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ABSTRACT: Cyclometalated Ir(III) complexes are often chosen as
catalysts for challenging photoredox and triplet−triplet-energy-transfer
(TTET) catalyzed reactions, and they are of interest for upconversion into
the ultraviolet spectral range. However, the triplet energies of commonly
employed Ir(III) photosensitizers are typically limited to values around
2.5−2.75 eV. Here, we report on a new Ir(III) luminophore, with an
unusually high triplet energy near 3.0 eV owing to the modification of a
previously reported Ir(III) complex with isocyanoborato ligands.
Compared to a nonborylated cyanido precursor complex, the introduction
of B(C6F5)3 units in the second coordination sphere results in substantially
improved photophysical properties, in particular a high luminescence
quantum yield (0.87) and a long excited-state lifetime (13.0 μs), in
addition to the high triplet energy. These favorable properties (including
good long-term photostability) facilitate exceptionally challenging organic triplet photoreactions and (sensitized) triplet−triplet
annihilation upconversion to a fluorescent singlet excited state beyond 4 eV, unusually deep in the ultraviolet region. The new Ir(III)
complex photocatalyzes a sigmatropic shift and [2 + 2] cycloaddition reactions that are unattainable with common transition metal-
based photosensitizers. In the presence of a sacrificial electron donor, it furthermore is applicable to demanding photoreductions,
including dehalogenations, detosylations, and the degradation of a lignin model substrate. Our study demonstrates how rational
ligand design of transition-metal complexes (including underexplored second coordination sphere effects) can be used to enhance
their photophysical properties and thereby broaden their application potential in solar energy conversion and synthetic
photochemistry.

■ INTRODUCTION

Triplet−triplet energy transfer (TTET) catalysis has become
an important tool of organic-synthetic photochemistry,
because many reactions rely on triplet excited states that are
difficult to access directly.1 TTET catalysis proceeds via
sensitization of triplet-excited states of organic1,2 and
inorganic3−6 substrates without the need for excitation of
their singlet-excited states, thereby allowing for milder reaction
conditions (using visible instead of UV excitation light) and
higher selectivity. Similarly, triplet−triplet annihilation upcon-
version crucially relies on triplet sensitization.7,8 The triplet
energy of the photosensitizer is a limiting factor for both types
of applications, TTET catalysis, and upconversion.
Prominent examples of TTET catalyzed organic reactions

include E/Z isomerizations,9−14 cycloadditions,15−25 the
disulfide-ene reaction,26 C-(sp3)−H methylations,27 and the
photocatalyzed Paterno−̀Büchi reaction.28,29 The scope of
substrates is typically dictated by the triplet energy of the
available photosensitizers, and the development of photo-
catalysts with higher triplet energies is desirable to enable more
challenging substrates or even new reactions. Transition metal

complexes are widely used as TTET and photoredox
catalysts,30 due to their high intersystem crossing efficiencies
that usually lead to quantitative population of triplet excited
states, as well as the tunability of their photophysical properties
and their photostability.31−33 Though earth-abundant first- and
second-row transition metal complexes become increasingly
popular,34−36 so far mostly precious Ru(II)- and Ir(III)-based
photocatalysts have been employed, with cyclometalated
Ir(III) complexes representing a particularly popular choice
for reactions requiring comparatively high triplet energies.37,38

However, most commonly used Ir(III) photosensitizers do not
exceed triplet energies of 2.7 eV,1 and the metal-based TTET
catalyst with the highest triplet energy that is typically
employed is [Ir(dFppy)3] (dFppy = 2-(2,4-difluorophenyl)-
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pyridine), with a triplet energy of 2.75 eV (Figure 1a).2,31,39−41

Other metal complexes also exhibit high triplet energies (up to

3.26 eV),42−46 but it seems that their performance in TTET
catalysis has not yet been explored. Very recently, a tris-
cyclometalated Ir(III) complex with a triplet energy of 3.18 eV
and its application in a De Mayo type reaction was reported.47

Organic, nonmetal based photosensitizers with high triplet
energies (Figure 1b) include thioxanthone (ET = 2.75 eV),
benzophenone (ET = 2.98 eV), and acetophenone (ET = 3.21
eV).1 However, such ketone-based sensitizers can suffer from
some severe drawbacks: often, substoichiometric amounts of
the catalyst are necessary, and their triplet-excited states can be
susceptible to side reactions and increased photodegrada-

tion.1,19 This class of sensitizers furthermore has low extinction
coefficients at readily accessible excitation wavelengths (for
benzophenone the molar extinction coefficient at 346 nm is
only 60 M−1 cm−1),48 thereby leading to inefficient light
absorption unless very short wavelength excitation light is used.
Consequently, the development of metal-based TTET catalysts
with high triplet energies represents an attractive research
target. Furthermore, such compounds may permit sensitized
triplet−triplet annihilation upconversion to exceptionally high
energies, resulting in delayed fluorescence in the difficult to
access ultraviolet B region.
Here, we present a detailed photophysical and photo-

chemical study of a new heteroleptic Ir(III) complex obtained
via the borylation of a cyclometalated Ir(III) cyanido precursor
complex, to benefit from the favorable influences of the
resulting isocyanoborato ligands.51−65 Starting from the known
[Ir(dFN(Me)2ppy)2(CN)2]

− complex ((dFN(Me)2ppy) = 2-
(2,4-difluorophenyl)-N,N-dimethylpyridin-4-amine), reaction
with B(C6F5)3 gave [Ir(dFN(Me)2ppy)2(BCF)2]

− (Figure 1c,
BCF = CNB(C6F5)3). This new complex exhibits an
exceptionally high triplet energy of 2.99 eV that allows for
the sensitization of organic substrates that were hitherto not
easily amenable by (known) metal-based photosensitizers.
Though there have been several detailed reports on the
photophysical and electrochemical properties of isocyanobor-
ato complexes with different metals,51−64 their photochemical
properties, as well as their applications in TTET catalysis and
photochemical upconversion, have remained underexplored so
far.65

In addition to unusually challenging applications in TTET
catalysis, the new complex permits sensitized triplet−triplet-
annihilation upconversion (sTTA-UC) into the UV−B region.
There have been numerous reports on visible/near-infrared to
visible66−74 as well as a few visible to UV75−80 upconversion
systems, but only a very small number of them can provide
emission below 350 nm.81−84 With [Ir(dFN(Me)2ppy)2-
(BCF)2]

− as sensitizer and 4,4′-di-tert-butyl-biphenyl as
annihilator, photochemical upconversion to a fluorescent
singlet excited state beyond 4 eV becomes possible.
Upconversion this far into the ultraviolet range has only
recently been reported85 and could potentially represent an
alternative way to generating light for which, traditionally,
mercury lamps have been used. The good photorobustness of
the new Ir(III) complex under triplet sensitization conditions
is encouraging in this regard.
Lastly, we found that excitation of [Ir(dFN(Me)2ppy)2-

(BCF)2]
− in the presence of excess tertiary alkyl amine leads to

its one-electron reduced form, which is a very strong reductant
featuring a redox potential of −2.42 V vs SCE. This permits
efficient reductive dehalogenations of activated aryl bromides
and chlorides, detosylation reactions, and the reductive Cα−O
bond cleavage in a small molecule resembling lignin.

■ RESULTS AND DISCUSSION
Ligand and Complex Design. The electronic structure of

Ir(III) complexes with phenylpyridine ligands can be tuned by
the introduction of suitable electron-withdrawing or -donating
substituents on the phenyl and the pyridine moiety.32,86−88

Aiming at an increased triplet energy and based on previous
work,45 we targeted the [Ir(dFN(Me)2ppy)2(BCF)2]

− com-
plex (Figure 1c, bottom), in which N,N-dimethylamino groups
at the 4-position of the pyridine moiety destabilize the lowest
unoccupied molecular orbital (LUMO), whereas fluoro

Figure 1. Chemical structures and triplet energies of important metal-
based (a) and organic (b) photosensitizers. (c) Chemical structures of
[Ir(ppy)2(CN)2]

− (top), [Ir(dFN(Me)2ppy)2(CN)2]
− (middle), and

[Ir(dFN(Me)2ppy)2(BCF)2]
− (bottom) and the key effects of the

individual ligand substituents. [a]: from ref 2. [b]: from ref 49. [c]:
from ref 50. The organic photosensitizers shown in (b) require
excitation in the ultraviolet (UV) spectral range.
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substituents at the 4- and 6-positions of the phenyl ring
stabilize the highest occupied molecular orbital (HOMO).
These combined effects lead to a triplet energy of 2.88 eV in
the known [Ir(dFN(Me)2ppy)2(CN)2]

− complex (Figure 1c,
middle),45 and in order to increase the energy of the
photoactive triplet excited state even further, we attached the
strongly Lewis acidic B(C6F5)3 moiety to both CN− ligands.
This results in an additional stabilization of the metal-based t2g-
like HOMO.51 Combining the effects of the N,N-dimethyla-
mino and fluoro substituents at the ppy-chelators with
B(C6F5)3 at the cyanido ligands results in a triplet energy
(ET) of 2.99 eV, which is ca. 0.30 eV higher than in the
unsubstituted [Ir(ppy)2(CN)2]

− complex (Figure 1c, top).50

Synthesis, Infrared Spectroscopy, and Electrochem-
istry. The precursor compound [TBA][Ir(dFN(Me)2ppy)2-
(CN)2] (TBA = tetra-n-butylammonium) was synthesized in
four steps following published procedures, but some improve-
ments to the reported syntheses were made (see SI, page S4 for
experimental details).44,45 The cyanoborylated [TBA][Ir(dFN-
(Me)2ppy)2(BCF)2] compound was obtained by reacting
[TBA][Ir(dFN(Me)2ppy)2(CN)2] with 2.2 equiv of B(C6F5)3
in dry and degassed CH2Cl2 and was characterized by 1H, 19F,
11B, and 13C NMR spectroscopy as well as by elemental
analysis (EA), infrared (IR) spectroscopy, and high-resolution
mass spectrometry (HRMS).
In the IR-spectrum of nonborylated [Ir(dFN(Me)2ppy)2-

(CN)2]
−, two CN bands are observed at 2100 and 2091

cm−1, and upon attachment of B(C6F5)3 these bands are
shifted to 2195 and 2180 cm−1 in [Ir(dFN(Me)2ppy)2-
(BCF)2]

− (Figure S21). This ca. 100 cm−1 blue shift of the
CN stretch frequencies is commonly observed upon the
borylation of cyanido precursor complexes and is due to the
electron-withdrawing nature of the B(C6F5)3 group, which
lowers the energy of the relevant CN π-bonding orbitals,
resulting in a stronger CN bond.64

In the cyclic (CV) and differential pulse voltammograms
(DPV) of [TBA][Ir(dFN(Me)2ppy)2(BCF)2] recorded in dry
and deaerated CH3CN, a ligand-based reduction at −2.42 V vs
SCE (Ered) and a metal-centered oxidation feature at 1.40 V vs
SCE (Eox) are observed (Figure 2). The corresponding
oxidation of [Ir(dFN(Me)2ppy)2(CN)2]

− takes place at a
substantially less positive potential of 0.97 V vs SCE (Figure
S22), indicating that borylation of the two cyanido ligands
entails a stabilization of the metal-centered t2g-like HOMOs by
ca. 0.43 eV, an effect which is commonly observed upon the
borylation of heteroleptic Ir(III) cyanido complexes.51

Similarly, the reduction of [Ir(dFN(Me)2ppy)2(BCF)2]
− at

−2.42 V vs SCE is at a less negative potential than in
[Ir(dFN(Me)2(ppy)2(CN)2]

− (−2.59 V vs SCE), signaling
that the ligand-based LUMO has been stabilized by ca. 0.17
eV. Since the B(C6F5)3 units are attached remotely at the
cyanido ligands, borylation acts less strongly on the essentially
ppy-centered LUMO than on the largely metal-based HOMO.
The combination of both borylation effects is expected to lead
to an increase of the energy of the photoactive excited state by
ca. 0.26 eV, based on these electrochemical data.
The singly reduced [Ir(dFN(Me)2ppy)2(BCF)2]

2− species
with its oxidation potential of −2.42 V vs SCE should be a
powerful reductant, and this is confirmed by the photo-
chemical studies discussed further below.
Photophysical Properties. The UV−vis absorption

spectrum of [TBA][Ir(dFN(Me)2ppy)2(BCF)2] (green solid
trace in Figure 3) shows π−π* transitions (220−310 nm) as

well as mixed metal-to-ligand-charge-transfer/intraligand
(MLCT/IL) transitions (centered at 328 nm).45,51 Following
355 nm excitation of a 10−5 M deaerated CH3CN solution of
[TBA][Ir(dFN(Me)2ppy)2(BCF)2], a structured emission
band centered at 448 nm is detectable (dashed red trace in
Figure 3). Both the MLCT/IL UV−vis absorption and the
emission band are blue-shifted by ca. 0.12 eV compared to the
parent cyanido complex (Figure S23) due to the Lewis acidic
nature of B(C6F5)3 (Table 1), which is lower than the value of

Figure 2. Main plot: cyclic voltammogram (CV, green) and
differential pulse voltammogram (DPV, red) of 1 mM [TBA][Ir-
(L)2(BCF)2] in dry, deaerated CH3CN with 0.1 M [TBA][PF6] as
supporting electrolyte. L = (dFN(Me)2ppy)2. For the CV, the scan
rate was 0.1 V/s; for the DPV, the step height was 20 mV, the pulse
height was 40 mV, the pulse width was 90 ms, and the step width was
100 ms. Inset: Latimer diagram derived from the electrochemical
measurements presented in the main plot and the energy of the
photoactive excited state as determined by the spectroscopic studies
below. Redox potentials in the inset are referenced to the saturated
calomel electrode (SCE).

Figure 3. Main plot: UV−vis absorption (green line) and
luminescence (dashed red line) spectra of 10−5 M [TBA][Ir(dFN-
(Me)2ppy)2(BCF)2] recorded in dry, deaerated CH3CN at 293 K.
Left inset: luminescence spectrum of [TBA][Ir(dFN-
(Me)2ppy)2(BCF)2] recorded in 2-methyl-THF at 77 K. Right
inset: luminescence decay of 10−5 M [TBA][Ir(dFN-
(Me)2ppy)2(BCF)2] in dry, deaerated CH3CN at 293 K after
excitation at 355 nm with laser pulses of ∼10 ns duration. For the
steady-state luminescence spectra, excitation occurred at 350 nm.
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0.26 eV expected on the basis of the electrochemical data
discussed above.
Compared to the blue shifts of the absorption and emission

bands observed upon borylation of Ru(II) polypyridyl cyanido
complexes (ca. 0.5 eV from [Ru(bpy)2(CN)2] to [Ru-
(bpy)2(BCF)2], bpy = 2,2′-bipyridine),65 this effect is rather
modest, and we attribute this to the somewhat different nature
of the emissive excited states of Ru(II) polypyridyls compared
to cyclometalated Ir(III) complexes: In the respective Ru(II)
complexes, the emissive state is a relatively clean MLCT, while
in cyclometalated Ir(III) compounds it has mixed MLCT/IL
character.93−96 As B(C6F5)3 mainly stabilizes the metal-
centered HOMO, but due to its attachment at the cyanido
ligands acts much less on the ppy-localized π and π* orbitals,
the increase in energy of the photoactive excited state is larger
for clean MLCT emitters compared to mixed MLCT/IL
luminophores.51 This effect is also observed upon methylation
of the [Ru(bpy)(CN)4]

2− complex to obtain [Ru(bpy)-
(CNMe)4]

2+, leading to a relatively large increase in triplet
energy of ∼0.5 eV.97

Despite the substantially blue-shifted MLCT/IL excited
state of [TBA][Ir(dFN(Me)2ppy)2(BCF)2], excitation with a
commercial 415 nm LED remains feasible due to the tailing of
its lowest absorption band into the visible region, as well as the
fact that the spectral output of such an LED extends to roughly
390 nm (Figure S28). The molar extinction coefficient of
[TBA][Ir(dFN(Me)2ppy)2(BCF)2] at 415 nm in CH3CN is
260 M−1 cm−1, which is sufficient for the application of this
complex in energy transfer and photoredox catalysis, as
illustrated in the following sections. For comparison, the
well-known organic triplet sensitizer benzophenone does not
absorb significantly at 415 nm, and therefore, much higher
energy photons are typically needed for its excitation (Table
1).
77 K luminescence measurements of [TBA][Ir(dFN-

(Me)2ppy)2(BCF)2] in 2-methyl-THF reveal a triplet energy
of 2.99 eV, as determined from the highest-energy emission
peak at 415 nm (left inset in Figure 3). The emission band at
this temperature is highly structured with a vibrational
progression in a 1500 cm−1 mode, indicating significant
intraligand character of the photoluminescence under these
conditions. This fine structure is not observed in the
nonborylated [Ir(dFN(Me)2ppy)2(CN)2]

− parent complex
(Figure S23). The inherent excited-state lifetime (τ0) of
[Ir(dFN(Me)2ppy)2(CN)2]

− in dry and deaerated CH3CN at
293 K is 2.8 μs, and this value is elongated by a factor of ∼4.5
to 13.0 μs in [Ir(dFN(Me)2ppy)2(BCF)2]

− (right inset in
Figure 3). Excited-state lifetime elongation is typically

observed upon borylation of cyanido complexes with the 5d
metals Ir(III),51 Re(I)52−54,56 and Os(II),57 and here this effect
might be further aided by increased 3IL character. The
elongation of the luminescence lifetime is furthermore in line
with the energy gap law, which predicts a decrease in
nonradiative relaxation with increasing excited-state energy.98

This moreover results in an improved luminescence quantum
yield (Φlum) of 0.87 for [Ir(dFN(Me)2ppy)2(BCF)2]

− in
deaerated CH3CN at 293 K compared to 0.64 for [Ir(dFN-
(Me)2ppy2(CN)2]

− under identical conditions.
In the transient UV−vis absorption (TA) spectra of both

[TBA][Ir(dFN(Me)2ppy)2(CN)2] (Figure S24) and [TBA]-
[Ir(dFN(Me)2ppy)2(BCF)2] (Figure S26), an excited-state
absorption (ESA) band with a maximum at 400 nm, tentatively
attributable to the reduced dFN(Me)2ppy ligand, is observed.
In both complexes, this ESA band exhibits the same lifetime as
the emission of the respective complex (2.8 μs for [Ir(dFN-
(Me)2ppy)2(CN)2]

− and 13 .0 μs for [I r(dFN-
(Me)2ppy)2(BCF)2]

−), confirming that the same photoexcited
species are probed by luminescence and TA.

Energy Transfer Catalysis. With its exceptionally high
triplet energy of 2.99 eV, the new Ir(III) isocyanoborato
complex is a very promising candidate for TTET catalysis. In a
first test reaction, we investigated the intramolecular [2 + 2]
cycloaddition of norbornadiene to quadricyclane (Figure 4a).
This reaction is of interest in the context of solar energy
conversion due to the ability of quadricyclane to store chemical
energy and release it on demand.99−102 However, a
disadvantage of this system is that norbornadiene does not
absorb significantly in the visible region and furthermore it has
a comparatively high triplet energy of 2.7 eV. In our
experiments, 0.3 mol % [Ir(dFN(Me)2ppy)2(BCF)2]

− cata-
lyzed the conversion of norbornadiene to quadricyclane
efficiently in deaerated CD3CN upon irradiation with the
above-mentioned 415 nm LED and gave a 99% NMR-yield
after a reaction time of 1 h (Figure 4a). We estimate the
photochemical quantum yield (ΦPC) for this reaction, defined
here as quadricyclane molecules formed per number of
absorbed photons, to ∼0.3 (see SI, page S26 for details).
When lowering the catalyst loading to 0.02 mol %, an NMR-

yield of 92% remained achievable over 8 h, corresponding to a
turnover number (TON) > 4500. The comparatively long
photoirradiation time and high TON point to the good
photostability of [Ir(dFN(Me)2ppy)2(BCF)2]

− under photo-
catalytic conditions, and this important aspect will be explored
in detail below. Even though the conversion of norbornadiene
to quadricyclane is considered to be a TTET catalyzed reaction
in most of the literature reports,103 one study postulated a

Table 1. Summary of the Photophysicala and Electrochemicalb Properties of [TBA][Ir(L)2(BCF)2] and [TBA][Ir(L)2(CN)2]
as well as Literature Values of the Two Reference Compounds Benzophenone and [Ir(dFppy)3] (L = (dFN(Me)2ppy))

c

λmax, abs, MLCT/IL (ε)/ (
nm (M−1 cm−1))

ε415 nm
(M−1 cm−1)

λmax, em
(nm) τ0 (μs)

ET
(eV)

Φlum
(%)

Ered

(V vs SCE)
Eox

(V vs SCE)

[Ir(L)2(BCF)2]
− 328 (20,000) 260 448 13.0 2.99d 87 −2.42 1.40

[Ir(L)2(CN)2]
− 343 (12,500) 520 468 2.8 2.88d 64 −2.59 0.97

Benzophenone − 089 45190 50.049 2.981 1.390 − −
[Ir(dFppy)3] − 2,00091 47692 1.631 2.752 4386 −1.8731 0.9431

aPhotophysical data were obtained in dry, deaerated CH3CN at 293 K. bElectrochemical data were obtained in dry, deaerated CH3CN at room
temperature with 0.1 M [TBA][PF6] as supporting electrolyte.

cλmax, abs, MLCT/IL is the wavelength of the lowest-energy absorption band maximum
(reported along with the molar extinction coefficient (ε) at that wavelength), ε415 nm is the molar extinction coefficient at 415 nm, and λmax, em is the
wavelength of the emission band maximum. All other abbreviations used in this table are defined in the text. dTriplet energies (ET) were obtained
from 77 K measurements in 2-methyl-THF.
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partially redox-mediated mechanism via sensitization in a
charge-transfer encounter complex and successfully employed
an Ir(III)-based catalyst.104 In our case, it seems plausible that
the TTET pathway is operative.
Next, we explored a more challenging reaction, namely the

intramolecular [2 + 2] cycloaddition of 4-(pent-4-en-1-
yloxy)quinolin-2(1H)-one (PQO) to the corresponding cyclo-
butane product (CQO). The triplet energy (ET) of PQO is 2.9
eV (Figure 4b), 0.2 eV above that of quadricyclane.19,21 The
reaction of PQO to CQO was completed after 90 min with
95% conversion based on a 1H NMR experiment in CD2Cl2.
The reaction was furthermore performed on the preparative
scale in CH2Cl2 (0.7 mmol, 15 mg) and gave a 75% isolated
yield after a reaction time of 2 h.
Finally, we turned our attention to an even more challenging

reaction, the intramolecular [1,3] sigmatropic alkyl shift of
verbenone to chrysanthenone (ET of verbenone = 3.0 eV,
Figure 4c).1,105 Photoexcited [Ir(dFN(Me)2ppy)2(BCF)2]

−

was able to catalyze this reaction with an 80% NMR-yield
and a conversion of 97% after a reaction time of 3 h under
irradiation with the 415 nm LED described above. The higher
triplet energy of verbenone (3.0 eV) compared to PQO (2.9
eV) and norbornadiene (2.7 eV) results in less efficient TTET,
which explains the need for a longer reaction time (3 h instead
of 1−2 h on the NMR-scale).
The three experiments illustrated by Figure 4 demonstrate

that [Ir(dFN(Me)2ppy)2(BCF)2]
− is well-suited for applica-

tions in demanding TTET catalysis and is able to sensitize
substrates with triplet energies up to 3.0 eV. This is very
uncommon for cyclometalated Ir(III) and other transition
metal complexes.1,2,14 Stern−Volmer luminescence quenching
experiments with [Ir(dFN(Me)2ppy)2(BCF)2]

− and all three

substrates from Figure 4 yielded rate constants ranging from
107 to 108 M−1 s−1 for TTET (Table S2). Control experiments
in the absence of [Ir(dFN(Me)2ppy)2(BCF)2]

− were con-
ducted for all three TTET catalyzed reactions and showed no
detectable product formation after the indicated reaction times
(Figures S45−S48).

Reductive Photocatalysis. As discussed in the section on
the electrochemical properties above, the singly reduced
[Ir(dFN(Me)2ppy)2(BCF)2]

2− complex is expected to be a
powerful reductant (Ered = −2.42 V vs SCE, see Figure 2 and
Table 1). Stern−Volmer experiments with triethylamine
(TEA) demonstrate that the luminescent 3MLCT/3IL excited
state of [Ir(dFN(Me)2ppy)2(BCF)2]

− is reductively quenched
by TEA with a rate constant kq of 1.7 × 105 M−1 s−1 (Figure
S36). Even though this value is rather low, sufficiently high
TEA concentrations in photocatalytic experiments are likely to
favor a mechanism, in which reductive excited-state quenching
by TEA predominates over direct electron transfer from
excited *[Ir(dFN(Me)2ppy)2(BCF)2]

− to the substrate,
particularly for substrates requiring reduction potentials more
negative than −1.59 V vs SCE (see Figure 2). This is indeed
the case for the substrates considered in the following.
In order to rule out possible complex degradation in the

presence of TEA, we recorded UV−vis absorption spectra of
[Ir(dFN(Me)2ppy)2(BCF)2]

− in the absence and the presence
of 1000 equiv of TEA and obtained identical spectra even after
letting the mixture stand for 20 min (Figure S29).
As first photoredox reactions, the debromination of 2-

bromo-4-fluorobenzonitrile and the dechlorination of 2-chloro-
4-fluorobenzonitrile were chosen (Figure 5a). Both substrates
are known to require a reduction potential of at least ∼− 2.0 V
vs SCE for reductive activation.106 Fluoro-substituted sub-
strates were employed for the convenient determination of the
product yield and substrate conversion by 19F-NMR, using 4-
fluorotoluene as an internal standard. Photogenerated [Ir-
(dFN(Me)2ppy)2(BCF)2]

2− formed in the presence of 5 equiv
of TEA was able to dehalogenate both substrates from Figure
5a after a reaction time of 6 h under irradiation with the above-
mentioned 415 nm LED.
Having obtained these encouraging results, we decided to

explore the photochemical deprotection of two tosyl-
substituted compounds (Figure 5b). The tBucarbazole substrate
(tBuCBzTs, Ered ≈ − 2.2 V vs SCE, Figure S31) was successfully
detosylated to tBuCBzH (Figure 5b, top) with high NMR yield
(95%) and conversion (95%) after a reaction time of 3 h. In
contrast, tosyl-protected pyrrole (PyrTs, Ered ≈ − 2.1 V vs
SCE, Figure S31) proved to be a more challenging substrate
(Figure 5b, bottom), even though it has a reduction potential
similar to tBuCBzTs.
Lastly, the photochemical degradation of a lignin model

compound was performed (Figure 5c). The degradation of
lignin is of interest for the production of low molecular-weight
aromatic compounds from biomass; however, conventional
methods for this reaction are energy-intense, and therefore,
significant efforts toward the photochemical lignin degradation
were made in recent years.107−112 After a reaction time of 2 h
with [Ir(dFN(Me)2ppy)2(BCF)2]

− as photocatalyst and TEA
as reductant, the reaction was complete and gave an NMR-
yield of 93% and 66%, respectively, for the two degradation
products (Figure 5c) and a substrate conversion of 100%.
Control experiments in the absence of [Ir(dFN(Me)2ppy)2-
(BCF)2]

− were performed for all photoreductions and resulted

Figure 4. (a) [2 + 2] cycloaddition of norbornadiene to
quadricyclane. (b) [2 + 2] cycloaddition of PQO to CQO. (c)
[1,3] sigmatropic alkyl shift converting verbenone to chrysanthenone.
[a]: 1H NMR yield (conversion in parentheses) determined with the
internal standard trimethyl(phenyl)silane. [b]: isolated yield. [c]: 1H
NMR conversion based on an NMR-scale experiment in CD2Cl2 after
a reaction time of 90 min, determined using the internal standard
trimethyl(phenyl)silane. The label “415 nm” indicates the use of a
commercial LED with the spectral characteristics described in the
main text.
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in only minor (<5%) product formation after the indicated
reaction times (Figures S49−S58).
Sensitized Upconversion with a Biphenyl Annihila-

tor. Given the high triplet energy of [Ir(dFN(Me)2ppy)2-
(BCF)2]

−, we anticipated that it could be used to access highly
energetic singlet excited states of organic fluorophores via
triplet−triplet annihilation upconversion. Visible to UV-A
(320−400 nm) upconversion has already been reported several
times (see Introduction),75−84 but reports of upconversion to
the UV−B (280−320 nm) are very scarce.83,85 A key reason
for this is that the energy of the fluorescent singlet excited state
reachable via upconversion is limited by the triplet energy of
the sensitizers. In combination with [Ir(dFN(Me)2ppy)2-
(BCF)2]

−, the 4,4′-di-tert-butyl-biphenyl (tBuBph) compound
is a well-suited annihilator due to its high triplet energy of 2.84
eV and singlet-excited state energy of 4.25 eV (known values of
unsubstituted biphenyl used as a proxy for tBuBph here).49 The
twofold tert-butyl substitution of biphenyl seemed useful to
limit aggregation and consequent excimer formation,113 which
is usually undesired in photochemical upconversion, because it

lowers the overall energy conversion efficiency as a result of the
lower photon energy emitted by the excimer compared to the
monomer.114

Following excitation of the Ir(III) sensitizer at 355 nm,
triplet−triplet energy transfer (TTET) to the tBuBPh
annihilator occurs with a rate constant of kTTET = 9.8 × 108

M−1 s−1 based on a Stern−Volmer luminescence lifetime
quenching experiment (Figure 6a). This rate constant is a
factor of 19 below the diffusion limit in acetonitrile at 25 °C
(1.9 × 1010 M−1 s−1).49 TTET rates typically approach the
diffusion limit for driving-forces on the order of 0.2 eV or
greater,115 while for the [Ir(dFN(Me)2ppy)2(BCF)2]

−/tBuBph
donor−acceptor couple we estimate a driving-force of 0.15 eV
based on the triplet energies of 2.99 and 2.84 eV. Given an
inherent excited-state lifetime of 13.0 μs for the [Ir(dFN-
(Me)2ppy)2(BCF)2]

− sensitizer (Table 1), a tBuBph concen-
tration of 5.0 mM (as used below in the upconversion
experiments) should therefore result in a TTET efficiency of
99%. Transient absorption spectroscopy confirms that the
excited-state quenching by tBuBph is due to TTET. Specifically,
selective excitation of [Ir(dFN(Me)2ppy)2(BCF)2]

− (10−5 M)
at 355 nm in the presence of tBuBph (5.0 mM), results in a
spectrum (Figure 6b) featuring a prominent absorption band
with a maximum at 360 nm, which is attributable to triplet-
excited tBuBPh due to its strong similarity to the characteristic
absorption spectrum of unsubstituted triplet-excited biphen-
yl.49 By analyzing the decay of this absorption signal, the rate
constant for the first-order decay to the tBuBPh ground state
(kT = 1.7 × 104 s−1) and the second-order rate constant for the
triplet−triplet-annihilation step (kTTA = 1.7 × 1010 M−1 s−1)
can be calculated (see SI, page S35 for details).116 The value
for kTTA is close to the diffusion limit in acetonitrile at 25 °C
(1.9 × 1010 M−1 s−1) and is in good agreement with literature
values of comparable TTA systems.106,116,117

When a 10−5 M deaerated CH3CN solution of [TBA][Ir-
(dFN(Me)2ppy)2(BCF)2] containing 5.0 mM tBuBph was
irradiated with 405 nm light from a continuous wave (cw)
laser, upconverted emission from singlet-excited tBuBph was
observed (Figure 6c). The band maximum of the delayed
(upconverted) tBuBph fluorescence is at 319 nm (3.89 eV),
red-shifted by 0.07 eV compared to the maximum of the
known fluorescence spectrum of unsubstituted biphenyl (313
nm) measured after direct UV excitation.49 Though the anti-
Stokes shift is in principle defined as the energy difference
between absorption and corresponding emission band maxima,
it has become rather common in the field of sensitized triplet−
triplet annihilation upconversion to use the difference between
the excitation wavelength and the maximum of the delayed
fluorescence as a proxy for the anti-Stokes shift.74,118−120 Using
this simplistic approach, we calculate a pseudo anti-Stokes shift
of 0.83 eV for our system (Figure 6d). The fluorescence band
of tBuBPh under upconversion conditions features a main peak
at 319 nm (solid vertical line in Figure 6c) including
progression in an ∼1400 cm−1 mode, leading to two shoulders
at 306 and 333 nm (dashed vertical lines in Figure 6c). From
the high-energy shoulder at 306 nm, the E00 energy of tBuBPh
can be estimated and this analysis yields E00 = 4.05 eV. The
values of 3.89 eV (for the band maximum) and 4.05 eV (for
E00) compare favorably to previously reported high-energy
upconversion systems.83,85

In time-gated emission measurements under upconversion
conditions, an additional emission band centered at 474 nm is
observed after a time delay of 5 μs (Figure S37). We attribute

Figure 5. (a) Hydrodehalogenation of selected aryl halide substrates.
(b) Detosylation of selected substrates. (c) Cleavage of a lignin model
substrate. [a]: 19F-NMR-yield (conversion in parentheses) deter-
mined with the internal standard 4-fluorotoluene. [b]: 1H NMR-yield
(conversion in parentheses) determined with the internal standard
trimethyl(phenyl)silane. The label “415 nm” indicates the use of a
commercial LED with the spectral characteristics described in the
main text.
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this to delayed emission from [Ir(dFN(Me)2ppy)2(BCF)2]
−

caused either by reverse energy transfer from triplet-excited
tBuBPh, or by reabsorption of the upconverted light by
[Ir(dFN(Me)2ppy)2(BCF)2]

−, or a combination of both
effects. Reverse (and uphill) TTET commonly occurs between

donor−acceptor systems in which the triplet energies are fairly
close.121

Photochemical upconversion with the [Ir(dFN(Me)2ppy)2-
(BCF)2]

− (10−5 M)/tBuBph (2.5 mM) donor−acceptor couple
could also be achieved using the internal lamp of a
luminescence spectrometer with an excitation wavelength of
355 nm (Figure 6e). The upconverted emission intensity
under these conditions as a function of excitation density
(Figure 6g) was fitted to a power function of the type f(x) = y
+ a · xb and resulted in b = 2.1, confirming the expected
biphotonic nature of the upconversion process.122 In contrast,
when a CH3CN solution of [Ir(dFN(Me)2ppy)2(BCF)2]

− in
the absence of tBuBPh is excited under the same conditions
(Figure 6f), a linear dependence of the emission intensity on
the excitation density is observed, and fitting to the same
power function yields b = 0.95 (Figure 6g), in line with a
monophotonic process. The low power density of the internal
lamp of the luminescence spectrometer (compared to above-
mentioned cw laser) has the advantage that the quadratic
dependence of the upconverted emission intensity is observed
much more readily compared to when higher excitation
densities are employed.
The upconversion luminescence quantum yield ΦUC was

determined relative to the unquenched sensitizer emission and
amounts to 0.07% (with a maximal theoretical limit of 50%)123

under 405 nm excitation with a cw laser (Figure S40). Even
though this value seems low, it should be noted that
photochemical upconversion to the UV is often ineffi-
cient.77,81,83 A few exceptions exceed ΦUC = 5% based on
nanocrystal photosensitizers,84,124 and one example based on
the combination of an Ir(III) sensitizer with TIPS-naphthalene
(TIPS = 1,4-bis((triisopropylsilyl)ethynyl)) reached a record
value of ΦUC = 20%, though in this case the delayed
fluorescence peaked at substantially longer wavelength (350
instead of 319 nm).75,125

Photostability. Photostability is an important aspect for
many photophysical and photochemical applications. Previous
studies of cyclometalated Ir(III) complexes demonstrated that
this compound class can be relatively photorobust, particularly
in the case of homoleptic tris(cyclometalated) variants, though
systematic investigations seem to be scarce.83,126,127 Isocyano-
borato ligands recently provided Ru(II) complexes with
remarkable photostability, and against this background it
seemed meaningful to explore how stable the [Ir(dFN-
(Me)2ppy)2(BCF)2]

− complex is under visible light irradi-
ation.65 For this purpose, we employed 1H NMR spectroscopy
and followed the integrals of the aromatic signals of
[Ir(dFN(Me)2ppy)2(BCF)2]

− (0.3 mM in CD3CN) under
high-power 415 nm irradiation (5.8 W) over the course of 60
min, once in neat solution and once in the presence of 60 mM
norbornadiene as a triplet acceptor. In the presence of
norbornadiene, no significant change in the integrals of the
NMR signals can be observed up to t = 45 min (upper trace in
Figure 7) and the Ir(III) complex evidently remains largely
intact. In contrast, when the neat solution of [TBA][Ir(dFN-
(Me)2ppy)2(BCF)2] was irradiated under identical conditions,
there is clear evidence for photodegradation as the NMR
signals gradually disappeared and became barely detectable
after 60 min (lower trace in Figure 7; see SI, page S37 for
details).
Evidently, the inherent photostability of the [Ir(dFN-

(Me)2ppy)2(BCF)2]
− complex under these excitation con-

ditions with particularly high photon flux (5.8 W) is rather

Figure 6. (a) Decay of [Ir(dFN(Me)2ppy)2(BCF)2]
− emission at 450

nm in the absence of tBuBph (blue trace) and in the presence of
increasing concentrations of tBuBph (other traces) after 355 nm
excitation of a 10−5 M [TBA][Ir(dFN(Me)2ppy)2(BCF)2] solution in
deaerated CH3CN at 293 K. (b) Transient absorption spectrum
measured after 355 nm excitation of a solution of [TBA][Ir(dFN-
(Me)2ppy)2(BCF)2] (10−5 M) and tBuBPh (5.0 mM) in dry,
deaerated CH3CN at 293 K with laser pulses of ∼10 ns duration.
The signals were time integrated over 200 ns with a time delay of 5 μs
after the laser pulse. (c) Normalized upconversion emission of tBuBPh
(5.0 mM) sensitized by [Ir(dFN(Me)2ppy)2(BCF)2]

− (10−5 M) in
dry, deaerated CH3CN at 293 K after excitation with a 405 nm cw
laser. (d) Normalized prompt emission of the same 10−5 M solution
of [Ir(dFN(Me)2ppy)2(BCF)2]

− as in (c), after excitation with a 405
nm cw laser, but without any tBuBPh (red), and the emission profile of
the 405 nm cw laser (blue). Under these conditions, the emission
band shows somewhat less fine structure; however, the emission band
maximum is at the same position (448 nm) as in panel (f). (e)
Normalized upconversion emission of tBuBPh (2.5 mM) sensitized by
[Ir(dFN(Me)2ppy)2(BCF)2]

− (10−5 M) in dry, deaerated CH3CN at
293 K using different excitation densities. The asterisk (*) marks the
onset to an artifact caused by stray excitation light. (f) Normalized
prompt emission of the same 10−5 M solution of [Ir(dFN(Me)2ppy)2-
(BCF)2]

− as in (e), but without any tBuBPh, using the same series of
excitation densities as in (e). Excitation in (e) and (f) occurred at 355
nm with the internal lamp of the luminescence spectrometer. (g)
Normalized peak emission intensities of tBuBPh and [Ir(dFN-
(Me)2ppy)2(BCF)2]

− as a function of the relative excitation density
based on the spectra shown in (e) and (f). The black lines represent
the best fits to a power function of the type f(x) = y + a · xb. The
exponent b of the optimal fits of both the prompt Ir(III) complex
emission intensity and the delayed tBuBPh fluorescence intensity is
indicated in the figure.
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modest, but improves considerably under conditions in which
the photoactive excited state is deactivated rapidly by
norbornadiene. It seems plausible that the comparatively
long excited-state lifetime of [Ir(dFN(Me)2ppy)2(BCF)2]

−

(13.0 μs) makes this complex more susceptible to photo-
degradation than luminophores with shorter excited-state
lifetimes. For triplet harvesters in organic light emitting diodes,
short-lived excited states are usually desirable exactly for this
reason.128−131 When a suitable substrate is present (which
quenches the excited state and therefore shortens the excited-
state lifetime of the photocatalyst), the photostability is
significantly improved, as seen from the experiment with
norbornadiene. Corroborating, the onset of photodegradation
observed after 45 min in the presence of norbornadiene
coincides with the completion of the photoisomerization
reaction to quadricyclane, as seen from the inset in Figure 7.
Evidently, as the substrate concentration decreases, quenching
of the excited state becomes increasingly inefficient, and
photodegradation sets in. The good photostability of [Ir(dFN-
(Me)2ppy)2(BCF)2]

− under catalytic (TTET) conditions is
further substantiated by the fact that the conversion of
norbornadiene to quadricyclane was performed with a catalyst
loading of only 0.02%. Under these conditions, an NMR-yield
of 92% was obtained after a reaction time of 8 h, corresponding
to a turnover number (TON) > 4500.

■ CONCLUSIONS
Cyclometalated Ir(III) complexes are among the most
frequently employed sensitizers for energy transfer1,2,14,25−29

and photoredox catalysis;31,132−136 and furthermore, they are
of interest as triplet harvesters in organic light emitting
diodes,32,94,96,129,137−140 and as sensitizers for photochemical
upconversion.66,67,75−77,83 In many of these applications, the
energy of the photoactive excited state of the Ir(III) complex is
a crucial factor that can limit the scope of the sensitizer’s
applicability. Though cyclometalated Ir(III) complexes typi-
cally have their lowest electronically excited states at
substantially higher energies than many other transition
metal compounds, the most commonly employed Ir(III)
complexes have excited state energies in the range 2.2 to 2.75

eV, too low for the applications demonstrated herein.31 In this
study, we have successfully applied a new strategy to reach the
limit of 3.0 eV, based on the use of isocyanoborato strong-field
π-acceptor ligands. This has opened new perspectives for
applications in energy transfer catalysis and in triplet−triplet
annihilation upconversion, as demonstrated by a series of light-
driven reactions that crucially rely on a very high triplet energy
and the very uncommon phenomenon of upconversion into
the ultraviolet-B spectral range. The TTET-sensitized reactions
accomplished with the Ir(III) isocyanoborato complex
following excitation at the blue edge of the visible spectrum
are unattainable with common Ir(III) photosensitizers, and to
the best of our knowledge, there exists currently only one
published example of upconversion to an excited state beyond
4 eV.85 This illustrates how metal complex design can open the
door to new photochemical and photophysical reactivities, and
thus complements recent work on new photoactive coordina-
tion compounds with relevance to applications in preparative
(organic) photochemistry and photochemical upconver-
sion.132,141−149

The isocyanoborato ligand strategy furthermore provides
access to a one-electron reduced form of the Ir(III) complex,
which acts as a potent reductant (−2.42 V vs SCE), applicable
to a range of challenging photoreductions including dehaloge-
nations, detosylations, and the degradation of a lignin model
substrate. This one-electron reduced form is accessible via
reductive quenching of the photoactive excited state with
tertiary amines, a process, which for other heteroleptic Ir(III)
complexes induced reduction of an α-diimine ligand, leading to
a new type of complex, which is likely the key catalytically
active species in many iridium-catalyzed photoreductions.150

The isocyanoborato π-acceptor ligands seem to lead to a
comparatively stable one-electron reduced form of the Ir(III)
complex, which directly engages in productive (single electron
transfer) reactions with suitable substrates, rather than
undergoing other conversions that obscure the overall reaction
mechanism. Furthermore, the isocyanoborato coordination
environment leads to good photostability under TTET
catalysis conditions, in which the photoactive excited state
reacts rapidly with triplet acceptors. In this context, our study
illustrates the important difference between the inherent
photostability of a compound (in the absence of any reaction
partners), and its photostability under photochemical oper-
ation, in the presence of substrates. Likely due to the long
excited-state lifetime of 13.0 μs, the inherent photostability of
our Ir(III) isocyanoborato complex is substantially lower than
that of two recently investigated Ru(II) isocyanoborato
congeners, which exhibited much shorter excited-state lifetimes
of 8.6 ns and 1.04 μs. This observation (following a well-
known design principle of triplet-harvesting luminophores in
organic light emitting diodes)129,151 suggests that the types of
very short-lived photoactive charge-transfer excited states,
which are typically accessible in open-shell first-row transition
metal complexes,35,36,147,152−160 could in fact be rather
photostable.
Isocyanoborato complexes of many different transition metal

complexes are in principle synthetically amenable.51−65 With
the borylation reaction occurring in the second coordination
sphere, this key step can be seen as a “late-stage modification”
of cyanido precursor complexes with known photophysical and
photochemical properties. This should simplify the rational
development of many more isocyanoborato complexes with
tailor-made photochemical properties, as illustrated herein on

Figure 7. Main plot: photostability of 0.3 mM [Ir(dFN(Me)2ppy)2-
(BCF)2]

− in deaerated CD3CN solutions upon irradiation with a 415
nm LED (5.8 W) in the presence and absence of 60 mM
norbornadiene. Inset: conversion of norbornadiene to quadricyclane
as a function of time in the same experiment.
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the example of an Ir(III) complex. New types of photoactive
isocyanoborato complexes could therefore open the door to
further advances in organic (triplet) excited-state chemis-
try,14,28,106,117,161−165 artificial photosynthesis,166−170 and
sensing.171−173
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