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ARTICLE

High-throughput targeted long-read single cell
sequencing reveals the clonal and transcriptional
landscape of lymphocytes
Mandeep Singh 1,2,4, Ghamdan Al-Eryani 1,2,4, Shaun Carswell1, James M. Ferguson 1,

James Blackburn 1,2, Kirston Barton1,2, Daniel Roden1,2, Fabio Luciani2,3, Tri Giang Phan 1,2,

Simon Junankar 1,2, Katherine Jackson 1,2, Christopher C. Goodnow 1,2,4, Martin A. Smith 1,2,4 &

Alexander Swarbrick 1,2,4

High-throughput single-cell RNA sequencing is a powerful technique but only generates short

reads from one end of a cDNA template, limiting the reconstruction of highly diverse

sequences such as antigen receptors. To overcome this limitation, we combined targeted

capture and long-read sequencing of T-cell-receptor (TCR) and B-cell-receptor (BCR) mRNA

transcripts with short-read transcriptome profiling of barcoded single-cell libraries generated

by droplet-based partitioning. We show that Repertoire and Gene Expression by Sequencing

(RAGE-Seq) can generate accurate full-length antigen receptor sequences at nucleotide

resolution, infer B-cell clonal evolution and identify alternatively spliced BCR transcripts. We

apply RAGE-Seq to 7138 cells sampled from the primary tumor and draining lymph node of a

breast cancer patient to track transcriptome profiles of expanded lymphocyte clones across

tissues. Our results demonstrate that RAGE-Seq is a powerful method for tracking the clonal

evolution from large numbers of lymphocytes applicable to the study of immunity, auto-

immunity and cancer.
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C
ell phenotypic diversity in humans and other vertebrates
can arise from complex gene rearrangement and alter-
native RNA splicing events1,2 that are not yet captured by

current short-read RNA-sequencing technologies for measuring
differential mRNA expression in single cells. A key example of
this problem is the need for better ways to trace the response of
single cells of the immune system during their response to cancer.
Each newly-differentiated T or B lymphocyte in the immune
system carries a different antigen receptor as the result of critical
DNA rearrangements that alter the 450 nucleotides at the 5’ end
of their T- or B-cell antigen–receptor mRNA3. In the case of B
lymphocytes, they use additional DNA rearrangements to ‘isotype
switch’ between nine alternative constant region sequences
comprising 1000–1500 nucleotides at the 3’ end of the heavy
chain mRNA4, and use alternative mRNA splicing to change the
100–250 nucleotides at the 3’ end of IGH mRNA in order to
secrete the encoded receptors as antibody5. Similarly, complex
gene rearrangements and alternative splicing events create
pathological cell diversity amongst cancer cells6. Hence there is a
critical need for methods that capture these sequence changes
occurring throughout the length of mRNA molecules at single cell
resolution, and integrate that information with gene-expression
features.

The extraordinary diversity of antigen receptors on B and T
lymphocytes governs the development, survival, and activation of
these cells. T cells express on their cell surface a T-cell receptor
(TCR) heterodimer composed of either α and β or γ and δ chains,
each the product of a different germline TRA, TRB, TRG, or TRD
gene locus, respectively. B cells express a B-cell receptor (BCR)
hetero-tetramer composed of two identical membrane immu-
noglobulin heavy chains encoded by the IGH gene locus and two
identical immunoglobulin kappa or lambda light chains encoded
by the IGK or IGL genes, respectively. Each of these gene loci
comprise in their germline configuration a cluster of separate
variable (V), diversity (D), and joining (J) gene segments, one
member of each cluster becoming joined through irreversible
somatic DNA rearrangements during T or B lymphocyte devel-
opment in a process known as V(D)J recombination3. Further
diversity between cells is created by random addition or removal
of nucleotides at the V(D)J junctions that encode com-
plementarity determining region 3 (CDR3) in the antigen binding
site of the receptor. The resulting diversity of the lymphocyte
antigen–receptor repertoire is estimated at >1012 different TCR or
BCR proteins7,8, governed by the rule of “one cell clone - one
receptor sequence”. Consequently, it is extremely unlikely that
two cells descended from different lymphocytes will carry the
same antigen–receptor sequence or ‘clonotype’. As a result, when
a B-cell or T-cell is stimulated by antigen to divide and undergo
clonal expansion, the BCR or TCR sequence serves as a unique
‘clonal barcode’ and provides information on antigen specificity
and cell ancestry.

Sequencing the BCR or TCR of individual lymphocytes in
parallel with their transcriptome provides high-resolution insights
into the adaptive immune response in a range of disease settings
such as infectious disease, autoimmune disorders, and cancer9,10.
A common approach to link paired antigen–receptor sequences
with gene-expression profiles of single lymphocytes is through the
use of the full-length single-cell RNA-Sequencing (scRNA-Seq)
method Smart-Seq211, where computational methods can
reconstruct paired TCRα and TCRβ sequences or paired heavy
and light chain sequences from Illumina short-reads12–16. How-
ever, Smart-Seq2 generally relies on plate- or well-based micro-
fluidics and is therefore limited in the number of cells that can be
processed, typically 10–100 s. Additionally, a large number of
sequencing reads are generally required to computationally
reconstruct paired antigen receptors17. As such, the cost per cell is

relatively high, estimated at $50–$100 USD18. Moreover, assem-
bly of short reads makes it difficult or impossible to decipher
critical alternative splicing of mRNA segments separated by more
than 500 nucleotides, as occurs in IGH genes.

Recent technological advancements in high-throughput
scRNA-Seq methods allow thousands of cells to be captured
and sequenced in a relatively short time frame and at a fraction of
the cost18. Such methods rely on capture of polyadenylated
mRNA transcripts followed by cDNA synthesis, pooling, ampli-
fication, library construction, and Illumina 3’ cDNA sequen-
cing19–26. The combination of fragmentation and short-read
sequencing fails to sufficiently sequence the V(D)J regions of
rearranged TCR and BCR transcripts, which are located in the
first 500 nucleotides at the 5’ end of the transcript. Consequently,
3’-tag scRNA-Seq platforms have limited application for deter-
mining clonotypic information from large numbers of lympho-
cytes. Variations on this approach employing 5’ cell barcodes
enable the V(D)J sequences and global gene expression to be
measured27, but don’t solve the need to integrate this information
with the diversity of switching and alternative mRNA splicing
involving the 3’ end of IGH mRNA. Recent advances in long-read
sequencing technologies present a potential solution to the
shortcomings of short-read sequencing. Full-length cDNA reads
can encompass the entire sequence of BCR and TCR transcripts,
but typically suffer from higher error rates and lower sequencing
depth than short-read technologies28.

Here, we describe a rapid high-throughput method to sequence
full-length transcripts using targeted capture and Oxford Nano-
pore sequencing and link this with short-read transcriptome
profiling at single cell resolution. This novel method, termed
Repertoire and Gene Expression by Sequencing (RAGE-Seq), can
be applied to high-throughput droplet-based scRNA-Seq work-
flows to accurately pair gene-expression profiles with targeted
full-length mRNA sequences from a large number of cells. We
demonstrate the power of this method by combining tran-
scriptome profiling with full-length antigen–receptor sequence
characterization from thousands of human tumor-associated
lymphocytes. Using de novo assembly of nanopore reads, com-
plete antigen–receptor sequences can be recovered at high accu-
racy and sensitivity, including the identification of somatic
mutations from immunoglobulin full-length heavy and light
chains allowing the inference of B-cell clonal evolution.

Results
RAGE-seq workflow. To integrate short-read and long-read
mRNA sequence analysis of thousands of single cells, we designed
a strategy to split full-length single-cell 3’-tag cDNA libraries
prior to fragmentation for short-read sequencing, and selectively
enrich BCR and TCR cDNA transcripts using targeted hybridi-
zation capture. Targeted capture was chosen over more com-
monly used PCR methods for repertoire analysis29,30 so that full-
length transcripts were retained. Enriched antigen-receptor
molecules are then subjected to long-read Oxford Nanopore
sequencing to obtain both the 3’ cell-barcode and the 5’ V(D)J
sequence. In parallel, short-read Illumina sequencing to profile
gene expression is conducted on the remaining cDNA (Fig. 1 and
Supplementary Fig. 1a). By matching the cell barcodes obtained
from long-read sequencing with the cell barcodes obtained from
short-read sequencing, transcriptome profiles for each individual
cell can be linked with full-length antigen–receptor sequences.

We designed a capture bait library with probes specifically
targeting all annotated and functional human V, J, and constant
region exons within the genomic loci that encode all TCR and
BCR chains. Whole-genome assemblies generated from long-read
sequencing often use de novo assembly followed by ‘polishing’ to
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achieve high accuracy over 99%. We predicted that such
approaches could also be applied to nanopore reads generated
from cDNA-targeted capture and developed a computational
pipeline that combines de novo assembly with clonotype
assignment on demultiplexed nanopore data to generate full-
length TCR or BCR sequences for each cell (Supplementary
Fig. 1b). We chose de novo assembly over an alignment-based
approach since the low accuracy of individual nanopore reads
would be problematic for alignment to antigen–receptor loci,
which contain hundreds of small interspersed exons.

Cross-platform sequencing validation. To assess the validity of
our method we performed RAGE-Seq on a mixture of the human
T-cell line Jurkat and the human B-cell line Ramos, for which
antigen–receptor sequences are published31,32 (Supplementary
Fig. 2a). A proportion of ~15% human monocyte cells were added
to serve as a negative control. The dataset consisted of 1463 Jurkat
cells, 2000 Ramos cells, and 280 monocytes (Fig. 2a and Sup-
plementary Fig. 2b).

Following nanopore sequencing, a total of 20,346,396 reads
were obtained, 42.9% of which uniquely aligned to TCR and BCR
constant regions (on-target reads), representing a ~13-fold
enrichment when compared to non-targeted capture Illumina
data (Supplementary Fig. 2c). Demultiplexing of nanopore reads
with cell barcodes identified by short-read sequencing yielded
18.7% of total nanopore reads containing complete recovery of
barcode library sequences (Fig. 2b and Supplementary Table 1). It
is noteworthy to mention that only 77.2% of the Illumina reads
were used to demultiplex the long reads, as the remaining
Illumina barcodes were associated with low read counts,
indicative of unproductive cell capture (Supplementary Table 2).
Barcode recovery for nanopore reads that were on-target was 99.3
and 100% for Jurkat and Ramos cells, respectively (Supplemen-
tary Fig. 2d). A strong correlation of the abundance of T-cell
receptor alpha constant gene (TRAC) reads per cell between
Oxford Nanopore and Illumina sequencing was also observed
(Pearson correlation= 0.79, Fig. 2c). These results demonstrate

that the amplified full-length cDNA library can be sufficiently
sampled between the two sequencing platforms.

Identification of antigen–receptor sequences. To generate
accurate antigen–receptor sequences for each cell we carried out
de novo assembly using Canu33 followed by two consecutive
rounds of assembly polishing with Racon34 and Nanopolish35

(see Methods). Each assembly comprised on average 4.26 contigs
per Jurkat cell, 5.24 per Ramos cell and 0.12 per monocyte
(Supplementary Fig. 3a). On average, 30% of contigs for Jurkat
cells and 32.9% of Ramos cells were assigned a productive
antigen–receptor sequence. The nucleotide length of the contigs
assigned antigen–receptor sequences were consistent with the
predicted full-length Jurkat TRA and TRB and Ramos IGH and
IGK reference mRNA transcripts (Fig. 2d). Importantly, this
shows that our de novo assembly approach can retain full-length
mRNA transcripts.

For Jurkat cells, we recovered 18.9% of cells with full-length
mRNA contigs encoding paired TCRα and TCRβ chains, 13.3%
with a TCRα chain only and 39.6% with a TCRβ chain only. For
Ramos cells, we recovered 31% of cells with contigs encoding the
full coding regions for paired immunoglobulin heavy and light
chains, 33% with a heavy chain only and 19.1% with a light chain
only (Fig. 3a and Supplementary Fig. 3b,c). There was little
assignment of non-reference V and J genes (Supplementary
Fig. 3d,e).

Next, we evaluated the accuracy of calling a correct clonotype
at nucleotide resolution by investigating the CDR3 region of
Jurkat cells against their known reference CDR3 sequences. Of
Jurkat cells with an assembled TRA or TRB contig, the percentage
with the correct reference CDR3 sequence was very high. 98.9%
expressed the reference CDR3α sequence and 99.6% expressed
the reference CDR3β sequence while the number of cells carrying
non-productive sequences was small (Fig. 3b). Assembly polish-
ing was found to modestly increase the recovery of cells with
productive chains (3.15% for TCRα and 6.14% for TCRβ) and
had a small effect on the overall accuracy (Supplementary Fig. 3f).

Beads
Oil

Enzymes 

+ Cells

cDNA library

TTTTT

AAAAAAAA

Short read

sequencing
3′ Expression

profiling

RNA

Nanopore sequencing

Single cell de novo assembly, error 

correction & consensus polishing

B- and T-cell receptor clonotyping

UMI

Cell barcode

Hybridisation capture

Reverse transcription

Droplet

cell capture
Contig 1 Contig 2 Contig 3

Droplet-based cell isolation

Fig. 1 Overview of RAGE-Seq. Droplet-based scRNA-Seq is used to generate an initial barcoded cDNA library, which is split and simultaneously subjected

to (i) short-read sequencing for 3’ expression profiling and (ii) targeted capture using custom probes followed by long-read sequencing. The short-read

sequencing is used to generate highly accurate cell-barcode sequences which permit demultiplexing of the long-read data. Demultiplexed long-reads are

subjected to de novo assembly and error correction to generate full-length BCR and TCR mRNA sequences, with single nucleotide accuracy. Transcriptome

profiles generated from short-read sequencing can then be linked to the antigen–receptor sequence for each individual cell
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We also found that read depth impacted the total number of
contigs recovered (Fig. 3c), but had little effect on the CDR3
accuracy for both Jurkat TCRα and TCRβ chains and Ramos
immunoglobulin heavy and light chains (Fig. 3d).

We also compared RAGE-Seq against the reconstruction of
TCR sequences from 28 Jurkat cells produced using Smart-Seq2
and VDJPuzzle13. VDJPuzzle was able to recover a greater
percentage of cells with a receptor chain: 22/28 Jurkat cells were
assigned a TCRα chain and 25/28 Jurkat cells were assigned a
TCRβ chain. The throughput of RAGE-Seq, however, was much
greater for an experiment of a comparable timescale and proved
to be ~23 times more cost effective on a per cell basis
(Supplementary Tables 3 and 4). Taken together, these results
indicate that RAGE-Seq is both accurate and sensitive in
determining clonotype sequences and has significant advantages
over Smart-Seq2 in terms of cost and throughput.

B-cell clonal network analysis. The Ramos cell line is known to
mutate its receptors by undergoing somatic hypermutation in
culture36 at a reported rate of 0.84 mutations in the IGHV gene
per generation36. To identify point mutations resulting from
somatic hypermutation in individual B cells, accurate sequence
characterization across the entire V(D)J region of mRNA

encoding heavy and light chains is required. RAGE-Seq was able
to recover 98.5% of Ramos cells with complete IGHV sequences
and 98.8% of Ramos cells with complete IGLV sequences (Sup-
plementary Fig. 4a). We determined amino acid replacement
mutations spanning full-length V regions of the heavy and light
chain from 615 Ramos cells assigned paired chains. Conserved
amino acid mutations were observed in six different heavy and
light chain positions and a dominant subclone within the Ramos
cell line was found at a frequency of 147/615 cells along with
37 subclones represented by more than one cell and 319 sub-
clones represented by a single cell (Fig. 4a). We generated a clone
network based on nearest neighbor distance using the inferred
germline sequence as the unmutated ancestor, demonstrating the
evolution of individual Ramos cells undergoing active somatic
hypermutation (Fig. 4b). Thus, RAGE-Seq can pair tran-
scriptomic phenotype to the evolution of immunoglobulin
sequences of individual B cells within clonal populations.

To assess the accuracy of calling point mutations we
investigated Jurkat TRAV and TRBV genes, which should be
completely conserved in this clonal cell line. We found only a low
number of Jurkat cells with one or more inferred nucleotide
mismatches to germline in these regions (Supplementary Fig. 4b).
We measured the mutation rate of Jurkat TRAV and TRBV genes
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across all cells at 0.095% and 0.032%, respectively. In contrast, the
mutation rate of Ramos IGHV and IGLV genes was 3.41% and
2.13%, respectively. These results suggest that RAGE-Seq can
accurately identify somatic hypermutation of BCRs with low
background.

Analysis of lymphocytes from a human lymph node. To apply
our method to primary B and T lymphocytes, we performed
RAGE-Seq on a tumor and paired lymph node resected from a
triple negative breast cancer patient. In the lymph node, we
identified 4165 T cells that could be subdivided into seven T-cell
populations (Fig. 5a and Supplementary Fig. 5a). We recovered
705 (16.9%) T cells with paired TCRα and TCRβ chains, 1199
(28.7%) cells with a TCRα chain only and 762 (18.3%) cells with a
TCRβ chain only. The recovery rate of TCR chains was com-
parable across the different T-cell subsets (Fig. 5b). We could also
detect two different TRA or TRB sequences in 138 (9.5%) and 35
(1.8%) T cells, respectively, a frequency similar to previous
reports9,11. Among the 1619 B cells in the lymph node, we
recovered 689 (42.6%) cells with paired immunoglobulin heavy
and light chains, 188 (11.6%) cells with only a heavy chain and
557 (35.6%) cells with only a light chain (Fig. 5b). Similar to the
cell line experiment, all the cell barcodes were recovered across
both sequencing platforms and full-length receptor chain
sequences were assembled (Supplementary Fig. 5b–d).

Naïve B cells predominantly co-express IGH mRNAs with
identical V(D)J sequences at their 5’ end but different constant
region sequences at the 3’ end, produced by alternative mRNA

splicing of the V(D)J exon to either IGHM or IGHD exons37. By
contrast most memory B cells have undergone isotyping class
switching to IGHA or IGHG constant regions. We used the gene-
expression data to classify naïve B cells as IGHD+ IGHG- IGHA-
and memory B cells as IGHD- IGHG+ IGHA+ (Supplementary
Fig. 5A). In the breast cancer lymph node, most cells classified as
naïve by gene expression had IGHM or both IGHM and IGHD
antigen–receptor mRNA transcripts by nanopore sequencing
while more than two-thirds of memory B cells expressed IGHA or
IGHG (Fig. 5c). The fact that IGHD was not detected in many
IGHM-bearing naïve cells is consistent with IGHM mRNA being
10-fold more abundant than IGHD mRNA38. Upon activation, B
cells acquire point mutations in their V(D)J exon through
somatic hypermutation4. Memory B cells in the lymph node had
a mean mutation rate of 4.96% in their V segment heavy chain
mRNA across all isoptypes, consistent with published
reports14,39. By contrast, naïve B cells had a much lower rate of
0.35% with mutations limited to a small number of cells that
likely correspond to unswitched memory B cells (Fig. 5c and
Supplementary Fig. 5e). These data demonstrate the ability of
RAGE-Seq to detect class switching and somatic hypermutation
in human tissue.

For each IGH transcript isotype, alternative splicing at the 3’
end generates either membrane-bound or secreted forms of
immunoglobulin, with the latter gradually predominating as
activated or memory B cells differentiate into antibody-secreting
plasmablast cells40. The presence of shared V(D)J sequences in
both membrane and secretory IGH isoforms was detected in
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many single naïve and memory B cells (Fig. 5c), consistent with
previous evidence from pooled naïve cells38. As expected, only the
secretory spliced form was detected in plasmablasts in the tumor
from the same patient (see below and Supplementary Fig. 6a–c),
and most were assigned IGHA1 isotypes (Fig. 5c). This is
consistent with plasmablasts and plasma cells having differen-
tiated into high-rate antibody-secreting cells, and with the
dominant switching to IgA in plasma cells of normal and
neoplastic breast tissue41.

Our targeted capture panel included probes against TRG and
TRD genes allowing for the detection of γδ T cells, a poorly-
explored class of unconventional T cells of substantial interest to
studies of infection and tumor immunology42. A total of 11
T cells in the lymph node were assigned paired TCRγ and TCRδ
chains, the majority of which clustered in the CD8 effector
cluster. We also recovered 92 T cells with only the TCRγ chain
and 14 T cells with only the TCRδ chain, again the majority
clustering in the CD8 T-cell effector population (Fig. 5d). T cells
assigned TCRγ chains alone were found to frequently co-express
TCRα and TCRβ chains, consistent with the timing of TCRγ
rearrangement43. In contrast, T cells assigned paired TCRγ and
TCRδ chains were not co-assigned TCRα or TCRβ chains

suggesting that they are committed γδ T cells (Supplementary
Table 5). We explored the identification of other unconventional
T cells that can recognise non-peptide antigens based on their
invariant TCR usage such as Mucosal Associated Invariant T
(MAIT) cells44 and Germline-Encoded Mycolyl lipid-reactive
(GEM) T cells45. Ten T cells were found to carry MAIT-
associated TCRs which clustered closely together in the CD8
effector population, while two T cells with GEM-associated TCR
chains were found in the CD4 effector memory cluster (Fig. 5d).
Interestingly the T cells carrying MAIT-associated TCRs all
comprised of a single expanded clone (Supplementary Fig. 5f).

Evidence for substantial clonal expansion in the lymph node
was uncommon, with shared V(D)J sequences only detected in
pairs of cells. For B cells assigned paired BCR chains there were
13 cell pairs with the same BCR sequence, the majority of which
segregated in the naïve B-cell cluster, while for T cells assigned
paired TCR chains there were also 13 cell pairs with shared TCR
sequence that also clustered by cell type (Fig. 5e). B-cell and T-cell
clones with the same receptor sequence presented more similar
gene-expression profiles than non-clonally expanded B cells (P=
2.10E-07, paired Wilcoxon test) and T cells (P= 2.55E-11) when
comparing their Jaccard similarity coefficient for the 250 most

FR3 FR2 FR1 FR3 FR2 FR1

CDR2 CDR1 CDR2 CDR1

Hypervariable

region

Complementarity-

determining regions

Framework regions

Light chain

Heavy chain

a b

Unmutated 

common 

ancestor

Fig. 4 Tracking somatic hypermutation in an immortalized B-cell line. a Amino acid composition of the heavy and light chain V regions of individual Ramos

cells assigned paired BCRs (n= 615). Each row represents an individual cell and each column a single amino acid position. Positions that are blue represent

an amino acid that differs to the germline sequence, indicative of somatic hypermutation. On the right, a hierarchical clustering dendrogram of the

concatenated heavy and light chain V region amino acid sequences is shown. b Network diagram of individual Ramos cells undergoing somatic

hypermutation from a, where each node corresponds to a unique full-length heavy and light chain V(D)J sequence and the edges correspond to the number

of amino acid differences between them. The largest node in the centre is the predominant sequence in the Ramos cell line represented by 147 cells. The

unmutated common ancestor sequence in black was inferred from germline V(D)J sequences and is not represented by any cells in the dataset. Network

diagram generated with Cytoscape66
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abundant genes chosen from within each respective cell type
cluster (Supplementary Fig. 5g).

Analysis of lymphocytes across tissues. An important applica-
tion of RAGE-Seq is the ability to track clonally related T or B
cells across tissues, to gain systems-level insights into the evolu-
tion of immune responses. One such application is the analysis of
lymphocytes in a tumor and its draining lymph node, the pre-
sumptive site of antigen presentation and source of tumor-
infiltrating lymphocytes (TILs). In parallel with the lymph node
analysis above, we performed RAGE-Seq on the patient’s resected

primary breast tumor. From a total of 2493 captured cells, 909
T cells and 215 B cells were identified (Supplementary Fig. 6a–c).
A proportion of receptor chains were found to be shared by
lymphocytes within each tissue: 32/1143 light chains amongst 157
B-cells and 11/1771 TCRα chains, 7/1475 TCRβ chains and 5/155
TCRαβ chains amongst 134 T cells (Fig. 6a). Some chains showed
significant tissue-specific enrichment, with one IGL sequence (V:
IGLV4-69, J: IGLJ3, CDR3: QTWGTGFWV) expressed by 27
tumor-resident B cells and plasmablasts (16.9% of all light chains
in tumor), but undetected in the lymph node (Supplementary
Data 1).
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To investigate whether clonally related lymphocytes across the
tumor and lymph node have common gene-expression features,
we analyzed T-cell clones expressing identical TCRβ chains found
across both tissues (Supplementary Data 1). Integration of tumor
and lymph node gene-expression datasets revealed that cells

belonging to six out of seven TCR clonotypes common between
tissues clustered within the CD8 T-cell effector cluster, suggesting
that TIL clones can maintain the same ‘cell state’ across lymph
node and tumor (Fig. 6b). Differential gene-expression analysis
between cells of the same clone within each tissue site did not
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reveal any significant differences; however, analysis of cells within
the same clone across tissues revealed differences for the three
most frequent clones (SC3, SC6, and SC7) (Fig. 6c). Each TCR
clonotype found across both tissue sites shared certain gene-
expression features, including elevated expression of genes
characteristic of active tissue resident cytotoxic lymphocytes,
such as CCL4, NKG7, GZMA, andGZMK46, suggesting these
clones were activated in response to antigen (Fig. 6d). However,
differential gene-expression analysis between clones revealed that
each clone also has unique gene-expression features (Fig. 6e),
suggesting a distinct differentiation state for each clonotype.

The presence of clonally expanded T cells between tissues
suggested that these cells were proliferating in response to antigen
stimulation. To examine this further, we used the scRNA-Seq
data to perform cell cycle analysis of all cells within each CD8 T-
cell effector cluster of tumor and lymph node to infer whether
TIL persistence of the clone is through proliferation occurring at
the site of each sample, or through trafficking between tissues. A
large proportion of T cells were in S, G2, or M phase, suggesting
ongoing proliferation. Interestingly, proliferation of expanded
clones in the tumor was found to be comparable to non-expanded
clones (Supplementary Fig. 6d,e).

Discussion
Single cell methods are needed to capture cell diversity arising at
both ends of individual mRNA molecules, such as pairing the 5’
clonotype-specific V(D)J sequence of BCR or TCR transcripts
with different 3’ sequences for secreted or membrane forms of
different immunoglobulin isotypes, and with global expression
profiling of 3’ ends. Here, we report a generalisable experimental
workflow and computation pipeline to integrate single cell gene
expression with targeted characterization of full-length mRNA
transcripts.

We have found RAGE-Seq to be robust in its ability to sample
across both Illumina and Nanopore sequencing platforms and
highly sensitive and accurate in providing full-length BCR
and TCR sequences across immortalized and primary human B
and T cells. Given its greater throughput and substantially lower
cost, RAGE-Seq has significant advantages over other methods
for immune profiling. As a result, RAGE-Seq can circumvent the
need to isolate specific lymphocyte populations by flow cyto-
metry, permitting retrospective characterization of low abun-
dance lymphocytes within tissues. We were able to identify clones
with unique gene-expression features that had expanded and were
shared across tissues, despite unbiased sampling from a breast
cancer, which generally have low TIL frequency47. The capacity to
screen large numbers of lymphocytes could have significant
translational applications. Response to checkpoint inhibitors for
immunotherapy has been linked to TCR clonality48, TIL fre-
quency49, and gene-expression signatures50, yet these biomarkers
have not been integrated at the single cell level. The application of
RAGE-Seq to biopsies collected prior to and following treatment
may accelerate the discovery of biomarkers or cell states that

predict response to therapy. Additionally, the recovery of paired
antigen receptors can be used with complimentary approaches to
identify TCR ligands51.

In this study we demonstrate the compatibility of RAGE-Seq
with the 10x Genomics Chromium 3′ system. RAGE-Seq is also
adaptable to any high-throughput scRNA-Seq technologies that
employ 3′ or 5′ cell-barcode tagging20–25. Two recently developed
high-throughput droplet-based scRNA-seq methods also report
antigen–receptor sequences: the commercially available 10x
Genomics V(D)J+ 5′ Gene Expression kit and DART-Seq52.
Compared to these two methods, RAGE-Seq has several advan-
tages (Supplementary Table 6), although the estimated cost per
cell is marginally higher than the 10 × 5′ V(D)J kit. Most
importantly, RAGE-Seq provides full-length receptor sequence
and reports BCR somatic hypermutation. This is greatly beneficial
for the analysis of immunoglobulin somatic hypermutation and
for the synthesis of recombinant antibodies, which can be used to
explore the antigen specificity of B cells of interest. Additionally,
splice isoforms can be detected at the single cell level, which we
have demonstrated by detecting IGH mRNA isoforms destined
for antibody secretion or membrane-integration. RAGE-Seq also
sequences receptors from all lymphocytes in a single reaction,
including γδ T cells that are of increasing interest in infection and
cancer immunology42. Finally, RAGE-Seq is compatible with
DNA barcoded antibody technologies Abseq, CITE-seq, and
REAP-seq53–55, which are powerful tools for immunophenotyp-
ing, by allowing the additional measurement of cell surface
proteins.

A limitation of RAGE-Seq lies in the low recovery of cell
barcodes due to the higher error-rate of base-called nanopore
sequencing data. Additionally, a large number of PCR cycles are
required to generate sufficient material for nanopore sequencing,
which can distort the distribution of cell barcodes and UMI
sequences56. Here, we chose direct cell barcode matching for
demultiplexing to reduce variability and false positives. We
anticipate that better bioinformatics tools, such as those lever-
aging raw nanopore signal57, will readily increase the recovery of
antigen–receptor consensus sequences and the efficiency of cell-
barcode recovery. A large number of TCR or BCR specific
nanopore reads aligned to the majority of T or B cells suggests
that the targeted capture approach employed by RAGE-seq can
retain the information needed for antigen–receptor assembly.
While we have relied on de novo assembly methods to generate
splice isoform consensus sequences, we believe that detection and
quantification of isoforms will be enhanced with the future
identification of unique molecular identifiers (UMI) sequences
from nanopore sequencing reads. Additionally, improved
sequencing chemistry will reduce the error-rate of base-called
nanopore data and limit the number of PCR cycles required
for input.

While we have focused on antigen–receptor sequences, any
transcripts of interest can be targeted using variations of RAGE-
Seq, simply by changing the composition of the capture probe

Fig. 6 Tracking lymphocytes across a matched lymph node and tumor. a t-SNE analysis of patient matched tumor (n= 2493, see Supplementary Fig. 6)

and lymph node (see Fig. 5). Cells expressing a shared receptor chain sequence found in both the tumor and lymph node datasets are highlighted and

grouped by receptor chain type. The most frequent TCRβ (n= 10), TCRγ (n= 13) and immunoglobulin light chain (n= 20) sequence is highlighted. b

Integrated t-SNE analysis of tumor and lymph node datasets (see Methods, n= 8,520). Cells assigned paired TCR chains or paired immunoglobulin heavy

chains are highlighted. Seven TCR chain sequences found in both tumor and lymph node datasets (single chains; SC) are shown (across n= 30 cells) and

six (every clonotype except SC2) are found in the highlighted box containing the CD8 effector cluster of both lymph node and tumor datasets. c Heat-map

of differentially expressed genes (n= 1,328; P < 0.01, Wilcoxon signed-rank test) within the CD8 effector cluster highlighted in b. 50 ‘non-shared cells’

were randomly chosen for visualisation purposes. d, e Dotplot illustrating the top 65 genes differentially expressed between d all shared clonotypes (SC)

and non-shared clonotypes (No SC) or e the top three most frequent shared clonotypes (SC7, SC6, and SC3) and non-shared clonotypes. LN lymph node,

TU tumor, SC shared clonotype
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library. A recent study performed long-read single cell sequencing
to identify alternative isoforms in the mouse brain without tar-
geted capture58. However, without the use of an enrichment
strategy, the limited sequencing depth of long-read sequencing
platforms results in only highly expressed genes being sampled
and a high cost per cell. The high accuracy and single nucleotide
precision achieved by RAGE-Seq will be particularly applicable
for identifying somatic mutations in cancer, which could be
applied to track the transcriptional consequences of subclonal
mutations at single cell resolution. The adaptability of RAGE-Seq
across multiple scRNA-Seq platforms and the flexibility to target
a range of genes offers a new genomic toolkit for advanced single
cell analysis.

Methods
Patient sample. Treatment naive stage two triple negative breast cancer tissue and
metastasized sentinel lymph node used in this work were collected under protocol
X13-0133, HREC/13/RPAH/187. Human research ethics committee approval was
obtained through the Sydney Local Health District Ethics Committee (Royal Prince
Alfred Hospital zone), and site-specific approvals were obtained for all additional
sites. Written consent was obtained from all patients prior to collection of tissue.
Clinical data were stored in a de-identified manner, following pre-approved pro-
tocols. Tissue analysis was performed under protocol x14-021, LNR/14/RPAH/155.

Single-cell suspension preparation and cell sorting. Following surgical resection
of tumor and lymph node (sentinel) from patient, samples were transferred in ice
cold RPMI-1640 (Gibco) with 50% FCS to the laboratory to be processed. The
tumor sample was cut into pieces approximately 1 mm3 in size and dissociated with
the Tumor Dissociation Kit (Miltenyi Biotec). Lymph node was similarly processed
however with digestion halted at 15 min. After washing twice with PBS containing
2% FBS, cells were passed through 70-μm strainers. The Jurkat T-cell line and
Ramos B-cell line were cultured in RPMI-1640 with 10% FCS. Viable cells were
enriched prior to scRNA-Seq by staining cells with DAPI (Invitrogen) followed by
flow cytometric sorting using the Aira III Flow Cytometer (BD Biosciences). A
gating threshold was used to omit red blood cells. Monocytes were flow sorted from
human peripheral blood mononuclear cells (PBMCs) following staining with
CD14-PerCP-Cy5.5 (BioLegend, Cat #325621) antibody (1/100 dilution). For
Smart-Seq2 experiments, individual Jurkat cells were sorted directly into 96-well
plates containing cell lysis buffer59. Prior to loading on the 10x Chromium
instrument, cells were counted using a haemocytometer and the concentration of
cells adjusted to ~1 × 103 cells μL−1. A viability of at least 90% for all samples were
confirmed by trypan blue staining. Samples were handled on ice where possible.

Droplet-based scRNA-Seq (10x Genomics). scRNA-Seq libraries were prepared
using the Chromium Single Cell 3ʹ v2 protocol (10x Genomics), aiming for
recovery of 4000 cells for each sample. Briefly, single cells were encapsulated into
droplets in the Chromium Controller instrument for cell lysis and barcoded reverse
transcription (RT) of mRNA, followed by amplification, shearing and Illumina
library construction. Two modifications were made to the protocol. Two extra PCR
cycles were performed on top of the recommended number of cycles following the
RT step. 30 μL of cDNA was used for library construction following full-length
cDNA amplification, except for the tumor sample where 35 μL of cDNA was used.
The remaining cDNA was used for targeted capture and Nanopore sequencing. An
Illumina NextSeq 500 instrument (150 bps, paired-end) was used to sequence the
scRNA-Seq libraries at a depth of >50,000 raw reads per cell.

Antigen–receptor capture probe design. A target enrichment library
(Roche–NimbleGen) was designed by obtaining gene annotations of all functional
V (IGHV, IGKV, IGLV, TRAV, TRBV, andTRGV), J (IGHJ, IGKJ, IGLJ, TRAJ,
TRBJ, TRGJ, andTRDJ), and constant (IGHA, IGHD, IGHE, IGHG, IGHM, IGKC,
IGLC, TRAC, TRBC, TRGC, andTRDC) TCR and BCR genes obtained from the
IMGT database60. For each gene, genome coordinates of their corresponding exons
were obtained from the GRCh38 primary assembly. Design of probes from target
regions and synthesis was performed by Roche–NimbleGen using the SeqCap RNA
Choice format with a maximum of five matches to the human genome. Sixty-six
regions were removed from the final design due to being too small according to the
NimbleDesign tool. In total 644 exons were targeted by the CaptureSeq array
targeting ~128 Kb. A list of genes used for the capture array can be located in
Supplementary Table 7.

Targeted capture. The remaining amplified full-length cDNA from droplet-based
scRNA-Seq that was not used for Illumina library construction was used for tar-
geted capture. Prior to capture, PCR was performed using KAPA HotStart HIFI
ReadyMix (Kappa Biosystems) with 3 µM TSO primer (AAGCAGTGGTAT-
CAACGCAGAGT) and 3 µM R1 primer (CTACACGACGCTCTTCCGATCT)
and the following cycling conditions: 98 °C for 3 min; [98 °C for 20 s, 65 °C for 30 s,

72 °C for 1 min 30 s] × 5 cycles (cell lines) or × 20 cycles (primary cells); 72 °C for
3 min. Next, PCR products were purified using AMPure XP beads (Agencourt) and
between 500 ng and 1 µg of amplified cDNA was used for targeted enrichment
following the Roche–NimbleGen double-capture protocol as described in the
SeqCap EZ Library support literature (“NimbleGen SeqCap EZ User’s Guide
[http://netdocs.roche.com/PPM/SeqCapEZLibrarySR_Guide_v3p0_Nov_2011.pdf]
and “Double Capture Technical Note [http://netdocs.roche.com/PPM/
Double_Capture_Technical_Note_August_2012.pdf]”. Briefly, cDNA libraries
were incubated overnight at 47 °C with probes and hybridization reagents (SeqCap
EZ Accessory Kit v2 #07145594001; SeqCap EZ Hybridisation and Wash Kit
#05634261001). Libraries were washed and hybridized a second time overnight for
further enrichment. Universal hybridization enhancing (HE) oligo and index HE
oligos were not included during hybridization. Following each round of hybridi-
zation and capture, PCR was performed using KAPA HotStart HIFI with 1 µM
TSO primer and 1 µM R1 primer (instead of the TS-PCR oligos) with the following
PCR cycling conditions: 98 °C for 3 min; [98 °C for 20 s, 65 °C for 15 s, 72 °C for
1 min 30 s] × 5 cycles (first round) or × 20 cycles (second round); 72 °C for 3 min.
Post-capture cDNA library size ranged from 0.6 to 2 kb.

Nanopore sequencing. Targeted captured cDNA libraries were prepared for long-
read sequencing using Oxford Nanopore Technologies’ (ONT) 1D adapter ligation
sequencing kit (SQK-LSK108), with the exception of one sample that used the 1D2

adapter ligation kit (LSK-308). The latter was base called and considered as 1D for
all subsequent steps. All samples were sequenced with R9.4.1 flowcells (FLO-
MIN106), with the exception of 3/6 cell line samples that were loaded onto R9.5.1
(FLO-MIN107) flowcells (including the aforementioned LSK308 sample). Base
calling was performed offline on a high-performance computing cluster using
ONT’s Albacore software pipeline (version 2.2.7). A list of samples, chemistries,
flowcell identification numbers, and manufacturer software versions can be found
in Supplementary Table 8.

Smart-Seq2. Smart-Seq2 scRNA-Seq was performed using the protocol described
by Picelli et al.59. Briefly, single cells were sorted into cell lysis buffer containing 0.
μL RNase inhibitor (Clontech), 1.9 μL Triton X-100 solution (0.2%), 1 μL dNTP
mix (10 mM), and 1 μL oligo-dT primer (5 μM). Reverse transcription was per-
formed containing 0.5 μL SuperScript II reverse transcriptase (200 U/μL, Invitro-
gen), 0.25 μL RNAse inhibitor (40 U/μL, Clontech), 2;μL Superscript II First-Strand
Buffer (5×, Invitrogen), 0.25 μL DTT (100 mM, Invitrogen), 2 μL betain (5 M,
Sigma), 0.9 μL MgCl2 (100 mM, Sigma), 1 μL TSO (10 μM). Reverse transcription
was carried out at 42 °C for 90 min, followed by 10 cycles of 50 °C for 2 min and
42 °C for 2 min. PCR was performed using KAPA HiFi HotStart ReadyMIX (KAPA
Biosystems) with 28 cycles of PCR and the IS PCR primer reduced to 50 nM.
Sequencing libraries were prepared using the Nextera XT Library Preparation Kit
(Illumina) and sequencing was performed on the Illumina NextSeq platform
(150 bps, paired-end) at ~1 million reads per sample. Following sequencing, reads
were processed using the VDJPuzzle algorithm13 to determine TCR sequences.

Droplet-based scRNA-Seq data analysis. Raw sequencing data were demulti-
plexed, aligned to the GRCh38 genome and UMI-collapsed using the Cell Ranger
software (version 2.0, 10x Genomics). The raw gene-expression matrices were
normalised and scaled using Seurat (v3.4)61. Quality control was performed on
each dataset to remove poor quality cells. For the cell line dataset, cells that
expressed less than 250 genes or less than 1000 UMIs were excluded, while for the
lymph node and tumor datasets cells a threshold of less than 100 genes or less than
500 UMIs was used. Cells that contained more than 6% UMIs derived from
mitochondrial genome were excluded from cell line datasets, and more than 10%
mitochondrial UMIs for primary both tumor and lymph node. Doublets were
identified as any cells expressing greater than 6500 genes or deviated more than ×4
of the median gene count within each cell type. Doublets were removed for the cell
line dataset.

For each dataset a principle component analysis was performed on the variable
genes using the Seurat workflow. Using the Jackstraw method61, the first 40
principle components with a P-value < 0.01 was used for dimensional reduction.
The resolution set for each tSNE analysis was determined using well known
canonical marker genes and Seurat’s FindAllMarkers function yielding an average
expression for any particular cluster >2.0-fold higher than the average expression in
other sub clusters from that cell type. Seurat’s default Wilcoxon rank sum test was
used for differential gene-expression analysis with a P-value < 0.01. Tumor and
lymph node datasets were combined using Seurat’s RunCCA to enable a
comparative analysis. Cell cycle scoring was performed using scRNA-Seq cell cycle
gene-expression scores from Tirosh et al.62. The V(D)J sequences of each cell were
integrated into a Seurat object as metadata for gene expression and clonotype
analysis. Raw non-collapsed or collapsed UMI count for each experiment was
extracted from molecule_info.h5 file generated by Cell Ranger (version 2.0 10x
Genomics) to determine the number of TRAC or IGHM reads or UMIs per cell.

Demultiplexing nanopore sequencing data. Base called fastq files were pooled for
each biological sample and subjected to ad hoc demultiplexing using a direct
sequence matching strategy (i.e., 0 mismatches and indels). Cell barcode sequences
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(16 nt) were extracted from matched Illumina sequencing data produced by
CellRanger software (version 2.0, 10x Genomics). Forward and reverse-
complemented cell-barcode sequences were used to demultiplex the nanopore
sequencing reads by scanning the first and last 200 nt of any read longer than
250 nt for an exact match. Following demultiplexing the 13 nucleotides down-
stream of the position matching a cell barcode were removed for each read. This
was performed to ensure that (i) the 10 nt UMI sequence is removed from con-
sensus assembly steps, and (ii) potential insertions are also removed (using the
script rageMatch.py). The fastq headers were also modified to include barcode and
UMI sequences post-demultiplexing. The number of total nanopore reads and
demultiplexed reads for each sample is shown in Supplementary Table 1.

De novo assembly and error correction. As highlighted in Supplementary Fig. 1,
demultiplexed reads were grouped into distinct fastq files and subjected to de novo
assembly with Canu (version 1.7 r8737)33 using assembly parameters: -Overlapper
=minimap -batMemory= 28 -minReadLength= 200 -minOverlapLength= 100
-genomeSize= 15k. The distinct fastq file were then aligned to the CANU contigs
with Minimap2 (version 2.10-r763-dirty)63 using option -k 15 before being used to
correct the consensus sequence using Racon (version 1.2.1)34 with parameters: -w
200 -m 8 -x -1 -g -4. The Minimap2/RACON step was repeated a total of four
times, after which the corrected consensus was subsequently ‘polished’ with ionic
current data present in the raw nanopore sequencing output files (fast5) with
Nanopolish (version 0.9.0)35. These steps were run on a Sun Grid Engine high-
performance computing cluster and the associated scripts (quick_polisher.sh &
nano_polisher.sh) can be found on the github repository.

TCR and BCR assignment. Nanopore polished fasta files containing consensus
transcript contigs for each cell barcode were subjected to IgBLAST64 alignment to
determine V(D)J rearrangements and BLASTN alignment65 to determine the Ig or
TCR constant regions exons associated with the V(D)J. For each contig, separate
IgBLAST for BCR and TCR were performed using IMGT germline gene reference
datasets60. Amino acid sequences and location of CDR3 were defined by the
conserved cysteine-104 and typtophan-118 based on the IMGT numbering system.
IgBLAST parameters were default with the exception of returning only a single
gene segment per V(D)J loci. Following the first round of IgBLAST, insertions and
deletions (indels) in parts of the sequence that aligned to germline gene segments
were corrected to their closest germline gene, and the IgBLAST step was repeated
to generate indel corrected alignments. This indel correction was performed to
overcome the impact of Nanopore sequencing errors on the reading frame of the V
(D)J rearrangement which if left uncorrected can prevent the CDR3 from being
determined accurately (See Supplementary Fig. 7). We predicted this indel cor-
rection would have a minimal effect on calling somatic hypermutations of the V
region of BCRs since the majority of AID induced mutations consist of single
nucleotide substitutions36. Text-based IgBLAST output was then parsed to tab-
delimited summaries, calling gene segments, framework and complementarity
determining regions and mismatches relative to germline gene segments.

The following filtering of BCR and TCR sequences were performed following
parsing of tab-delimited summaries. Antigen–receptor sequences that were out-of-
frame or that contained stop codons, termed non-productive sequences, were
removed, unless stated otherwise. BCR sequences containing more than 40
mutations or TCR sequences with more than five mutations in their respective V
gene segments were removed from the dataset. This filtering step was not
performed for the analysis of point mutations in the V regions of Jurkat in
Supplementary Fig. 4b. If a cell was assigned two or more different TCR sequences
with the same V and J genes but different CDR3 nucleotide sequences, the TCR
sequence with the least number of mutations in the V region was assigned. If there
were no differences in the number of V region mutations only the receptor
sequence with the greatest number of reads used during de novo assembly with
Canu was assigned. For cells assigned two or more different BCR sequences with
the same V and J genes only the BCR sequence with the greatest assembly read
coverage was assigned.

Expanded clones or shared clones across tissues were defined by more than one
cell sharing the same V and J germline gene segments with identical CDR3 amino
acid sequences for the T cells, and same V and J germline gene segments with 90%
identical CDR3 nucleotide sequence for B cells. Expanded clones or shared clones
across tissues were measured using either the same shared paired chains (e.g., BCR
heavy and light chains, TCRα and TCRβ, TCRγ and TCRδ, or cells carrying the
same TCRβ chain, where specified. MAIT-associated TCRs were identified based
on the usage of TRAV1-2 and one of the J segments TRAJ33, TRAJ20, and
TRAJ1244. GEM-associated TCRs were identified based on the usage of TRAV1-2
and TRAJ9 gene segments45.

Assignment of splice isoforms. To determine the spliced constant regions exons
that were associated with the V(D)J rearrangement blastn was used to align each
contig against the spliced reference exons. For the IGHC, both the membrane and
secreted versions of each constant region were included. Tabular blastn output was
parsed to call constant region for each contig using the criteria of greater than 95%
coverage of the spliced constant region exons and percentage identity of more than

90%. A 90% identity threshold was used because contigs used for constant region
calling were not corrected for insertions or deletions.

Generation of clonal network. The Ramos B-cell line undergoes constitutive
somatic hypermutation36 generating cells that carry different somatic point
mutations within their BCR chains. To examine the relationships among the single
B cells from the cell line, a germline unmutated ancestor (UA) was inferred by
reversion of mismatches to the germline reference. Pairwise distances between the
heavy and light chain sequences for each cell, and to the reference, were calculated
by hamming distance. A network was built among the single cells and the UA
where each node grouped all cells sharing the same heavy and light chain amino
acid sequences and edges represent interactions between nodes with lowest pair-
wise hamming distance and edge weight is the hamming distance between the
nodes. The network was drawn in Cytoscape66 using the Prefuse Force Directed
Layout.

Nanopore read subsampling. Read subsampling was performed on 200 Jurkat
and 200 Ramos cells with each cell having no less than one thousand reads. The
subsampling itself was performed with the sequence analysis toolkit, seqtk version
1.0-r72 (https://github.com/lh3/seqtk), using the sample command with a seed
parameter of -s123. Subsampling was performed in a stepwise manner at incre-
ments of 1000, 500, 250, 100, and 50 read depths, with the resulting subsampled
fastq the next input in later rounds of subsampling.

Determining on-target nanopore alignments. Alignment of nanopore reads to
TCR and BCR genes was performed by the alignment program Minimap2 (version
2.3-r536)63 to a custom reference fasta sequence (refs.fa, available in the associated
GitHub repository) containing TCR and BCR constant region genes, then counted
reads not flagged as unmapped, not primary or supplementary using SAMtools67

version 1.7-2-gc6125d0 (with htslib 1.7-6-g6d2bfb7). Specifically, we employed the
command: minimap2 -a -x map-ont refs.fa reads.fastq | samtools view -F 0 × 904 -c.

Statistics. Figure 2.c, a Pearson correlation was performed. Supplementary Fig. 5h,
a paired Wilcoxon test was performed when comparing Jaccard similarity coeffi-
cient for the 250 most abundant genes chosen from within each respective cell type
cluster.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Sequencing data generated in this study have been deposited in the European Nucleotide
Archive under the primary accession code PRJEB28878. All other data are available from
the authors upon reasonable request.

Code availability
All scripts used for the computational pipeline of RAGE-Seq can be found at: https://
github.com/KCCG/rageseq.
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