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ABSTRACT

The use of capillary electrophoresis with fluores-

cently labeled nucleic acids revolutionized DNA

sequencing, effectively fueling the genomic revolu-

tion. We present an application of this technology

for the high-throughput structural analysis of

nucleic acids by chemical and enzymatic mapping

(‘footprinting’). We achieve the throughput and data

quality necessary for genomic-scale structural anal-

ysis by combining fluorophore labeling of nucleic

acids with novel quantitation algorithms. We imple-

mented these algorithms in the CAFA (capillary

automated footprinting analysis) open-source soft-

ware that is downloadable gratis from https://

simtk.org/home/cafa. The accuracy, throughput

and reproducibility of CAFA analysis are demon-

strated using hydroxyl radical footprinting of RNA.

The versatility of CAFA is illustrated by dimethyl

sulfate mapping of RNA secondary structure and

DNase I mapping of a protein binding to a specific

sequence of DNA. Our experimental and computa-

tional approach facilitates the acquisition of high-

throughput chemical probing data for solution

structural analysis of nucleic acids.

INTRODUCTION

Nucleic acid structure contributes to cellular regulation
(1–7). The ability to rapidly characterize the structure of
nucleic acids with chemical and enzymatic probes is
central to elucidating their functional roles (8,9). For
example, the ENCODE project has identified critical
sequences in the human genome which now require

structural characterization (10,11). ‘Footprinting’ and
chemical or enzymatic ‘mapping’ are synonymous terms
for assays in which the accessibility of either the backbone
or side-chains of a macromolecule is characterized by their
reactivity to an exogenous probe (12–18). The key feature
of chemical mapping is that it can report local changes in
macromolecular structure with as fine as single-residue
resolution (12,19-23). The products of DNA or RNA
chemical mapping reactions have traditionally been
separated by denaturing gel electrophoresis (GE) and
imaged by autoradiography. Although advances in
autoradiogram analysis have improved experimental
throughput (23,24), further improvement is necessary for
genomic-scale mapping analyses.
While capillary electrophoresis (CE)-based sequencers

are ubiquitous at most institutions, their application to
quantitative nucleic acid structural characterization
requires special expertise (25–28). We therefore set out
to harness the potential of CE for the structural
characterization of nucleic acids by quantitative chemical
mapping. A major limitation to their adoption for nucleic
acid structural analysis is the absence of software that can
quantitate the elution trace. The ‘base calling’ algorithms
necessary for sequencing are not suitable for quantifica-
tion of the chemical and enzymatic mapping data
necessary for structural analysis (29–31). Rather, an
algorithm capable of deconvoluting overlapping signal is
necessary (23,24,32) along with software that transforms
and manipulates the mapping data. To take advantage of
high-throughput CE sequencers, we have developed the
experimental protocols and the capillary automated
footprinting analysis (CAFA) software described in this
paper that builds upon tested GE analysis tools (23,24).
The structural analyses derived from CAFA-based analy-
sis will be a valuable addition to genome analyses
(11,33,34).
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MATERIALS AND METHODS

RNA, primers and size standard ladder

We prepared the L-21 ScaI Ribozyme by in vitro transcrip-
tion and purification as described previously (35,36).
HPLC-purified Cy5-labeled primers were obtained from
Sigma Genosys and resuspended in TE buffer at 1 mM. The
two primers we used in this study are, 50 ACTCCAAAAC
TAA TCA ATA TAC TTT C 30 and 50 GCA TCC ATA
TCA ACA GAA GAT C 30, and are complementary to
nucleotides 409–384 and 255–234 of the Tetrahymena
ribozyme, respectively. We purchased DNA size standard
kits 400 and 600 from Beckman Coulter (PN 608098 and
PN 608095).

Primer extension of cleaved/modified RNA

We used �5 pmol of RNA per mapping reaction and
always ethanol precipitated the RNA prior to RT. We
resuspended the precipitate in 9 ml of annealing buffer
(50mM Tris–Cl, pH 8.3, 60mM NaCl, 10mM DTT) and
added 1 ml of fluorophore-labeled primer stock solution
(1mM) to each tube. We heated the samples to 858C
for 1min, followed by slow cooling to 258C for primer
annealing, then added 9 ml of reverse transcription mix
(4ml of 5X RT buffer supplied with Superscript
III-Invitrogen, 1 ml of 0.1M DTT, 2 ml of RNase
Inhibitor, 2 ml of 10mM dNTP mix) in each tube. We
incubated the solutions at 558C for 5min and then added 1
ml (200 U) of Superscript III (Invitrogen, Carlsbad, CA).
The final reaction volume is 20 ml, which we incubated at
558C for 15min.
Upon completion of RT extension, we degraded the

RNA by adding 2 ml of 2N NaOH and incubating at 958C
for 3min. To neutralize the solution, we added 2 ml of 2N
HCl followed by 3 mL of 3M Na-acetate to facilitate
cDNA precipitation and finally 80 ml of 100% ethanol. We
centrifuged at 14 000 r.p.m. for 30min to pellet the cDNA
which we then dried and resuspended in 40 ml of the
Sample Loading Solution� (Beckman, Fullerton, CA). We
performed the dideoxy sequencing reactions (for markers)
in the same way except that we added 0.25mM of one of
the ddNTPs.

Electrophoretic parameters

We separated the cDNAs by CE in a Beckman CEQ8000
Genetic Analysis System. The optimized parameters that
produced peak traces at single nucleotide resolution for
about 300 nt are: electro-kinetic injection voltage, 2 kV;
electro-kinetic injection time, 7 s; denaturation, 958C
for 150 s; separation voltage, 3 kV; and capillary tempe-
rature, 608C.

Basis for choosing the fluorescent dyes

The CEQ fluorescence detection filter wheel has four filters
with the following wave-length cutoffs: 1: 675� 2 nm;
2: 715� 2nm; 3: 775� 2nm; and 4: 820� 2nm. The primers
are labeled with the dye Cy5 whose emission max (668nm)
corresponds to the filter 1. The Beckman size standard
fragments are labeled with the Beckman WellRed� D1 dye
whose emission max (�820nm) corresponds to filter 4.

Direct end-labeling of DNA duplex andDNase I experiments

We used a singly end-labeled 110bp DNA fragment con-
taining the AdMLP TATA Box sequence TATAAAAG.
The DNA fragment was amplified by PCR from the
plasmid pRW2 using one labeled and one unlabeled primer
(37), followed by purification on a 6% nondenaturing
polyacrylamide gel. The DNase I experiments were
performed in the absence and presence of 195 nM TBP
as described in (38) and references cited therein.

Direct radioactive end-labeling of RNA

End labeling of RNA with 32P was conducted as described
at either the 50 (36) or the 30 ends (39,40). The labeled
products of OH cleavage were visualized by GE and
phosphor storage imaging and quantitated by the SAFA
software (23).

CAFA software development

We developed CAFA within the Matlab version 7.4
development environment (The MathWorks, Inc., Natick,
MA) and compiled on both the Windows XP and Apple
OS 10 operating systems. The developed peak width
model is based on the initial estimation of the distance
between peaks,

wi ¼ Að piþ1 � piÞ 1

where wi is the peak width, pi the peak position (in pixels)
and A is a proportionality constant that is fit by bounded
nonlinear least squares. We use a custom implementation
of the bounded nonlinear least squares (41) for efficient
and robust model fitting. Data normalization is a two-step
procedure. Peak areas are first normalized to their mean
values. The differences between the resulting profiles are
then minimized, excluding data identified as having high-
error based on the background lane (Figure 4B).

RESULTS

Method development

Figure 1 illustrates the premise of CAFA for quantitation
of nucleic acid structure probes such as the hydroxyl
radical (�OH) radical, dimethyl sulfate (DMS), N-methyl-
isatoic anhydride (NMIA), DNase I and base-specific
nucleases (38,42,43). These probes cleave or modify a
nucleic acid depending on the local chemical environment;
modifications are transformed to cDNA fragments to
facilitate electrophoretic separation for chemical mapping
analysis. For example, if RNA is exposed to �OH at
conditions under which on average a molecule is cleaved
once (Figure 1A) the extent of backbone cleavage at
each residue is proportional to its solvent accessibility
(8,43–45). The result of an �OH mapping reaction is a
population of RNA fragments that reflect the relative
solvent accessible surface of each nucleotide (Figure 1B).

The peak profiles analyzed by CAFA are fluorescently
labeled DNA separated and detected by the sequencer. For
DNA singly end-labeled with a fluorescent dye prior to
probing (direct labeling), the mapping reaction products
are themselves subjected to electrophoretic separation.
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However, when fluorescent dyes are susceptible to
degradation by a footprinting probe (e.g. �OH) or the
mapping reaction yields chemical modification that must
be converted to nucleic acid fragments (e.g. DMS), pro-
portionate postlabeling of the reaction products (indirect
labeling) is advantageous. Indirect labeling methods
include extension of a fluorescently labeled primer to
yield fluorescent cDNA complements of the chemically
mapped nucleic acid. This strategy can also be used with
whole-cell extracts of RNA, as the primer will selectively
anneal to the RNA of interest (8). An advantage of indirect

labeling for RNA analysis is the resistance to nuclease
degradation of cDNA transcripts. This advantage is
critical if the sequencer used is maintained by a facility
that does not conduct RNase free operations. Therefore,
the CAFA approach does not require a dedicated or
modified capillary sequencer.
CAFA can be used both with direct and indirect

labeling strategies of nucleic acids. Incorporation of a
fluorophore-labeled nucleotide at the 50 or 30 end of
a nucleic-acid prior to cleavage/modification (also referred
to as direct labeling) is a routine technique summarized

Figure 1. Basic premise of the CAFA approach. (A) DNA or RNA is exposed to a chemical or enzymatic probe that either cleaves or modifies it
with single-hit kinetics such that the population of the reaction products (B) is related to the probe’s reactivity. Extension of fluorescently labeled
primers by RT or DNA polymerase generates a corresponding population of fluorescently labeled cDNA molecules (C). The cDNA samples are
mixed with a Beckman size standard ladder (400 or 600). Each mixture is subject to CE yielding a trace of the size separated reaction products (D) to
be analyzed by CAFA. The blue trace records the fluorescence emission of the Cy5 labeled cDNA fragments; the red peaks correspond to the
Beckman WellRED� dye D1 present on the size standard fragments.
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in the Materials and methods section. Our protocol for
indirect labeling of RNA (post cleavage/modification),
tailored to CAFA builds upon the advances of others
(8,26,28) and is illustrated for the �OH mapping analysis
of RNA folding. Unlabeled RNA is cleaved by �OH as
described below and the resultant fragments converted to
cDNA for analysis. Cy5-labeled primers complementary
to the 30 end of the RNA template are annealed and
extended by reverse transcription (RT) to generate labeled
cDNA strands for samples analyzed by the Beckman
CEQ8000 (CEQ) sequencer (Figure 1B). Elongation of the
transcript terminates at sites of backbone cleavage
producing a population of Cy5-cDNA molecules propor-
tional to the population of unlabeled chemical mapping
reaction products (Figure 1C). The CEQ size separates the
products and records fluorescent intensity as a function of
time in an ‘elution trace’ that is readily exported from the

instrument for analysis (Figure 1D). Each peak in the
trace represents cDNA molecules of n, n+1, n+2 . . .

lengths. The area of each peak is proportional to the
amount of cDNA present (Figure 1D).

CAFA automatically quantifies the area of the individ-
ual peaks of a trace. We adjust the sample injection
time to maximize the usable fluorescence signal without
saturating the detector. We also optimized the CE run
parameters to maximize peak separation by systematically
analyzing the denaturation and separation temperatures
and the separation voltage (Supplementary Figure 5
and Table 1).

Implementation of CAFA

In a typical RNA experiment, CEQ analysis of the
Cy5-cDNA products of �OH mapping yield a trace such
as that shown in Figure 2A for the Mg2+-folded L-21

Figure 2. CE traces (blue), CAFA models estimating peak area (green), individual peaks (red) and size ladder (black) with automated peak
assignments. (A) The complete trace of the L-21T. Thermophila group I intron with a CAFA model fit to the data. (B) and (C) Enlargements of right
and left ends, respectively, of the CE trace. (D) A flow chart summarizing CAFA fitting showing the data inputs discrete steps [data (square boxes),
and binary decisions (hexagons)]. The peaks present in the size ladder trace are initially assigned using a threshold peak picking algorithm (manually
adjusted with a ‘sensitivity’ slider). These initial guesses of the peak positions are refined using bounded nonlinear least squares. The fast linear
regression is used to update peak heights if convergence has not been achieved resulting in a peak model that fits the data optimally and
reproducibly.
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Tetrahymena thermophila group I intron. The observed
(blue) trace is characteristic of the Mg2+-folded ribozyme
(13,19,20,46). Three hundred nucleotides are easily read
in this experiment. Panels B and C illustrate the ‘best’
and ‘worst’ data by zooming in on 45 nt in regions of high
and low peak separation, respectively. The Beckman
size markers labeled with the D1 WellRED� dye are
co-electrophoresed with the samples to reference the
position of the sample peaks (Figure 2B and C; black
traces below the peak profiles).

CAFA fits the blue elution trace to a model consisting
of a series of Lorentzian line shapes (Figure 2; red lines) by
assigning peak positions based on the size ladder and then
refining the global peak model using bounded nonlinear
least-squares (41). Figure 2D schematizes CAFA’s peak-
fitting algorithm. Our novel iterative approach to peak
fitting adjusts the three parameters of each Lorentzian
(height, width and position) in succession. The initial peak
position guesses are generated by linear interpolation
between the size standard peaks. We assume that the
width of individual peaks is a function of elution volume;
we call this a ‘two-parameter peak-width model’
[Equation (1), Materials and methods section). Fast
linear regression adjusts the peak heights to yield a refined
set of initial guesses for the height, width and position of
each peak. Bounded nonlinear least-squares iteratively
adjusts the peak positions to no more than 30% of their
width. We use a relative tolerance of 10–6 on the gradients
of the objective function (difference between data and
model) to determine convergence (diamond box,
Figure 2D). CAFA flags data that do not converge. The
peak areas are calculated from the best-fit peak positions
and the width and height values derived from the peak
model. Each experiment includes a ‘background’ trace,
which refers to a primer extension reaction run on the
unmodified RNA. Certain positions in the RNA cause
the RT to stop, and we refer to these sites as ‘RT stops’.
The background trace is also fit to identify such ‘RT stops’
for exclusion in the final analysis. We can fit 600 peaks in
several seconds on a 2GHz single-core processor with
1 Gb of RAM.

Validation of CAFA

Four assumptions underlie nucleic acid structural analysis
by CAFA: (i) Peak position is unambiguously assigned
against a concomitantly electrophoresed set of size
standards; (ii) peak area is proportional to nucleic acid
concentration; (iii) peak area is reproducible; and (iv) the
peak profiles discerned from mapping experiments
correlate with the structural features of the analyzed
nucleic acid.

We addressed point 1 by separately analyzing the
cDNA products produced by primer extension on the full-
length unfolded Tetrahymena RNA in the presence of
ddCTP and the cDNA derived from primer extension on
the RNase T1 cleaved fragments of the same molecule. We
analyzed these peak traces by CAFA and verified
correspondence to the positions of guanosine (G) nucleo-
tides in the RNA (Supplementary Figure 1). The excellent
alignment of the cleavage product traces (blue) with the

ladder (black) demonstrates that comparison with the
ladder accurately assigns the initial peak positions for
CAFA peak fitting. Analysis of corresponding peaks
between the ladder and digest traces (for example G110
and position 300 on the ladder, Supplementary Figure 1)
revealed that differences in peak position are �30% of the
peak width. We use this 30% bound during CAFA peak
fitting.
We demonstrate point 2 by analyzing a set of serially

diluted samples of cDNA molecules (Supplementary
Figure 2). The relationship between cDNA concentration
and resolved peak area is linear within the dynamic range
used for our analyses (R2=0.97, �

2=10–14) and is
sufficient for accurate quantitative chemical mapping
analysis. We confirmed linear fluorescence response by
also establishing that the Mg2+ folding isotherms, derived
from OH footprinting experiments, generated by CAFA
recapitulate those obtained by GE and SAFA
(Supplementary Figure 3) (23,39). We used 1 pmol of
fluorophore-labeled primers (final concentration 0.05mM)
for our RT reactions to maintain the total amount of
fluorophore-labeled cDNA within the estimated dynamic
range.
To assess point 3, we compared the error in CAFA

quantified data for a single �OH mapping experiment that
was divided into five aliquots with five ‘independent’
identical reactions each extended from two different
primers. The aliquots of a single experiment run in
separate capillaries either along a row or a column of
the 96-well plate and therefore analyzed separately,
deviate by <1% standard error compared with 12%
error among the experimental replicates. Thus, CEQ
separation and detection are not a major source of error
in CAFA quantified data. We collected data on all eight
capillaries of our CEQ-8000 sequencer. Our observation
of a 12% error therefore encompasses any error that is the
result of the experimental and analysis protocols. It is thus
an upper estimate of the error of the technique.
As seen for the independent reactions analyzed by

different primers, longer cDNA fragments have narrower
and better-separated peaks (Figure 3A). This behavior is
opposite to that observed in GE. High reproducibility is
observed in well-resolved regions (Figure 2B), while more
variability is present, as expected, in peaks fit to poorly
separated traces (Figure 2C). We analyzed the effect of
peak resolution by comparing the peak fits to nucleotides
obtained from the two different primers, which have
different peak widths (Figure 3A; red and blue, respec-
tively). Quantitative comparison of these data required the
development of a novel normalization of the peak areas of
each data set to compensate for variation in RT efficiency,
fluorophore concentration and sample uptake (Figure 3B).
The normalization approach incorporated into CAFA
initially divides the peak areas by their mean and then
performs an optimization that minimizes the pair wise
differences between the traces. CAFA analyzed data are
highly reproducible with the normalized standard devia-
tions �12%. Although standard error is slightly higher in
less well-separated regions of the trace the regions of
abnormally large standard error (�20%) correlate with
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strong sequence-dependent RT stops present in the
cDNA.
Figure 4A compares histograms summarizing the

distribution of the standard error of resolved peaks
obtained using CAFA [excluding intrinsic RT stops but

including data obtained for both primers (Figure 2)]
and the identical sequence analyzed using 32P direct
labeling, GE and SAFA (23). The mean error is much
lower for the CAFA analysis of indirectly labeled RNA. It
is noteworthy that in the CAFA analysis there is almost a
complete absence of peaks with standard errors �0.3.
Thus, CAFA analysis of CE separations is clearly superior
to GE-based analysis.

Automatic exclusion of unreliable peaks

The �11% of the CAFA data with a standard error
�20% is predominantly comprised of peaks at or near RT
intrinsic stops. An automated algorithm identifies and
marks for exclusion these unreliable data. Our method
requires that a ‘background’ trace of cDNA transcribed
from sample that is not chemically modified accompany
the experimental samples. The algorithm flags peaks in the
background trace whose area is 3-fold greater than the
mean background. These peaks correspond to intrinsic
stops in cDNA or degradation products in the sample
traces.

We document the performance of our method for
identifying high-error data by computing false and true-
positive rates with respect to high-error peak identification
(Figure 4B). We identify 9% of the high-error data if only
background peaks are used (distance 0 on the ordinate of
Figure 4B). The true-positive and false-positive rates
increase to 62% and 16%, respectively if peaks within
1 nt of the background peaks are included. Both error
rates increase as the distance from each background peak
increases. Since a distance of one offers the best
improvement of true-positives versus false positives
(Figure 4B), CAFA automatically flags RT stops and
excludes all peaks within one nucleotide when provided
with a background cDNA trace. This procedure identifies

Figure 3. An assessment of CAFA reproducibility by analyzing five
independent experiments with primers (red and blue) that anneal to the
30 and middle of the RNA, respectively. (A) Peak widths (in pixels) as
a function of RNA nucleotide number for each experimental replicate.
(B) Normalized peak areas as a function of RNA nucleotide number
for the five experimental repeats. (C) The standard error of each
nucleotide’s peak is calculated as the standard deviation divided by
the mean.

Figure 4. (A) Normalized histogram of the standard error for CAFA (black) and SAFA (red) analysis of the same RNA. The CAFA results have a
smaller standard error than SAFA. (B) False-positive (green) and true-positive (blue) rates for the prediction of high-error data using the CAFA
error prediction algorithm. CAFA identifies putative’ RT stop’ sites based on a background lane and flags this data for exclusion. We then analyze
how well we are able to predict areas of low reproducibility in the data (as measured by repeating the experiments five times on independent samples)
using the putative RT stops identified in the background lane. This figure demonstrates that if we exclude all data within one nucleotide of an RT
stop, we are able to predict 62% of the high-error data. Therefore, this strategy can be used to identify high-error data without having to perform
multiple repeats of the experiment. The user can adjust the number of nucleotides around the RT stop to exclude during the analysis.
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and excludes a majority of the unreliable data without the
need to carry out multiple [experimental] repeats.

Applications of CAFA

To illustrate the generality of CAFA and its value for
structural characterization, we used it to structurally

analyze several nucleic acids previously studied using 32P
labeling, GE and SAFA (38,39,47,48). First, we compared
the solvent accessible surface of the Tetrahymena group
I intron derived from the �OH reactivity profile to the
values calculated from the crystal structure (Figure 5A)
(49,50). We measured a correlation coefficient of 0.75
between the calculated (using the mean accessibility of the

Figure 5. Different applications of CAFA to nucleic acid structural mapping. (A) Mapping of �OH reactivity onto the crystal structure of the L-21T.
thermophila group I intron (45,46). Note that suppression (blue) and enhancement (red) of �OH reactivity closely map the solvent accessibility of the
structure. (B) Comparison of Mg2+-dependent folding isotherms of nucleotide 126 in the T. thermophila group I intron analyzed by SAFA (red) and
CAFA (black) analysis. (C) DMS mapping of L-21T. thermophila group I intron to determine its secondary structure performed in the presence of
100mM KCl and no Mg2+. Nucleotides protected from DMS modification are boxed in blue. Those that are reactive are boxed in red. Raw data for
the DMS experiments is plotted in Supplementary Material Figure 7. (D) Mapping by DNase I of the binding of TBP to a TATA Box present on a
DNA duplex. In the top panel we illustrate the reproducibility of CAFA (black) relative to SAFA (red, 38) determined peak areas for the same DNA
molecule without protein bound. In the bottom panel, we illustrate automated CAFA analysis of the bound DNA clearly identifying the TATA
binding site (yellow).
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five sugar-carbon atoms) and experimentally determined
accessibility profiles; the agreement between experiment
and a prediction allows us to use �OH mapping data as
a filter for structural modeling (Jonikas, Radmer,
Laederach, Altman, submitted for publication). The
Mg2+ midpoint of several sites of protection for folding
of the L-21T. Thermophila group I intron are identical
to those previously determined (Figure 5B and
Supplementary Material Figure 3).
We used CAFA to map the secondary structure of the

Mg2+-free (10M sodium cacodylate buffer with an
additional 100mM KCl) Tetrahymena group I intron.
Secondary but not tertiary structure is present under these
experimental conditions. DMS reactivity was used to
probe for base pairing. Unpaired adenines and cytosines
are methylated during a short incubation with DMS; the
modifications terminate RT extension. Normalization of
the data from a single experiment allows precise identifi-
cation of the methylation-induced RT stops over the full
length of the ribozyme (except for the sequence annealed
to the primer). Ninety percent of the crystallographically
determined base-paired nucleotides are identified with a
5% false-positive rate (Figure 5C, colored blue and red,
respectively). We identify the base-paired residues by
considering any residue base-paired that is 30% or more
protected relative to the mean protection observed for the
entire molecule. These data show that the pseudo-knot P3
helix is formed (51,52).
DNase I is often used to map the binding of proteins to

specific sequences of duplex DNA. We used CAFA to
analyze the interaction of the Saccharomyces cerevisiae
TATA-binding protein (TBP) to a TATA Box sequence to
which it specifically binds (38,53,54). DNA directly
labeled by PCR was analyzed in the absence and presence
of a saturating concentration of TBP (Figure 5C). CAFA
analysis yields a DNase I footprint of TBP comparable to
the one obtained with 32P-DNA and GE (Figure 5D and
Supplementary Material Figure 6). The DNase I foot-
printing traces fit well despite the large disparity among
the peak heights due to the nuclease sequence preferences.
The utilization of the size ladder to provide initial peak
positions, together with the peak width constraint allow
CAFA to rapidly and accurately quantitate the DNase I
traces. The examples shown in Figure 5 highlight the
generality of CAFA with regard to the nature of the
mapping probe and the phenomenon being investigated.

DISCUSSION

Quantitative analysis of CE separations of the products of
chemical and enzymatic mapping (footprinting) by CAFA
yields more results, more quickly with better precision
compared to GE based methods. The quality and rapidity
of data analysis enabled by CAFA reduces the problem of
characterizing RNA solution structure to common prac-
tice. We release CAFA as free open-source software with
the hope that it will stimulate quantitative study of nucleic
acid structure and function as has our GE-based SAFA
software (23,25,28,55). Furthermore, the fact that this
analysis can be run on a standard instrument could lead to

core facilities offering CAFA analysis in addition to
sequencing.

The experimental versatility and simplicity of quantita-
tive solution mapping enabled by CAFA, melded with
indirect labeling, allows very long lengths of nucleic acids
to be efficiently interrogated with single nucleotide
resolution. Combined with in vivo chemical mapping
protocols (8), CAFA provides an excellent platform for
structural characterization of nucleic acids as well as
nucleic-acid protein interactions inside the cell. The com-
bination of automated analysis and the high-throughput
achieved with multicapillary machines enables genomic
scale studies now to be undertaken. Furthermore, the
throughput of the technique could be further increased by
simultaneously running samples with different colored
dyes within a single capillary. The fundamental fitting
algorithms implemented in CAFA are compatible with
this approach, although the costs of synthesizing addi-
tional colored primers may not always justify extending
the approach in this way.

CAFA accommodates the biggest technical hurdle to
indirect labeling by RT primer extension; sequence-
specific pauses and stops. While our experimental
protocols minimize the frequency of these stops, their
predictability from a ‘background trace’, makes it possible
to flag these sites of low reliability data for exclusion in
subsequent analysis (Figure 4B). The ability to accurately
exclude erroneous data early in the analysis procedure is
critical to high-throughput data analysis. Our approach is
conservative in that we choose to exclude more data (16%
false positives, Figure 4B) to ensure that the remaining
data are accurate.

CAFA is a standalone application with a graphical user
interface (Supplementary Figure 4) that accommodates a
variety of experimental protocols. The software takes a
raw CE-trace, fits a peak model to it and thus quantitates
the relative amount of each mapping reaction product
(Figure 1). The output peak areas are associated with
nucleotide numbers corresponding to the DNA reference
peaks of the size standard ladder; these numbers are then
related to either the source from which the cDNA was
transcribed (indirect labeling) or the directly labeled
sample. CAFA and its documentation show how data
can be associated with the sample sequence based on
concomitant analysis of the appropriate sequence refer-
ence ladders. Postprocessing tools are provided to facil-
itate this task. We observed excellent agreement between
the Beckman size ladder and a T1 digest and are confident
in the accurate assignment of sequence to peaks
(Supplementary Figure 1). However, it is possible that
systemic shifts in sequence assignment could occur for
molecules with extreme GC content. For this reason, we
recommend calibration of the ladder against the RNA
upon initiation of a new study to identify systematic bias
and allow for its correction.

The three applications of CAFA we demonstrated are:
determination of nucleotide solvent accessibility with �OH
footprinting, secondary structure mapping using DMS,
and protein-binding site identification on DNA. Common
to each problem is the need to accurately determine the
peak areas corresponding to each nucleotide, which is at
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the heart of the CAFA algorithm. Given the experimental
versatility of RT-based indirect labeling and the avail-
ability of the CAFA software, CE appears poised to
replace GE as the method of choice for the high-
throughput analysis of nucleic acid structure as it already
has for DNA sequencing.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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