channels, commercial kits, such 

as the Fluo-4 calcium assay kits (Life Technologies), are avail-

Figure 2.  Diagram of high-throughput screening methods.  (A) Diagram of the thallium-flux assay for potassium channels, closed state, open state and 
the raw signal.  For a potassium channel, the Tl+-flux assay is the most commonly used assay format.  To trigger the channel to open, typically a high-K+ 

solution is used to depolarize the membrane potential.  Then, thallium passes into the cells through open potassium channels.  Upon the cytosolic 
thallium binding to the dye, the fluorescence signal is kinetically increased.  The raw traces were acquired from the primary screening of KCNQ2 
potassium channels. The black, red and blue raw traces represent the effect of a buffer control, an activator and an inhibitor, respectively.  (B) Diagram 
of calcium-flux assay for calcium-involved channels.  Fluo-4 is the most commonly used calcium indicator for calcium-involved channels.  To trigger the 
related channel to open, a high-Ca2+ or a channel agonist is used to open the channel or to increase cytosol Ca2+.  The raw data traces were acquired 
from the primary screening of the TRPC4 channel.  To screen for multiple classes of modulators, three additions were applied for the same well.  The 
first addition is for the screened compounds without DAMGO (a highly selective peptide agonist for the μ opioid receptor) to screen for agonist.  The 
second addition is an EC20 concentration of DAMGO for allosteric modulators.  The third addition is an EC80 concentration of DAMGO for antagonists. 
Black traces represent compounds without any effect to the three additions.  Red traces represent compounds with an agonist effect.  Blue traces 
represent compounds with an antagonist effect.  (C) Diagram of chloride-selective channels. Mutated YFP (H148Q and I152L) was co-expressed with 
chloride-selective channels. When the channel opens, iodide enters the cells via chloride channels, binds to YFP and quenches its fluorescence.  The 
raw data were acquired from the primary screening of a calcium-activated chloride channel (TMEM16A).  Ionomycin was used as an agonist to activate 
the channel.  Red trace represents the ionomycin-activated channels.  Blue trace represents the effect of an inhibitor. 
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able.  They are extensively applied in Ca2+-involved ion chan-

nel assays, such as voltage-gated calcium channels[33, 70], TRP 

channels[71-75], and NMDA receptors[76, 77].

Furthermore, calcium channels exist among closed, open 

and inactivated states.  To distinguish the state-dependent 

inhibitors, usually an inward rectifier potassium channel gene 
(eg, Kir2.3) is co-expressed with calcium channels.  Thus, the 

membrane potential can be adjusted by altering the external 

K+ concentrations.  This approach has successfully been used 

to identify state-dependent inhibitors and to characterize the 

molecular selectivity, even offering some advantages over 

electrophysiology[33, 41].  The strategy can also be applied to 

sodium channels.  Calcium dye-based ion channel assays suf-

fer from interference from other cellular processes that pro-

duce changes in the intracellular calcium concentration.  The 

counter screening for the same assay has to be run against 

parental cells to remove the nonspecific compounds.

Voltage-gated sodium channels

Voltage-gated sodium channels are important targets for treat-

ing excitable diseases, such as epilepsy and neuropathic pain.  

It is known that voltage-gated sodium channels exist in closed, 

open and inactivated states.  Additionally, for the sodium 

channels expressed in HEK-293 cells, the membrane potential 

is at a more depolarized level.  Taking sodium channel sub-

type Nav1.7 expressed in HEK-293 cells as an example, the 

averaged membrane potential was measured to be approxi-

mately –24 mV, an averaged value from a panel of approxi-

mately 50 cells (data not published).  Thus, this will drive most 

channels into inactivated states instead of their real “resting 

states”.  Therefore, a known inhibitor of Nav inactivation, 

veratridine[78], is commonly used to drive the channels open, 

which produces a more robust signal.

Ideally, ion-selective indicators are perfect to assay the 

specific ion channels.  However, the available Na+ sensitive 

dyes (eg, SBFI[26], CoroNa dyes[79] and Asante Natrium Green-

2[80]) are not well-suited for high-throughput screening due 

to low sensitivity and a poor signal-to-background ratio.  The 

fluorescence-based membrane potential dye assay (eg, DiBAC 

and FRET dyes) is often used for sodium channel screenings.  

For the assay itself, the signal change is primarily affected by 

the membrane potential.  Therefore, any event that changes 

the membrane potential modulates the signals.  Thus, the dye-

based method may yield a relative high false-positive and/

or false-negative rate when compared with the electrophysi-

ology methods.  Recently, a thallium flux (Tl+ flux)-based 

method[81], a valuable technique for potassium channels, has 

been successfully developed as a functional assay for Nav1.7 

sodium channels.  Tl+ flux methods produce dramatically 

larger signals, which are superior to the state-of-the-art Na+-

sensitive dyes and are amenable for HTS of sodium channels.  

The application of the ligands (eg, veratridine) may interact 

with test compounds and thus increase the false-positive or 

false-negative rates.  In addition, a newly developed calcium 

flux assay (SoCal assay)[82] has been used as a readout of func-

tional change of Nav channels.  In this assay, Nav channels 

were genetically engineered to produce persistent Nav cur-

rents with impaired fast inactivation and enhanced calcium 

permeability.  Thus, the calcium reporters, including both the 

chemical dyes and genetically encoded sensors, would be the 

alternative indicators of Nav channels.  Although the SoCal 

assay demonstrates a good estimation of activity for the vast 

majority of tested compounds, it is still recommended that 

the hits should be further validated using electrophysiologi-

cal method in wild-type Nav channels.  Due to the limitation 

in controlling the state of sodium channels compared with 

electrophysiology, care should be taken when interpreting the 

inhibitor data from the fluorescence-based approach.

Chloride-selective channels

For chloride channels, the yellow fluorescent protein (YFP) 

quenching assay has been developed[27].  Initially, YFP-H148Q 

had a higher selectivity for iodide (I-) than chloride (Cl-) due 

to the halide binding properties of YFP[27].  However, H148Q 

required substantial concentrations of iodide to produce 

an acceptable signal, which would manifest cell toxicity.  A 

random mutation approach, YFP-I152L, has a significantly 

increased sensitivity to iodide[27, 29].  Thus, YFP (H148Q and 

I152L) combined with iodide was widely used for the chloride 

channel screening.  Upon chloride channel activation, I152L 

enters the cells, binds to YFP and quenches its fluorescence.  

Agonist-dependent quench of YFP fluorescence can then be 

measured with a fluorescence reader and used to determine 

channel activation, inhibition and modulation.  The YFP assay 

is a noninvasive technique that measures fast responses.  The 

assay has been widely developed for chloride selective chan-

nels and receptors, including CFTR[83, 84], calcium-activated 

Cl- channels (CaCC) (TMEM16A)[85-88], Glycine receptors[89] 

and GABA receptors[89, 90].  Additionally, the voltage-sensitive 

dye method can be used to assay the chloride channels but is 

rarely used for this class of channels.

Because membrane potential cannot be controlled as elec-

trophysiological assays in the abovementioned fluorescence-

based assays, the rationale is to improve the signal-to-noise 

ratio during the assay development of the HTS.  In general, 

there are two approaches to improve the signal-to-noise ratio: 

increase the signal or decrease the noise.  The signal can be 

increased by creating conditions under which more chan-

nels are opened.  This can be achieved by applying high K+ to 

induce membrane depolarization or by applying ligands to 

drive the channels into more activated states.  The noise can be 

effectively decreased using non-physiological surrogate ions, 

such as thallium for K+ and iodide for Cl-.  These surrogate 

ions are almost non-existent within cells and their noise level 

is therefore very low.  Even a tiny amount intracellular change 

of these surrogate ions can be easily detected.

Conclusion and perspective
Overall, progress and improvements in ion channel HTS tech-

nologies have sped up ion channel drug discovery.  Detection 

of ion flux signals can be achieved using fluorescence indicator 
dyes and a fluorescence plate reader, such as the Fluorometric 
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Imaging Plate Reader (FLIPRTetra, Molecular Devices) or FDSS 

(Hamamatsu Photonics).  These assays have relatively low 

temporal resolution and information content but enable robust 

and low cost.  Electrophysiological methods have the most 

direct approach to measure ion channel activity and addition-

ally allow flexibility in assay optimization for each channel 

type.  The combination of non-electrophysiological and elec-

trophysiological HTS methods provides an integrated and 

cost-effective approach for ion channel drug discovery and 

ensures high quality of data to be generated.  

The development of ion channel screening technologies has 

met most needs for drug discovery.  Significant instrumenta-

tion development efforts continue to improve the capabilities 

of automated electrophysiological instruments, which are 

being used for more ion channel classes and cell types.  Emerg-

ing trends focus on the exploration of reagents and the devel-

opment of strategies that may be applied to the screening pro-

cess of ion channels, including the highly expressed ion chan-

nel stable cell lines, sensitive and specific indicators and opti-
mized screening strategies.  Expression systems, including off-

the-shelf reagents, enable new opportunities for the existing 

instrumentation.  Recently, a number of new products have 

emerged for the cell line development, including the MaxCyte 

STX electroporation instrument[91], BacMam system[51] and 

Jump-In™ Cell Engineering Platform[92].  These products are 

expected to enhance the stable cell line development process 

and expedite the screening for drug discovery, bioproduc-

tion, and cell-based therapy.  Because a constitutive high-level 

expression of ion channels may cause cell toxicity for some ion 

channel classes and lead to a drop of the expression level after 

some passages, the alternative is to use an inducible system 

that can decrease the toxicity and guarantee long-lasting gene 

expression.  It has been suggested that inducible expression 

systems should be routinely used because the preparation of a 

stable cell line is a time-consuming process.

Drug discovery is a slow and complicated process.  Identi-

fication of the active ingredient is the first and critical step for 
almost all drug targets.  All of the screening-related work is 

geared towards the first step.  Researchers may be interested 
in searching for multiple classes of chemo-types of ion channel 

modulators, such as orthosteric modulators, allosteric modula-

tors, or competitive antagonists.  Therefore, a flexible design 
of strategies is encouraged to meet researchers’ needs.  This 

flexibility dramatically enhances the possibility of success.  

Additionally, data analysis and management are also impor-

tant and critical aspects of the HTS process, especially when 

analyzing a large amount of data across different assays and 

targets.
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