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Understanding cell type identity in a multicellular organism 

requires the integration of gene expression profiles from 

individual cells with their spatial location in a particular 

tissue. Current technologies allow whole-transcriptome 

sequencing of spatially identified cells but lack the throughput 

needed to characterize complex tissues. Here we present 

a high-throughput method to identify the spatial origin of 

cells assayed by single-cell RNA-sequencing within a tissue 

of interest. Our approach is based on comparing complete, 

specificity-weighted mRNA profiles of a cell with positional 

gene expression profiles derived from a gene expression atlas. 

We show that this method allocates cells to precise locations 

in the brain of the marine annelid Platynereis dumerilii with a 

success rate of 81%. Our method is applicable to any system 

that has a reference gene expression database of sufficiently 

high resolution.

High-throughput single-cell RNA-sequencing by automated reaction  

processing in multiwell plates1 or by microfluidics devices2 is becom-

ing an established experimental technique3. The sample collection 

step in these protocols results in the dissociation of tissue and there-

fore loss of spatial information. However, investigating the molecular 

composition of individual cells in the context of spatial location is 

important, especially when studying primary cells. This is particularly 

relevant when looking at complex tissues, such as the early embryo 

or the brain, where multiple heterogeneous cell types are located in 

close proximity.

Single-molecule fluorescence in situ hybridization (FISH)4 has been 

widely used to quantitate transcript numbers at single-cell resolution 

within the context of a tissue of interest. This allows gene expression to 

be assayed in many cells but it can only be applied to a small number 

of genes. More recently, methods for high-throughput, spatially  

resolved single-cell RNA-seq have been developed using in vivo marking  

and picking of selected cells from predefined spatial coordinates4, or 

in situ amplification of cellular transcriptomes on tissue sections5. 

Although these approaches facilitate analysis of all expressed genes in 

each captured cell, they are limited in terms of the number of cells that 

can be labeled and then processed (Supplementary Note 1). An alter-

native approach is to carry out unbiased single-cell RNA-sequencing  

(where cells are dissociated without knowledge of their spatial 

location) followed by computational approaches, such as Principal 

Component Analysis, to partially recover the spatial structure of 

the tissue of interest6. However, such approaches do not facilitate a 

fine-grained reconstruction whereby the location of each cell can be 

precisely determined.

To overcome these limitations, we propose an integrated approach that 

combines previously generated in situ hybridization (ISH)-based gene 

expression atlases with unbiased single-cell transcriptomics (Fig. 1).  

Notably, ISH atlases exist for many species and developmental stages 

(Table 1) making our approach broadly applicable. Moreover, beyond 

the model systems for which comprehensive maps are typically avail-

able, targeted ISH of tens of marker genes is commonly used to study 

spatially restricted patterns of gene expression in systems that provide 

key insights into evolution and development7–9. Such screens could 

also be used as a mapping reference for RNA-seq data, and, for several 

‘nonmodel’ species (e.g., zebra finch or the ascidian Ciona intestinalis),  

high-quality gene expression data are already being assembled into 

structured databases (Table 1).

RESULTS

Experimental design and quality control

We used the developing brain of a marine annelid, P. dumerilii, to dem-

onstrate the utility of our approach. P. dumerilii is an important model 

system for studying bilaterian brain evolution10,11 so obtaining spatially 

registered transcriptomic profiles of cells within its brain is valuable for 

understanding how cell types in the vertebrate brain evolved.

At 48 h post-fertilization (hpf), the P. dumerilii larval brain is 

composed of a relatively low number of cells (~2,000). However, this 

small number of cells harbors a wide range of cell types, including 

several types of differentiated neurons, sensory cells and proliferat-

ing progenitor cells12–16. Previously, whole-mount in situ hybridi-

zation (WMISH) was used to study the expression pattern of 169 

differentially expressed candidate genes such as transcription factors, 

regulators of cell fate and body plan patterning, within the brain of 

P. dumerilii, thus facilitating the creation of a WMISH expression 

atlas14,17. Subsequently, this WMISH data set was divided into 3-µm3  
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voxels and binarized, resulting in a matrix (Fig. 1) where genes  

are arranged in the rows and spatial coordinates (voxels) in the  

columns17. Using a previously described approach17, we removed  

genes with low-quality WMISH signals, resulting in a reduced  

reference set of 98 genes. Considering the 3-µm3 voxel size and  

the observation that cell diameters range from 4 to 25 µm, most  

cells in the P. dumerilii brain are expected to correspond to  

11–174 voxels. An entry in the matrix (one voxel) is set equal to 1 if  

the corresponding gene is expressed in the voxel of interest and  

set equal to 0 otherwise.

To generate the single-cell RNA-sequencing (scRNA-seq) data,  

we dissociated P. dumerilii larval brains, and followed that by cell 

capture, cDNA synthesis and amplification on the C1 Single-Cell Auto 

Prep IFC. In total, we sequenced 213 samples, of which 155 (73%) 

corresponded to single cells (as judged by visual inspection of the 

captured cells) with the remainder consisting of single dead cells, wells 

containing multiple cells and empty wells, which were sequenced as 

a negative control (Supplementary Table 1).

For each cell, the scRNA-seq data were mapped to the P. dumerilii 

reference transcriptome augmented with the ERCC spike-in molecule 

sequences18. The quality of the data was evaluated by calculating the 

percentage of all reads mapping to the reference transcriptome and 

to the ERCC spike-in sequences (Supplementary Fig. 1). Samples 

where >10% of reads mapped to the ERCC sequences and <10% of 

reads mapped to the reference transcriptome were excluded from 

further analyses. In addition, samples containing no cells or multiple 

cells were excluded, leaving 139 high-quality filtered cells (QF cells) 

that were used in downstream analyses (Supplementary Table 1). 

We note that 139 cells corresponds to ~7% of all cells in the larval 

brain of P. dumerilii.

To assess whether the 139 QF cells represented a random sample 

of cells from across the whole brain, we compared the proportion of 

sequenced cells in which each gene was expressed with the proportion 

of voxels showing expression of the same gene in the binarized refer-

ence atlas (Supplementary Fig. 2). This revealed that the ratios display 

good concordance (Supplementary Fig. 2; Spearman’s Rho = 0.48,  

P < 2 × 10−5 Spearman’s Rank Test), thus providing confidence that 

the sequenced cells represent a broad sample of cells from across the 

P. dumerilii brain.

Mapping of individual cells

To determine the spatial origin of each sequenced cell we applied a 

three-step approach. First, for each cell, we calculated a specificity 

score that indicates to what extent each gene is specifically expressed 

in that cell relative to all other cells (Supplementary Note 2). For each 

cell, its score vector was then transformed using a logistic function 

such that its elements took values between 0 and 1, where a value 

near 1 indicates that a gene is highly specific to the cell of interest. 

Subsequently, a ‘correspondence score’ was determined for each  

cell-voxel combinations. For each gene expressed in the scRNA-seq 

data and present in the WMISH atlas (72/98 genes; others correspond 

to genes expressed at low levels or expressed exclusively in cells that 

we did not capture), a match or mismatch between the scRNA-seq 

and the WMISH data resulted in the transformed specificity weight 

being added or subtracted from the cell-voxel score, respectively. This 

yielded a cell-voxel correspondence score for all combinations of cells 

and voxels. Third, we used simulations to determine, for each cell, the 

significance of the cell-voxel correspondence scores (Supplementary 

Figs. 3 and 4). More specifically, we generated a randomized data 

set by permuting the specificity scores 100 times for each cell and 

mapped these simulated cells back to the reference. Based upon this 

simulated data set, we determined the empirical probability that each 

true cell was mapped back to a particular number of voxels at a given 

correspondence score threshold.

We mapped 69 cells (50%) with high confidence (at least 21 voxels 

with a score >1.5 corresponding to <10% chance of occurrence in 

the simulated data), 43 cells (31%) with medium confidence (at least 

16 voxels with a score > 0.5 corresponding to <30% chance of occur-

rence in the simulated data) and 14 cells (10%) with low confidence 

(>11 voxels with a score > 0 corresponding to <50% chance of being 

observed in the simulated data; Supplementary Figs. 3 and 4). We 

considered the voxels with the highest confidence for each sample 

as being the most likely loci from which the cell assayed by means 
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Figure 1 Overview of the spatial mapping workflow using the P. dumerilii 

scRNA-seq data set. We used an existing gene expression atlas (right 

column) to link scRNA-seq data (left column) from cells extracted from 

the developing brain of P. dumerilii (top left) with spatial coordinates. The 

gene expression atlas was binarized, resulting in a matrix of n positions 

that each comprise presence and absence values for m genes. For each 

sequenced cell c, expression data for the same set of m genes was 

compared to expression profiles at all n positions in the reference matrix 

and matched based on highest similarity. An example of the likely position 

for one cell is indicated in the two images at the bottom by the red circle 

in the bottom left (ventral view of P. dumerilii larva) and red voxels in 

the apical view at bottom right. The upper right panel of this figure is 

modified from ref. 17. Scale bars, 50 µm.
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Figure 2 Examples of the spatial mapping  

of single cells. (a) An example of a cell  

mapped at single-cell precision (<150 voxels).  

83% of cells in our data set fit this mapping  

profile. (b) An example of a cell mapping to  

a small brain region. 13% of cells in our  

data set fit this mapping profile. (c) An example 

of a broad mapping where many voxels score  

above the threshold. 4% of cells in our data  

set fit this mapping profile. Note that for  

mapping profiles shown in b and c, smaller  

high-score voxel groups (dark red) can be  

identified within the large number of  

above-threshold voxels. Such high-score  

domains likely correspond to the precise  

positions of the cell. The samples shown  

in a–c are mapped with high confidence.  

(a–c) apical view of the brain; (a′–c′) lateral  

view; (a″–c″) dorsal view. Voxels with a  

correspondence score < 1.5 are colored blue. 

Upper right corner: cell ID; lower right:  

number of voxels above threshold (in 

parentheses: voxels localized in the  

left/right-side of the brain, respectively).  

(d) Distribution of mapped cells across the defined confidence levels stratified by the number of voxels to which each cell is mapped back.  

(e) Percentage of cells mapping back to each category (high/medium/low/unmapped) for the reference used in this study (72 genes out of the 98 genes 

in the full P. dumerilii spatial reference atlas that were expressed in at least one of the sequenced cells; right-hand side) and the mean (± s.e.m.) 

number of cells assigned to each category when simulated references containing different numbers of genes (30, 40, 50 and 60) are used.

of scRNA-seq originated (Supplementary Table 2). Altogether, we 

established a likely location for 91% of cells in our data set (Fig. 2d), 

with the median number of voxels per mapped cell being 54 (inter-

quartile range: 30 – 110).

Notably, the set of voxels to which each cell is mapped back to are 

typically arranged in small, bilaterally symmetric and spatially coher-

ent groups (Fig. 2a-a″, 2b-b″ and Supplementary Table 2). This is 

expected, because the voxel size in our model is much smaller than 

one cell, and the P. dumerilii brain shows strong bilateral symme-

try at 48 hpf. Given that the captured cells are between 8 and 17 µm 

in diameter (Supplementary Note 2) and the voxels are all 3 µm3,  

our results suggest that we can map back the majority (83%; number 

of corresponding voxels <150, Fig. 2d) of sequenced cells to a  

precise, single location (considering bilateral symmetry; Fig. 2a-a″). 

The remaining cells map back to either a small number of voxels  

(13%; number of corresponding voxels between 150 and 500; Fig. 2b-b″)  

or, in three cases, to a broader domain (4%; number of correspond-

ing voxels >500; Fig. 2c-c″). Broad mapping domains are indicative 

of relative molecular homogeneity of the respective brain regions, at 

least when considering the genes included in the reference. In this 

case, augmenting the reference atlas with genes that display variable 

patterns of expression in the cells mapped back to such regions should 

improve the precision of the mapping. A summary of the locations 

across the brain to which all cells are mapped back can be found in 

Table 1 List of existing ISH atlases

Species Tissue Database Resolution (ISH) Number of genes (ISH)

Mouse Brain http://mouse.brain-map.org/ Region (0.008 mm3) ~20,000a

Prenatal brain http://developingmouse.brain-map.org/ Region (fine) ~2,000

Developing embryo (E14.5) http://www.genepaint.org/;  

http://www.eurexpress.org/ 

Region (fine) 16,193

Chicken Developing embryo,  

various stages

http://geisha.arizona.edu/ Region 4,072

Xenopus laevis Whole animal, various stages http://www.xenbase.org/ Region (broad) 360b

Drosophila melanogaster Whole animal, various stages http://insitu.fruitfly.org/ Region (broad) 7,808

http://bdtnp.lbl.gov/ Cell 95

Caenorhabditis elegans Whole animal, various stages http://www.wormbase.org/ Cell, cell group 3,363

Arabidopsis thaliana Root http://www.arexdb.org/ Cell 20,872c

Non-model species

Human Brain http://human.brain-map.org/ Selected regions ~1,000

Zebra finch Brain http://www.zebrafinchatlas.org/ Region (fine) 187

C. intestinalis Whole animal, various stages http://www.aniseed.cnrs.fr/aniseed/ Region (fine, broad) up to 2,600d

Marine invertebrates, 21 species Whole animal, various stages http://www.kahikai.org/index.php?content=genes Region (broad) 306

P. dumerilii Developing brain Tomer et al., 2010 (ref. 14); Pettit et al., 2014 (ref. 17) Subcellulare 168

ISH atlases for an array of model and non-model species are listed, alongside information about the number of genes analyzed, the resolution of possible co-expression analyses 

in each system, tissues and developmental stages for which the atlas exists, and web links to the databases. In most systems, cellular resolution is impossible to achieve owing to 

the variability in the cell positions between individuals. In these cases, we labeled region-specific resolution as “fine” when expression analysis is performed on tissue sections and 

imaged at high resolution, and “broad” when only whole-mount images are available.

aCo-expression analyses at 0.008 mm3 resolution are available for 4,104 genes with brain-wide expression23; bmanually curated set of whole-mount in situ hybridization images are available 

for 360 genes in Xenopus; cincluding a microarray data set of different cell populations in A. thaliana root; dnumber of genes varies for different stages, usually ~200-2,000 genes are shown; 
ethree-dimensional stacks of 169 ISH images for P. dumerilii larval brains allow co-expression analyses at resolution of 3 µm3.
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Supplementary Figure 5. The individual 

cell mappings can be viewed at the following 

link: http://www.ebi.ac.uk/~jbpettit/map_

viewer/?dataset=examples/coord_full.

csv&cluster0=examples/resultsBio.csv.

The size of the reference atlas

To investigate how the number of reference genes affected the map-

ping, we generated simulated spatial reference atlases, each containing 

a subset of the genes used in the initial atlas (30, 40, 50 and 60 gene 

subsets were used), and mapped each cell back to these simulated 

references. We observed that the fraction of cells mapped back with 

medium or high confidence increased as a function of the number 

of reference genes. On average, 58% of cells were mapped back with 

medium or high confidence when only 30 reference genes were used, 

in contrast to the 81% of cells that were mapped back when the full ref-

erence set of 72 genes (corresponding to genes included in the WMISH 

atlas and expressed in the scRNA-seq data) was deployed (Fig. 2e). 

This suggests that a relatively small number of genes (between 50 

and 100) with spatially distinct patterns of expression are needed 

to map cells to a specific location with a high degree of confidence 

(Discussion). Critically, pre-existing ISH resources often contain more 

genes (Table 1) than the P. dumerilii reference used in this study.

Mapping validation and the associated challenges

Overall, our approach enables the majority of cells to be mapped 

back with medium to high confidence. However, even for these cases, 

there exist discrepancies where, for example, a highly specific gene 

is not expressed in the region to which a cell is mapped (Fig. 3). This 

can occur as our approach uses a relatively large reference set and 

is therefore robust to such mismatches assuming that other, highly 

specific, genes exist. However, understanding the factors that lead to 

such discrepancies between the ISH and scRNA-seq data sets provides 

valuable insights into the quality of both data sets.

First, our WMISH database used averaged expression patterns, 

which can lead to both false ‘presence’ and ‘absence’ calls in the refer-

ence matrix, especially for genes with variable expression across indi-

viduals. Indeed, in 13 cells where one of the four most specific genes 

was never co-expressed in the same domain as the remaining three 

genes, we observed that overlaying the averaged, nonbinarized ISH 

images revealed areas of co-expression (Fig. 3a–c and Supplementary 

Fig. 6). Altering the binarization threshold can overcome this prob-

lem and improve the reference.

Second, imperfections in our WMISH database, such as missing  

expression domains due to probe design, low gene expression  

levels in particular cells or insufficient signal development, can  

also lead to misannotation of a gene expression value. Illustrating 

this, we chose four additional cells where one of the top four  

most-specific genes was not co-expressed with any of the other three 

most-specific genes and where the mismatch was not explained  

by overlaying the nonbinarized WMISH patterns. In all four cases 

we performed new dual ISHs between the mismatch gene and 

at least one of the remaining highly specific genes. The domains  

of dual ISH co-labeling overlapped the locations indicated by the 

spatial mapping in all cases (Fig. 3 and data not shown), affirming 

the initial mapping.

Finally, scRNA sequencing is susceptible to substantially more  

technical noise than bulk sequencing approaches19. It is possible  

that such biases might lead to a disproportionately large number  

of reads being associated with a particular gene in a given cell and, 

consequently, a high specificity score. As the quality of scRNA-seq 

data improves, this will become less of a problem.
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Figure 3 Validation of co-expressed genes in 

scRNA-seq data. Co-expression analysis for 

combinations of cell-specific genes that were 

not represented in the binarized ISH data set.  

(a,b) Digital overlay of averaged ISH images of 

48 hpf P. dumerilii larvae (image registration 

and average pattern calculations were performed 

on 3–6 animals per gene14) showing the co-

expression of Gsx and Tubby with Coe (a,b). 

(c) Visualization of the mapping result for the 

respective cell (C2x41.1L). Labeling scheme 

as in Figure 2. In addition, the mapping 

confidence level is indicated for each sample. 

(d–h) Comparison of averaged ISH overlay 

images and dual ISH on individual P. dumerilii 

larvae. Dual ISH on 48 hpf P. dumerilii larvae 

showing cells co-expressing Proenkephalin and 

ER81 (e) and Proenkephalin and Lhx3 (h), 

undetected in both the averaged ISH images 

(d,g, respectively) and the binarized reference 

matrix. Colocalization of genes is shown in 

white. (f) The position of the cell (C4x38.1S) 

indicated by spatial mapping corresponds to 

the position of the cells co-expressing the genes 

analyzed by ISH. The outline of P. dumerilii 

brain is drawn with dashed line. White arrows 

point to the location of co-expressing cells. 

Scale bar, 50 µm.
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Nevertheless, we identified the probable 

loci of origin for 81% of cells with high or 

medium confidence, suggesting that our 

approach is robust to technical challenges.

Validation using reference-independent 

marker genes

To validate the mapping, we selected four 

genes expressed in a small number of voxels 

(each gene expressed in <2% of voxels) that 

were expressed specifically in few cells (spe-

cificity score > 4 in each cell). We removed 

each gene, in turn, from the reference and 

compared the mapping results obtained using 

the reduced reference with those generated 

with the full atlas (Fig. 4).

For each cell in which the gene of inter-

est was specifically expressed, we considered 

mapping successful when there was statistically significant overlap 

(Fisher Exact Test; P-values were corrected for multiple testing using 

the Benjamini-Hochberg approach; significance threshold = 0.05) 

between the voxels to which it was mapped back and the expression 

domain of the selected marker gene (Supplementary Table 3). Of 

the 17 cells tested, 14 displayed concordant results with both refer-

ences (13/14 of these cells were mapped back to domains that showed 

statistically significant overlap with the relevant marker gene; for 1 

of the 14 cells, no significant overlap was observed when either ref-

erence was used). For the remaining three cells, one was marginally 

significant when the full reference was used but showed a statistically 

insignificant overlap when the reduced reference was employed. The 

final two cells were not mapped back to voxels expressing the gene of 

interest only when the reduced reference was used. However, in both 

cases, closer inspection of the reference atlas revealed weak expression 

of the respective gene in the areas matching the predicted position of 

these unsuccessfully mapped cells (data not shown).

Our approach provides a tool for identifying genes co-expressed 

with known markers, thus revealing new biological insights. To dem-

onstrate this, we registered new WMISH patterns for three genes that 

were expressed in a subset of cells in the scRNA-seq data set, which sug-

gests they each have a spatially restricted expression pattern. We then 

assessed whether the expression domain of each marker conforms to 

the spatial mapping. We found that Ten3 (Supplementary Fig. 7c,d),  

Cux1/2 (Supplementary Fig. 7g,h,l) and Fezf (Supplementary  

Fig. 7k,l) were each co-expressed with known reference genes in the 

locations indicated by spatial mapping (Supplementary Fig. 7a,e,i,  

white arrows). In all cases, combination with the new marker defined 

the location even more precisely than the known genes. Thus,  

new marker genes identified from the scRNA-seq experiment inde-

pendently validated the spatial mapping and could be used to further 

refine the reference atlas.

These validations strongly support the quality of our mapping 

approach and demonstrate how it can be used to exploit a relatively 

small, spatially referenced in situ atlas alongside scRNA-seq to identify 

new marker genes that can form the basis of downstream studies.

DISCUSSION

In this manuscript, we developed a computational approach that com-

bines a spatially referenced ISH atlas with single-cell transcriptome 

profiles generated using scRNA-seq to map each cell back to the tissue 

under study. We demonstrated the utility of our approach using cells 

taken from the brain of the marine annelid, P. dumerilii, at 48 hpf. 

Profiling over 7% of cells in its brain, we observed that 81% of cells 

were mapped back to a relatively precise location. We validated our 

results both computationally and using ISH for genes that displayed 

variability in expression in the scRNA-seq data.

Recently, alternative approaches for profiling the transcriptomes 

of spatially referenced cells have been proposed5,20. Transcriptome 

in vivo analysis (TIVA)20 allows individual cells to be fluorescently 

labeled within a tissue, visualized and then sequenced after capture.  

In practice, this is extremely useful when a particular cell, or small 
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Figure 4 Comparison of mapping success using 

highly specific marker genes. (a–d) Comparison 

of the mapping success before and after a 

highly specific marker gene is removed from 

the reference. For each gene, we considered 

cells showing specific expression of that gene 

in the scRNA-seq data (specificity score > 4). 

From these cells, we assessed the number 

of successfully mapped cells against the full 

reference atlas (blue bar) and after removing the 

respective gene from the reference (yellow bar). 

The expression pattern of the gene is shown 

on the right (WMISH). Scale bar, 50 µm. One 

example of the mapping result (corresponding 

voxels in red) against the full reference (ref: 

full) and the reference lacking the respective 

gene (ref: removed, gene indicated in the top 

right corner) is shown for each case.
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number of cells, is of interest. However, the throughput of this 

approach is potentially limited by the manual photoactivation and 

picking steps and also the number of tags that can be employed simul-

taneously.

By contrast, fluorescent in situ RNA-seq (FISSEQ)5 sequences  

individual cells in situ (i.e., directly on cells or tissue mounted  

on a coverslip). Such an approach can, in theory, be broadly  

applied, although the practical challenges are substantial. Moreover, 

only cells that are relatively close to one another can be assayed in  

the same experiment.

Our approach is complementary to these experimental strategies. 

Fundamentally, we do not aim to maintain the tissue structure through 

the experimental process, but aim to recover this structure post hoc 

by combining the scRNA-seq data with a pre-existing spatially refer-

enced ISH atlas. Unlike TIVA, we do not need to label cells a priori 

and, unlike FISSEQ, we can assay cells from across a relatively large 

tissue simultaneously. However, the spatial origin of the cells assayed 

by TIVA and FISSEQ can be determined unambiguously, which may 

have advantages in certain circumstances.

From a computational perspective, our method could be extended 

in a number of ways. First, instead of using a binarized threshold 

for determining whether a gene is expressed from the ISH data, we 

could treat the reflection data for each gene as a continuous variable. 

Second, the in situ data used in our study have a very high resolution,  

with 11–174 voxels making up a typical cell. As discussed below this 

is somewhat atypical, with most resources having substantially lower 

resolution. Nevertheless, when such high-resolution information 

exists, one option is to first build a cellular model and to map each 

cell back to this new atlas. Finally, our method penalizes mismatches 

when a gene is expressed in the scRNA-seq data and not in the refer-

ence atlas. This is justified by noting that current scRNA-seq protocols 

display a substantial degree of technical noise, meaning that calling 

a gene as unexpressed in a given cell is challenging19. As scRNA-seq 

protocols improve, a two-way penalization criterion may become 

more appropriate (Supplementary Note 3).

Our approach depends critically upon the quality of the reference 

atlas. Consequently, it is important to filter out genes with low-quality 

ISH patterns, because these can create co-expression domains that 

in reality do not exist, but can lead to false-positive mappings. In 

practice, this can be done using automated approaches that process  

and filter out low-quality images21. Additionally, the number of genes 

in the reference database is of high importance. In this paper we used 

simulations to demonstrate that, as expected, increasing the number of 

genes in the reference set leads to a monotonic increase in the number 

of cells mapped back with high confidence. However, somewhat sur-

prisingly, we observed that the increase in the number of confidently 

mapped cells increased only slightly when the reference set was 

increased from 60 to 72 expressed genes. One important considera-

tion when determining whether an ISH database provides a suitable 

reference is the information content of the genes contained therein,  

with genes expressed in a spatially restricted and nonoverlapping 

manner providing the most utility.

The precision of mapping is also affected by the resolution of the 

ISH atlas. Indeed, the majority of species listed in Table 1 lack a  

cellular resolution reference atlas. However, even without such an atlas, 

cells can be mapped back to small and restricted spatial domains using 

our method, thus facilitating important biological insights including 

the identification of new tissue-specific genes. Illustrating this, Satija 

et al.22 have developed an analogous computational approach, which 

they apply to assign individual cells to locations within the gastrulat-

ing zebrafish embryo using a low-resolution ISH atlas.

As with the ISH atlas, potential problems can also arise  

during the scRNA-seq data generation. At present, scRNA-seq 

is a relatively noisy technology, with only ~20–40% of molecules 

being captured per cell in a typical experiment. Consequently, 

for genes expressed at low to moderate levels, quantification of 

expression is challenging. Moreover, some technologies require 

that cells fall within a specific size window before processing and 

sequencing. This might result in under-representation of particular  

cell types, thus seriously affecting the utility of approaches such 

as that described herein. The use of microwell plates and droplet 

technology, as well as protocol improvements, promise to overcome 

these limitations.

METHODS

Methods and any associated references are available in the online 

version of the paper.

Accession codes. Raw sequencing data are available from 

ArrayExpress, accession number E-MTAB-2865/.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Single cell dissociation and capture protocol. P. dumerilii larvae were incu-

bated in filtered natural seawater (FNSW), at 18 °C for 47 h to reach the desired 

stage. For single-cell dissociation, 80–100 47 hpf larvae were picked, washed 

in Ca- and Mg-free artificial sea water (CMF-SW) and incubated for 5 min 

in 0.5% Pronase (Roche cat # 10165921001), 1% sodium thioglycolate (Sigma 

T0632) in CMF-SW. After this treatment, the trunks and epispheres sepa-

rated. 50–80 epispheres were randomly picked, rinsed in 1:1 FNSW:1× PBS, 

followed by 1× PBS, and incubated for 1 min in 150 µg/ml Liberase (Roche, 

cat # 05401119001) in 1× PBS. Epispheres were rinsed in 1× PBS twice, trans-

ferred to a nonstick Eppendorf tube and triturated by pipetting. Dissociated 

cells were washed twice in 200 µl of 1× PBS and concentrated by centrifuging  

(1 min, 200g). Cells were resuspended in 20 µl of 1× PBS, of which 5–15 µl 

was loaded on the capture chip (Fluidigm cat # 100-5760).

Cell capture, lysis, reverse transcription and cDNA amplification were  

performed on the C1 IFC for mRNA-seq (10–17 µm ‘chip’, Fluidigm cat # 

100-5760) on Fluidigm C1 Single-Cell Auto Prep System.

Following the company’s recommendation, we used SMARTer Ultra Low 

Input RNA Kit for on-chip reverse transcription and the ADVANTAGE-2 PCR 

kit (Clontech cat # 634832) for on-chip PCR. We added 1 µl of 1:4,000 dilu-

tion of ERCC spike-in RNA (Ambion, cat # 4456740) to the C1 lysis mix; this 

concentration equals 1 µl of 1:800,000 dilution per cell. Sequencing libraries 

were prepared using the Nextera XT DNA Sample Preparation kit (Illumina 

cat # FC-131-1096) and 100 bp paired-end sequences were generated using 

the Illumina HiSeq2000 platform.

Mapping and quantitation of next-generation sequencing data. We used 

bowtie2 (ref. 24) to map the raw sequencing reads to the P. dumerilii refer-

ence transcriptome (http://4dx.embl.de/arendt/publicdata/Publicdata.html). 

Expression counts for each gene were obtained using HTSeq1 (refs. 25,26), and 

normalized by the total number of reads mapped to the transcriptome in order 

to account for sequencing depth (tpm). For the spatial mapping, we limited our 

gene expression data set to a curated set of 169 genes that had spatial expression 

information in the reference ISH database. Of these, we further excluded 71 

expression patterns that had previously been shown to be of moderate to poor 

quality17, leaving a final set of 98 reference genes in our ISH set. The raw count 

data for this gene set in all cells are provided in Supplementary Table 4.

Sequences of the reference genes in P. dumerilii WMISH atlas. Nucleotide 

sequences for the genes included in the P. dumerilii WMISH refer-

ence atlas used in this study are provided as Supplementary Sequences.  

Gene sequences were obtained from the following sources: previous pub-

lications: WntA (ref. 27), rOpsin, Six1/2, Pax6 (ref. 28); Rx12; DHE3.R30  

(P. dumerilii EST IB0AAA32CF06EM1), Dll, GLT, NK21, Tubby (P. dumerilii 

EST IB0AAA40DH05EM1)29; Hb80 (ref. 30); ChAT, Chx10, Dbx, Gsx, Islet, 

Lhx2, Sim, VAChT31; Otp, Phc2, Syt, Vax13; Ngn32; FVRI, FVRIamide33, Prox1, 

Sox2 (ref. 34); miR.277, miR.7 (ref. 35); Gli36; Ascl, BF1 (Foxg1), Brn124, COE, 

Dach, Emx, ER81.H85.H86, Ets3.H71, Svp, Tll (Tlx), TrpHyd, Wnt5, Wnt8 

(ref. 14); Trp2 (Steinmetz et al.37); DLamide; FLamide, FVMamide, FVamide, 

HIGA, LYamide, NPY (NPY4), RYamide, SPY, WLD, YFamide38; RGWamide39; 

VWamide (MIP)40, Pax258 (ref. 41); rOpsin3 (ref. 15); Proenkephalin42; 

FGFR, GBRL2.Y85, KLF.H38, Tektin.2.R68 (ref. 16); Bsx, Not43; NCBI nucle-

otide database: Dpn.H35 (HES3, GenBank KC999041), HIGA (GenBank 

KF515947), Otx (GenBank AJ278856), MLDneuropeptide (GenBank KF515945), 

NGEWneuropeptide (GenBank KF515948); Arendt lab P. dumerilii  

EST sequencing library: CALM.R29 (EST IB0AAA31DB02EM1), cpa (EST 

IB0AAA35BD12FM1), Dek.H2 (EST IB0AAA15CC12EM1), HEN1.Y61 (EST 

IB0AAA56YF10EM1), LDB3.R10 (EST IB0AAA19CC08EM1), MyoD.H29 

(EST IB0AAA28CH12EM1), p53.63.73.like.H45 (EST IB0AAA34AG01EM1), 

PRVA-Y49 (Parvalbumin-alpha, EST IB0AAA53YF24FM1), Tekitin.3.R7 (EST 

IB0AAA18BD02EM1), Tolloid.Y68 (EST IB0AAA57YH01EM1), ZFAT.like.

H97 (EST IB0AAA37DA10EM1); Lhx3 (provided by Kristin Tessmar-Raible), 

Pnr (provided by Maria Antonietta Tosches), Eya and Sepiapterin reductase 

(provided by Keren Guy).

Gene specificity. Given the set of 98 reference genes and the set of cells that 

were sequenced, we define an C × M read count matrix, D, where Dc,m describes 

the normalized number of reads mapped to cell c for gene m. Subsequently,  

for each cell-gene combination, we define its specificity ratio, rc,m as: 

r
D

C
D

c m

c m

a ma
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,

,

=
=∑1

1

The specificity scores for each gene in the quality-filtered cells are provided 

in Supplementary Table 5.

Computing the correspondence score. To map back each sequenced single 

cell to its localization in the reference ISH data set, we developed a scor-

ing system where we calculate the correspondence between every cell-voxel 

combination.

This scoring system compares the binary vector of expression provided by 

the WMISH data with a binarized version of the expression pattern for each 

cell sequenced. To binarize the expression vectors, we used a threshold of ten 

reads above which a gene was considered expressed.

The score Se eC ref,  between the binary expression vector ec from single cell 

c and eref from voxel ref in the ISH data set is defined as: 
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This scoring scheme is designed to assess the correspondence between a single 

cell and each reference voxel with regard to the specificity ratio of each gene 

for the considered single cell. The specificity scores are transformed to fall in 

the interval [0,1] following an algebraic function, t, which avoids giving too 

much weight to exceptionally specific genes and quickly reduces the weight of 

nonspecific genes that may hinder the precision of the mapping.

The correspondence scores for each cell-voxel combination in the quality-

filtered cells are provided in Supplementary Table 6.

The method presented above penalizes only mismatches when the gene 

is expressed in the RNA-seq data and not in the reference atlas (one-way 

penalization). It is possible to penalize similarly mismatches that arise when 

a gene is not found to be expressed by the RNA-seq but expressed in the 

reference atlas (two-way penalization) as detailed in Supplementary Note 3 

and Supplementary Table 7. The one-way penalization is justified by noting 

that current scRNA-seq protocols display a substantial degree of technical 

noise, meaning that accurately calling a gene as unexpressed in a given cell 

is challenging.

Selecting the score threshold based on simulated data. For a single cell c, 

once the scores against every voxel in the reference data set are computed and 

sorted, we need to define a score threshold above which we consider the voxels 

as the potential area where the single cell came from.

To find this threshold, we conducted a simulation study by generating 

13,900 (100 per sequenced cell) random “simulated single cells.” Each simu-

lated single cell is created by randomly shuffling the specificity scores for all 

genes in each sequenced cell.

We then apply the mapping method to this set of randomly generated samples 

and summarize the results for different thresholds. Supplementary Figure 3  

shows the proportion of simulated cells with at least n voxels (x axis) above 

a certain threshold (different lines on the plot). From this null distribution, 

we chose three different thresholds corresponding to different levels of con-

fidence in the mapping. (i) High confidence mapping for cells that have at  

least 21 voxels scoring higher than 1.5. The probability of a simulated cell  

mapping back with the same criteria is less than 10%. (ii) Medium confidence 
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mapping for cells with at least 16 voxels scoring higher than 0.5. The probability  

of a simulated cell mapping back with these criteria is less than 30%.  

(iii) Low confidence mapping for cells that have at least 11 voxels scoring 

higher than 0. For these cells, the mapping can be considered as providing a 

strong hypothesis about the location of these cells, although the confidence in 

the mapping is relatively low (<50% of obtaining such a result by chance in the 

null set). For comparison, Supplementary Figure 4 shows the same propor-

tion plot for different thresholds but for the sequenced cells.

R scripts for the analysis. Curated R scripts and example analysis workflows 

for the computation of gene specificity ratios, correspondence scores and the 

thresholds for confidence values are provided as Supplementary Scripts. 

Alternatively, the scripts can be found at GitHub (https://github.com/jbogp/

nbt_spatial_backmapping).

In situ hybridization, imaging and image registration. In situ hybridization 

(ISH) and dual ISH on 48 hpf P. dumerilii larvae was performed as described 

previously44. All the colocalization patterns shown were replicated in at least 

four animals.

The P. dumerilii genes analyzed by ISH were: ER81 (ref. 14), Fezf16, Lhx3 

(produced by K. Tessmar-Raible), Proe42, Cux1/2 and Ten3. For the synthesis of 

mRNA probes against Proe, Cux1/2 and Ten3, wild-type P. dumerilii RNA was 

reverse transcribed using SuperScriptIII reverse transcriptase (Life Technologies, 

cat. # 18080044), and amplified by PCR using TaKaRa ExTaq DNA polymerase 

(Clontech, cat. # RR001A) and the following gene specific primers:

Proe (5′-CATTTGCAAGTTCCGAGGTT-3′ and 5′-GCTTGTCACTGG 

TTGGTTCC-3′),

Cux1/2 (5′-CTGCCCTTGAAGAGGAGTTG-3′and 5′-GACTCCAACGG 

TTCGATGAT-3′),

Ten3 (5′-ATCTGTAAGCCAGGCTGGAA-3′ and 5′-GGTCGCAAGT 

GACCGTTTAT-3′).

The resulting PCR fragments were cloned into pCRII-TOPO vector (Life 

Technologies, cat # K4610-20). For the synthesis of ISH probes, cDNA plasmids 

were linearized and antisense RNA probes were transcribed using SP6 or T7 

RNA polymerase (Roche, cat. #11487671001 and 10881775001, respectively) 

and DIG RNA-labeling mix (Roche, cat. #11277073910)Top of FormBottom of 

Form or Fluorescein RNA labeling mix (Roche, cat. # 11685619910).

For imaging of ISH samples, samples were mounted in 97% 2,2′- 
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