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Summary

Time-lapse live cell imaging is a powerful tool for studying signaling network dynamics and

complexity and is uniquely suited to single cell studies of response dynamics, noise, and heritable

differences. Although conventional imaging formats have the temporal and spatial resolution

needed for such studies, they do not provide the simultaneous advantages of cell tracking,

experimental throughput, and precise chemical control. This is particularly problematic for

systems-level studies using non-adherent model organisms such as yeast, where the motion of

cells complicates tracking and where large-scale analysis under a variety of genetic and chemical

perturbations is desired. We present here a high-throughput microfluidic imaging system capable

of tracking single cells over multiple generations in 128 simultaneous experiments with

programmable and precise chemical control. High-resolution imaging and robust cell tracking is

achieved through immobilization of yeast cells using a combination of mechanical clamping and

polymerization in an agarose gel. The channel and valve architecture of our device allows for the

formation of a matrix of 128 integrated agarose gel pads, each allowing for an independent

imaging experiment with fully programmable medium exchange via diffusion. We demonstrate

our system in the combinatorial and quantitative analysis of the yeast pheromone signaling

response across 8 genotypes and 16 conditions, and show that lineage-dependent effects contribute

to observed variability at stimulation conditions near the critical threshold for cellular decision

making.

Introduction

A central goal of systems biology is developing a quantitative and predictive understanding

of how biomolecular networks process chemical information to direct appropriate cellular

responses. A powerful approach to reverse engineering network function is the analysis of

cellular response under a panel of defined genetic perturbations and a diversity of

stimulation conditions. Owing to the facility of genetic manipulations, the availability of

genome-wide gene deletion and GFP-fusion sets, and the wealth of biochemical data, yeast

has emerged as a prototypical model of eukaryotic cell signaling. The recent application of

genome-scale technologies for analysis of cellular response at the level of transcription,

protein expression, and protein interaction has revealed the tapestry of network interactions

that govern cellular growth and decision making.1, 2 However, while such studies provide a
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global view of molecular response, they are typically limited by poor temporal and spatial

resolution and provide only ensemble averaged population measurements, making them

essentially blind to cell differences that arise from a combination of de-synchronization,3

bistability,4, 5 and stochastic variations in expression.6-9 Flow cytometry allows for high-

throughput studies of heterogeneity in single cells but does not provide information on

subcellular localization or morphology, and does not allow for the tracking of cells through

time.7, 10 The latter point is particularly important in understanding differences that may

arise through unique past cell histories or lineage-dependent differences.

The combination of genetically encoded fluorescent reporters and microscopy has emerged

as the premier tool for single-cell studies of biological networks 11-14 and has been used to

dissect heterogeneity associated with emergent network properties including bet-hedging10,

15, adaptation,16 and memory.17-19 Conventional formats for time-lapse imaging of yeast

use the immobilization of cells between a cover slip and an agar pad.5, 20 While simple to

implement, this method has significant limitations including the inability to exchange

nutrients over time, and limited throughput in terms of the numbers of strains and media

conditions that may be studied in a single experiment. In addition, the accumulation of

metabolites, depletion of nutrients, and the growth of cells in multiple layers limits the

duration of experiments, confounding long-time studies of adaptation or cell-lineage effects

over multiple generations. Thus there is a need for high-throughput technology capable of

long-term tracking of single cells from multiple strains and over an array of controllable

chemical conditions.

Microfluidic technologies offer advantages of both scalability and precise fluid control and

have recently emerged as a method for scalable imaging studies of cells in precisely

controlled and changing microenvironments.4, 18, 21-28 In particular, the large-scale

integration of microfluidic valves using Multilayer Soft Lithography (MSL) has been

broadly applied to studies on bacteria, yeast or mammalian cells under chemostatic22, 25, 27,

29 or chemodynamic conditions.21, 30, 31 We have recently reported the development of a

high-throughput microfluidic imaging platform based on MSL technology for the study of

yeast signaling. This previously reported device features an imaging matrix for the

simultaneous analysis of 8 genotypes under 32 time-varying chemical sequences in a total of

256 perfusion chambers.18 Within each perfusion chamber, cells were immobilized by

trapping them between partially closing “sieve”-valves, thereby allowing for media

exchange around non-adherent yeast. Although this platform allowed for precise and high-

throughput comparisons of dynamic responses and cell to cell variability across genotypes, it

did not support the tracking of cells through time. This limitation is due to transient flows

during perfusion that result in the motion of cells within chambers, making automated

tracking of cells difficult or impossible. In addition, the small dimensions of the perfusion

chambers result in confluence at approximately 300 cells, imposing a practical limit on the

duration of experiments. Here we describe a technology that addresses all these limitations

to combine the high-throughput and chemical control of microfluidics with long-term

tracking of cells and lineages. This system is capable of running simultaneously, and in an

unattended manner, 128 different experiments on tens of thousands of immobilized non-

adherent single yeast cells exposed to various pre-programmed chemical perfusion schemes.

We demonstrate our microfluidic technology in the analysis of the pheromone induced

mitogen-activated protein kinase (MAPK) signaling network in Saccharomyces cerevisiae.

Results

Microfluidic chip overview and operation

Our device features a matrix architecture designed to test different genotypes, loaded

through 8 columns, against programmable chemical sequences delivered through the 16
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rows for a total of 128 simultaneous live cell imaging experiments (Figure 1a, 1b).

Combining the scalability and medium exchange capabilities of microfluidics with long-

term tracking of specific single cells through time requires methods for the immobilization

of cells. Previous approaches for immobilization of non-adherent cells include mechanical

clamping under a permeable membrane32, 33, adsorption to channel walls 15, 34, and

mechanical trapping by microfabricated constrictions.35-37

Here we developed and integrated a scalable and robust alternative method that combines

mechanical clamping with in situ polymerization to allow for the robust immobilization of

cells in an array of 128 chambers (Figure 1b) located at the intersections of 8 columns and

16 rows. Valve actuation sequences for the loading and perfusion of cells are illustrated in

Figure 1c. Prior to loading the device each strain is suspended in liquid medium containing

un-polymerized low melting temperature agarose. All chamber diffusion valves are closed

during loading and each column of the array is isolated by actuation of column valves,

creating a serpentine fluidic path through which unique strains are loaded. Chamber

compartmentalization valves are then actuated together with row valves to isolate the liquid

gel cell suspension in each chamber and to isolate the rows for perfusion. The chambers,

which are designed to have a height smaller than the yeast cells, are inflated during this

loading process and subsequently relax, pressing the cells into a monolayer on the glass

substrate. The column valves are then opened and the rows are flushed with medium,

leaving gel only in the imaging chambers. The device is then cooled to 4°C by placing it in

contact with a cooled block. Polymerization of the gel suppresses any convection in the

chambers that would otherwise result in the escape of new daughter cells which are smaller

than the adjacent mother cells. In addition, this method is robust to pressure fluctuations

(caused by valve actuation), or pressure variations resulting from flow across the array,

enabling long-term imaging with near perfect cell immobilization. After loading, cells are

perfused for 3 hours with medium in order to eliminate possible stress responses arising

from cooling or from the injection of cells into the device. The on-chip division time for

yeast at 25°C in SCD media was measured to be approximately 220 minutes under

conditions of both continuous perfusion and the slowest frequency of periodic perfusion

used. Further, experiments show that varying gel density has no effect on cell division rates

or on cell response to pheromone.

On-chip fluid handling allows for precise and unattended perfusion of each row with

arbitrary chemical sequences over 24 hours. Reagents are delivered to the array from a bank

of 8 chemical inlet ports (Figure 1b, region 3). A fluidic multiplexer allows for perfusion of

each row of the matrix (Figure 1b, region 5) with programmable concentrations and

sequences of medium conditions created by the on-chip metering of relative stock reagents

using varying numbers of cycles of an integrated peristaltic pump, each delivering

approximately 150 pL of solution (Supplementary Table 2). For example a 22 nM solution is

prepared by sequential injection of two pump cycles of 100 nM stock solution, two cycles of

10 nM stock solution, and 6 cycles of 0 nM stock solution to define a combined 1.5 nL

“fluidic slug” with average α-factor concentration of 22 nM. The process is continuously

repeated for 1min per row. Replacing the whole volume of a perfusion channel requires

approx. 35 s. Taylor dispersion of reagents during transport from the chemical inlets to the

array results in complete mixing. Measurements of on-chip mixing of 16 different

fluorescein concentrations from 3 stock solutions (1×, 10×, 100×) show excellent linearity

(R2 = 0.9996) and spatial uniformity across the entire agar-filled chamber array (Figure 1e).

The short characteristic length scales of our microfabricated chambers allow for efficient

exchange of medium, nutrients, and metabolites via diffusion conduits that connect the

imaging chambers to the adjacent channels that feed each row. Assuming a characteristic

distance of approximately 400 microns, and a characteristic small molecule diffusion
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constant of ∼0.5×10-9 m2/s, we estimate a mixing time of τ ∼ d2/D ∼ (400 × 10-6)2/0.5 ×

10-9 ∼ 5 minutes, which is confirmed by measurements of the kinetics of equilibration of

fluorescein in agarose filled chambers (Figure 1f). This exchange time is comparable to the

time required to image the full microfluidic array (∼ 10 minutes) and is well-suited to

prolonged experiments requiring the modulation of chemical conditions on time-scales

much shorter than the cell cycle. In cases where faster solution exchange is needed more

rapid exchange can be achieved by reducing the chamber width or widening and shortening

the diffusion channels connecting the chambers to the perfusion channels.

The combination of cellular confinement and periodic perfusion allows for extended

imaging studies over multiple generations that are difficult to implement in conventional

formats. During each device run, automated microscopy generates 128 time-lapse image sets

with temporal resolution of 10 minutes, limited only by the time required to image the

complete array in both fluorescent and brightfield mode. Continuous perfusion of the

chambers supports the growth of cells to high density (Figure 2a,b) by replenishment of

nutrients and removal of waste. Each imaging chamber has dimensions of 684×260×4.4 μm3

and can host over 6,000 cells corresponding to 8.5 × 109 cells/ml. By comparison, a yeast

culture typically reaches stationary phase at about 2-3 108 cells/ml due to nutrient limitation.

During imaging experiments yeast are confined by the chamber height to grow as a

monolayer in a single focal plane over multiple generations. The bottom of the imaging

chamber is sealed with a microscope slide or cover slip, so that the device is compatible with

any inverted microscope and is suitable for high resolution imaging using low working

distance (high numerical aperture) objectives (inset, Figure 2c). In situations where high

resolution and fluorescence collection efficiency is not required, the robust long-term

imaging of large area arrays is facilitated by using air-coupled objectives. A representative

fluorescent image (40×, 0.6NA) showing sub-cellular localization of STE20-GFP in cells

exposed to pheromone is shown in Figure 2c.38

High-throughput Analysis of MAPK Signaling in Yeast

We demonstrated the throughput, control, and precision of our approach in the analysis of

the yeast pheromone mating response. The pheromone response is a well-characterized

signaling pathway that serves as an archetypical model of the highly conserved mitogen

activated protein kinase (MAPK) signaling cascades in eukaryotic cells. MAPK signaling

governs cellular response to a staggering range of stimuli including growth factors,

cytokines, hormones, cellular adhesion, stress, and nutrient conditions.39 In yeast cells

MAPK signaling is used for sexual reproduction between haploid cells of type a and α.

Mating response is induced by the binding of a soluble pheromone peptide via the

membrane-localized G-protein-coupled receptor Ste2 which initiates a phosphorylation

cascade, ultimately activating the expression of about 200 genes and culminating in growth

arrest and formation of a pointed extension (a shmoo) towards the pheromone gradient.

Although this pathway has been the subject of intense study and is likely the most well-

characterized of all MAPK networks, the vast majority of analysis has been qualitative and

there remain many open questions on how network architecture gives rise to emergent

properties including cross-talk and specificity, filtering, adaptation, memory, and cellular

variability.40-43

Using a single device run we monitored the response of over 60,000 individual yeast cells

from 8 strains (wildtype and 7 deletion mutants) exposed to 16 different α-factor

concentrations (Supplementary Table 2). Brightfield and fluorescent images were collected

at 20 min time resolution to capture response dynamics and while avoiding unnecessary

photo-damage of cells. To correlate mating-pathway activity with morphological phenotype

we transformed the strains with a GFP reporter under control of a mating-specific promoter

(Supplementary methods). During a 24h experiment over 40,000 bright field differential
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interference contrast and fluorescence images were recorded, representing ∼4 million cell

measurements stored in 100 Gb of raw image data. To deal with this volume data we built a

custom image analysis pipeline in MATLAB (The Mathworks, Inc., Natick, MA)

implementing the following tasks: (i) segmentation and tracking of cells, (ii) calculation of

total fluorescence in each cell, (iii) calculation of statistics across all cells and experimental

conditions and, (iv) generation of figures, movies, and tables to present time-course and

steady-state data (Supplementary Methods). In particular, the generation of movies for each

chamber enables rapid qualitative analysis of each experiment in order to guide subsequent

data analysis and hypothesis testing (Supplemental Videos 1,2,3).

Parallel analysis of multiple strains and conditions allows for the rapid collection of unified

data sets that facilitate the precise comparison of response kinetics and noise within a

population, between different experimental conditions, and across varying genotypes. Such

analysis is particularly important for studying subtle differences that may be obscured by

systematic variations between experiments. For example, data from a single experimental

run comparing the response of various genotypes to sustained pheromone stimulation at

varying concentration is shown in Figure 3. The kinetics of GFP expression response in wild

type cells (GFP normalized to the cell volume) is shown in Figure 3a. Approximately 300

min after induction the population reached a steady state GFP expression with

approximately a 12 fold increase over basal levels. We observe pronounced noise in network

response3, 7, 44-49 with a coefficient of variation of 0.3. The time-dependent dose response

of wild type cells is represented by a two-dimensional plot of GFP expression under 16

pheromone concentrations over 600 minutes (Figure 3b). Cells show a subtle response at

alpha-factor concentrations as low as 1nM, and exhibit a saturated response under

stimulation at concentrations in the range of 22-30 nM. Below saturation, the response was

found to be monotonically graded with pheromone concentration.

The parallel analysis of multiple strains under identical experimental conditions allows for

precise characterization of the effect of genetic perturbations to network response (Figures

3c-i). We observe that under constant stimulation that ptp2Δ, msg5Δ and kss1Δ deletion

strains are hyper-sensitive (in increasing order) while ste50Δ, far1Δ, slt2Δ and fus3Δ
deletion strains are hypo-sensitive (in decreasing order) with respect to wild-type, consistent

with previous high-throughput and focused studies.3, 4, 18, 50 In addition, analysis under

constant and finely varied concentrations of pheromone reveals different response saturation

thresholds amongst mutants. For example, slt2Δ saturates at alpha-factor concentrations as

low as 10 nM while ste50Δ does not reach steady state within the time of the experiment.

Single-cell tracking reveals heterogeneous decision making

Yeast cells are known to adopt various morphologies depending on their surrounding

pheromone concentration.18, 51, 52 While the noise in PRE-dependent gene expression is

substantial at all pheromone concentrations, the observed morphology of yeast at both high

(schmoo form) and low (yeast form) pheromone concentrations is highly uniform across

each population. However, the coexistence of multiple morphologies is observed at

intermediate concentrations of pheromone, suggesting that cells undergo a switch-like

decision at a threshold pheromone concentration that may vary between cells. Between 0-3

nM wild-type cells displayed a yeast morphology while between 4 and 8 nM an increasing

fraction of the population was observed to display an elongated morphology (Supplementary

Figure 1). This transition culminated in a complete switching from budding yeast to the

elongated phenotype at concentration above 8 nM, and was accompanied by complete

growth arrest. When the cells were exposed with 30 nM or higher they adopted the more

common shmooing phenotype characterized by one or more short and pointed projections.

Interestingly, single cell tracking experiments suggest that this observed variability is not

random but is rather correlated with cell lineage (Figure 4). A representative time sequence
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of heterogeneous morphological response in two colonies of wild-type cells exposed to 5

nM α-factor is shown in Figure 4d. Colonies are separated by a distance of approximately 30

microns and are hence exposed to identical chemical conditions. Despite identical

stimulation and genotype, one population (red) undergoes growth arrest and cellular volume

increase while the adjacent population (green) is apparently insensitive to pheromones and

continues to divide.

Measurements of GFP expression reporting on the pheromone pathway activity provide

complementary information to the bright field images, suggesting a direct correlation

between growth arrest and elongation with higher GFP expression (Figure 4c). To accurately

quantify the GFP expression in each cell and over time we built a cell tracking algorithm

which labels each cell (Figure 4b) and allows plotting their respective time-lapse gene

expression profiles as shown in Figure 4e. Cells undergoing growth arrest (red) display a

strong increase in GFP expression (12 fold over basal levels) while dividing cells (green)

only show a moderate GFP response (5 fold over basal levels). This observation suggests

that pathway response is graded and that cells exhibit varying pathway sensitivity which is

correlated with lineage. At intermediate α-factor concentrations this inherited variability in

sensitivity manifests itself as a heterogeneous and switch-like morphological response of the

population, causing only a subset of cells to commit to growth arrest and morphological

transition. The ability to keep cells growing as a monolayer allows for reconstruction of

lineages from time-lapse images (Figure 4f). We are currently extending our automated cell

tracking algorithms for high-throughput lineage tracking, a task that is facilitated by the use

of fluorescent budneck markers for connecting mother cells to their progeny.32 This

approach will, for the first time, enable the rigorous correlation of cellular response as a

function of lineage over large populations of cells from varying genotypes and under

changing environmental conditions. Such studies should open new avenues for exploring

cell heterogeneity and potential heritable effects in signaling.

For instance, here we show that high-throughput single analysis of the mating response

under finely graded and constant concentrations of pheromone reveals a strong heritable

contribution to observed heterogeneity in morphological switching and gene expression

response. We propose that this is not a specific property of the mating response, but rather a

general property of any switch-like behavior near a critical threshold of stimulation. Any all-

or-nothing cellular decision, such as the decision to growth arrest and mate, must be tightly

regulated to avoid costly and nonproductive responses. This regulation is achieved through

complex signaling network architecture to enforce a well-defined transition threshold.

However, signaling networks are subject to noise arising from stochastic variations in the

abundance of signaling molecules and transcripts, resulting in unique thresholds for each

cell. Progeny inherit the state and concentrations of proteins and transcripts present in the

mother and hence exhibit thresholds that are correlated over generations. Thus, analysis of

any cellular decision making near critical concentrations of stimulant may be generally

expected to elicit incomplete population response that reflects stochastic differences in

signaling network state passed from one generation to the next. Thus we contend that this

mechanism may constitute an important source of cell-cell variability near any switching

transition.

Experimental

Chip fabrication—Poly-dimethylsiloxane (PDMS, RTV615 manufactured by General

Electric, CT) microfluidic devices were fabricated by replica molding from micromachined

masters using multilayer soft lithography as previously described.24, 53, 54 Devices feature

2-layers with the top layer containing channels used for pneumatic valving and the bottom

layer containing flow channels and imaging chambers. Device design was completed using
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AutoCAD software (Autodesk, Inc., San Rafael, CA) and printed on 20,000 dot per inch

resolution transparency masks (Cad/Art Services, Bandon, Oregon). Master negative molds

were fabricated by standard photolithography techniques on 4 inch (101.6 mm) silicon

wafers (Silicon Quest International, Santa Clara, CA). The flow layer consisted of two

feature types: 4.4 μm high rectangular cell microchambers, and 9 μm high rounded flow

channels. The rounded channel cross-sections were obtained with by placing the wafer on a

130°C for 30 min. Each cell microchamber had a volume of 0.71 nL with dimensions 684 ×

260 × 4.4 μm3. The 4.4 μm and 9 μm layers were made using negative (SU8-5, Microchem

Corp., Newton, MA) and positive photoresist (SPR220-7, Microchem Corp) respectively.

The control master was a single layer mold consisting of 25 μm high squared features made

with SU8-2025 negative photoresist (Microchem Corp.). Resist processing was performed

according to the manufacturer's specifications. The bottom layer of the device was sealed by

covalent bonding to a 0.7 mm low auto-fluorescence glass slides (borofloat 33, S.I. Howard

Glass Co., Inc. MA) by a 10 s O2-plasma surface activation followed by baking for 15h at

80°C.

Segmentation and tracking algorithm—Cell segmentation was performed using only

bright-field images. Focus was adjusted during image capture to ensure yeast cell walls were

clearly visible as dark continuous borders. The local mean and variance were calculated for

each pixel of the image using a small local neighborhood, and those pixels for which the

local mean was below a threshold and the local variance was above a threshold were marked

as cell wall pixels.55 Subsequently, a mask of cell areas was obtained by thresholding the

local variance image with a threshold found with the help of Otsu's method,56 followed by a

series of operations based on mathematical morphology. Initially recognized cell walls were

then removed from the mask and cells that were grouped together were separated by a

watershed method (Supplementary Methods). The cell tracking was based on minimizing

the sum of Euclidean distances between cells from each image frame at time point t with

cells from the image frame at time point t-1. If the number of cells at each time point was

the same, the solution to this assignment problem giving the smallest total cost (sum of

distances between cells) could be readily found by the classic Hungarian algorithm.57 When

this was not the case, due to cell division or segmentation errors, we applied a modified

assignment method based on the Hungarian algorithm (see supplementary notes for details).

Additional methods—Description of the yeast constructs as well as further details on

chip fabrication and operation are available in Supplementary Methods.

Conclusion

We have developed a microfluidic chip that addresses major limitations in live-cell imaging

studies of signaling. The unique combination of experimental throughput, single cell

tracking, chemical control, and quantitative image analysis is ideally suited to tackling

fundamental questions including mechanisms of signaling specificity and cross-talk, cellular

filtering, and the origin of heritable differences in isogenetic populations. As a

demonstration we report here new observations of cell-to-cell variability in pheromone

response that suggest non-genetic inheritance as a contributing source to observed

heterogeneous response in an isogenic population of cells. We contend that this and similar

technology will become a premier tool for the quantitative analysis of natural and synthetic

biological networks, ultimately providing stringent tests for the development and testing of

in silico models and leading to predictive understanding of complex cellular decision

making.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Microfluidic chip design and operation

(a) Image of microfluidic device. A Canadian penny has been included for scale. (b)

Working area of microfluidic device showing (1) array of 128 imaging chambers (8 columns

* 16 rows), (2) column inlets for loading different strains, (3) 8 chemical inlets controlled by

independent valves, (4) outlet ports, (5) fluidic multiplexer to deliver reagents to specified

rows, (6) integrated peristaltic pump for on-chip formulation of stock reagents. (c) Cell

loading and immobilization. Top: Cell suspension containing low melting temperature liquid

agarose gel and media are introduced through column flow channels (blue) which are

separated by the actuation of column valves (red) to prevent cross contamination of strains.

Diffusion valves (yellow) are closed while the row valves (pink) are open. Middle:

Actuation of row valves stops flow of cells and isolates each chamber. Column valves are

released to flow media along rows, flushing excess cells and agarose to the outlet. Bottom:

The chip is cooled for 3 min at 4 C to gel the agarose. Diffusion valves are opened to initiate

diffusive exchange between medium in row channels and imaging chambers. Each row has a

dedicated waste channel above the chambers for the priming of rows prior to initiating

diffusion, thereby eliminating possible contamination from adjacent rows. (d) Optical

micrograph showing the programmable and independent sequential perfusion of adjacent

rows with 4 solutions of food dye. (e) Programmable on-chip mixing of 3 fluorescein stock

solutions (1×, 10×, 100×) to create 16 concentrations. Each data point corresponds to the

mean fluorescence of the 8 chambers on each row. Y-error bars represent standard

deviations across the 8 chambers of each row. Measurements were taken at edge of the

chamber furthest away from the diffusion channel and therefore reflect the longest possible

diffusion time within chambers. (f) Temporal modulation of the chemical environment

demonstrated by constant perfusion with repeated pulses alternating between medium and

fluorescein. Greater than 95% equilibration is achieved within 9 minutes. Note that data

presented in panels 1e and 1f was taken from chambers filled with polymerized agarose as in

biological experiments.
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Figure 2. Cell growth and imaging quality

(a) Bright field images of one imaging chamber captured in two fields of view taken after 24

hours growth in synthetic media. Image taken using a 40× long working distance air

objective (NA=0.6) (b) Growth curve of cells in a chamber over 24 hours showing growth to

high density (3.5×109 cells/ml) under periodic diffusive exchange of nutrients and

metabolites. (c) Compatibility of imaging platform with high-resolution microscopy.

Fluorescent images taken with a 40× air objective (NA=0.6) show localization of a STE20-

GFP fusion protein at the shmoo tip after exposure to pheromone. Inset shows a separate

brightfield image taken using a 100× oil immersion objective (NA=1.3), demonstrating that

the device is compatible with high resolution microscopy. Scale bar is 8 μm.
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Figure 3. Time-course pheromone dose response across multiple genotypes

(a) Data from one of 128 chambers showing variation of GFP expression for wild-type cells

subject to constant 10 nM α-factor stimulation. Each data point represents one time-point for

a single cell measured every 20 min over 9 h. (b) Mean expression data from one column of

the device presented as a surface plot of GFP concentration as a function of time and α-

factor concentration. (c)-(i) GFP expression surface plots for seven mutants studied on the

same device. Each surface response plot represents approximately 200,000 individual data

points.

Falconnet et al. Page 12

Lab Chip. Author manuscript; available in PMC 2012 February 7.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 4. Evidence of a heritable threshold for morphological switching

(a) Bright field image of colonies of bar1Δ cells after 40 minute exposure to 5nM α-factor in

microfluidic chamber. (b) Close-up of upper two colonies from inset of panel a after 320

minute exposure to 5nM α-factor. Automated cell-tracking assigns a unique label to each

cell to allow correlation of lineage, morphology, budding pattern and gene expression. (c)

Fluorescent image of GFP expression in colonies from panel b showing lineage-dependent

sensitivity to pheromone. (d) Time-lapse sequence of colonies highlighted in panel a

showing the evolution of variability in morphological response to pheromone response. The

red population undergoes growth arrest and displays an elongated phenotype while the green

keeps budding over multiple generations. (e) EGFP concentration in each cell reporting the

pheromone pathway activity. New lines starting at a zero value for GFP correspond to

newborn cells. Plotted gene expression is normalized to cell volume and therefore represents

an estimate of GFP concentration. (f) Lineage tree with time scale for both populations.
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