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A b s t r a c t  

It is shown that the problem whether two labelled place/transition Petri nets (with 
initial markings) are weakly bisimilar is highly undecidable - it resides at least at level 
w of the hyperarithmetical hierarchy; on the other hand it belongs to E~ (the first level 
of the analytical hierarchy). It contrasts with II~ of the same problem 
for trace (language) equivalence. Relations to similar problems for the process algebra 
BPP (Basic Parallel Processes) are also discussed. 

1 I n t r o d u c t i o n  

In the theory of parallelism and concurrency, much effort is devoted to the decid- 
ability questions for various classes of (models of) processes and various notions 
of behavioural equivalences. For natural  reasons, the question of algorithmic 
decidability is among the first ones to be asked when developing automatic  ver- 
ification techniques. 

Although the main result here concerns Petri nets and high undecidability, 
an important  source of motivation can be found in a decidability question for 
the process algebra BPP (Basic Parallel Processes, cf. e.g. [2]). 

Recently, interesting results have been obtained for both BPP and Petri  nets; 
the results concerned two of the central behavioural equivalences, namely the 
bisimulation equivalence (or bisimilarity) and the trace (or language) equiva- 
lence. In fact, BPP can be viewed as a subclass of Petri nets and the processes 
of obtaining the mentioned results for both models have been closely intercon- 
nected. A short survey is contained in the next paragraphs. 
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First we briefly recall a definition of BPP  (the precise definition of Petri nets 
being given in Section 2). 
The abstract syntax of a BPP-expression is 

E ::= 0 I X I a.E I E +  E I EIIE 

The operational semantics is standard - 0 is a nil-process, X is a process 
variable, a.E performs the action a and then behaves like E, the operator + 
means nondeterministic choice and II parallel merging (no communication be- 
tween processes is allowed). A BPP-process is given by a family of equations 
X1 = E l , . . . ,  Xn = En where X1 is the leading variable (the initial state). 

It is easy to verify that, with respect to the "natural" corresponding transi- 
tion systems, BPP can be viewed as a subclass of (labelled) Petri nets - every 
transition has exactly one input place in this case. 

In [2] it is shown in an elegant way that (strong) bisimilarity is decidable for 
BPP. 

Remark. In fact, the decidability was first established for a subclass - the 
normed processes - and later extended for all BPP. Recently, a polynomial algo- 
rithm for the normed BPP has been shown (the complexity for all BPP  remaining 
open); of. [9]. 
Although using different techniques, the results for BPP  resemble very much 
those for BPA (Basic Process Algebra; cf. [3], [8]). 

The decidability result for BPP still left unsolved the decidability question 
for the whole class of Petri nets which had been open for some time. Later 
the question was answered negatively in [12] - bisimilarity is nndecidable for 
Petri nets. As for the trace equivalence, its undecidability for Petri nets has 
been known from [6]; in fact, [12] also provides a more direct proof of this 
undecidability. It is interesting that the trace equivalence is undecidable even 
for BPP; it is shown in [7] by a clever modification of the technique of [12]. 

Remark. In [11], another modification was added - to show undecidability for 
other equivalences in the linear time - branching time spectrum of [5] on BPP. 
On the other hand, decidability results for some finer versions of bisimilarity on 
BPP have been obtained in [14]. 

Allowing nonobservable, internal, actions (commonly denoted by r) ,  weak 
versions of the considered equivalences can be defined. For practice, these are 
more important,  unfortunately the decidability is often affected; instead of finite- 
ly branching transition systems we can get infinitely branching ones and it surely 
makes things less feasible. 

Of course, undecidability for a (strong) equivalence immediately implies un- 
decidability for the relevant weak version. Therefore when being interested 
strictly in decidability/undecidability questions, the most important question 
emerging from the above discussion is that of decidability of weak bisimilarity 
for BPP. 
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It nicely demonstrates a difference between finite branching and infinite 
branching. 
In finitely branching systems, the problem of non-bisimilarity (non-equivalence) 
of two states s, s ~ is usually easier than that of bisimilarity (equivalence). There 
is a natural systematic method exploring all possibilities of constructing a min- 
imal bisimulation relation containing the pair (s, s~). The method resembles 
constructing a (finitely branching) tree in the breadth-first manner (any node 
corresponds to a finite set of pairs). If s,s ~ are non-bisimilar, it will be revealed 
eventually - any leaf of the so far constructed tree will correspond to a (finite) 
relation containing an (obviously) non-bisimilar pair. Thus we get, in fact, a 
finite witness of the non-bisimilarity. Therefore semi-decidability of the negative 
case is clear. 
In the positive ease, a similar finite witness of equivalence often does not exist. 
If it does exist, it is then much more demanding to show it; cf. [2] for the case 
of bisimilarity on BPP or [3] for BPA. 
For the weak bisimilarity on BPP, [4] shows that a finite witness of the positive 
case exists and it is the negative case for which semi-decidability is not clear 
(leaving the decidability question open). In other words, the task to show the 
existence of a finite witness of weak non-bisimilarity for BPP-processes has not 
been accomplished yet. 

Remark. One thing is clear: if the problem should be undecidable (i.e. the 
negative case being non-semidecidable), it can not be shown by reducing the 
halting problem to the negative case, which was, in principle, the method of 
showing the undecidability results mentioned above. 
We should also mention that some decidability results for weak versions of some 
finer equivalences on a subclass of BPP are shown in [14]. 

It brings us back to a closer look at the whole class of Petri nets. In fact, 
we have indicated that the (strong) bisimulation equivalence problem is II1 ~ 
complete - the non-equivalence (the negative case) being recursively equivalent 
to the halting problem (hence E~ Therefore it still could be the 
case that the weak non-bisimilarity is semi-decidable for the whole class of Petri 
nets, which would imply decidability for BPP. It is not unimaginable at first 
sight that non-bisimilarity could be demonstrated in some reasonable sense (by 
a finite witness). Unfortunately, we show here that it is not the case. It turns 
out that the weak non-bisimilarity on Petri nets is not only non-semideeidable 
but is beyond the arithmetical hierarchy (!). It might explain a bit why the 
semi-decidability of weak non-bisimilarity for BPP (which hopefully is the case) 
is not so easy to prove. 

Although the result does not imply the desired decidability for BPP and has 
therefore no direct "practical" consequence, it has some value (as the author 
hopes) at least from the theoretical viewpoint. IIaving estimated the degree of 
undecidability for the weak version of bisimilarity for Petri nets, it is natural 
to ask a similar question for the (weak) trace equivalence. Using some well- 
known results concerning Petri nets, we show here that this problem remains 
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II~ In this sense, the result highlights an aspect of the difference 
between the bisimilarity and the trace equivalence. On the other hand, in case 
of BPP the trace equivalence (in both versions) is II~ but  it seems very 
probable that  the weak bisimilarity is decidable (at least it is in ~0), which shows 
an interesting difference with the situation at Petri nets. It might illustrate the 
power of internal communication in some sense. 

The main result is also completed by an upper bound, which is natural  to 
be looked for when having a lower bound. The problem of weak bisimilarity for 
Petri nets is easily shown to be in ~ (the first level of the analytical hierarchy); 
hence the negative formulation is in II~. Whether  the problem belongs to the 
intersection A~ (i.e. whether it is hyperarithmetical) is left open. 

The paper is organized as follows. Section 2 gives basic definitions and claims 
the results. The relevant proofs are given in Section 3. 

A preliminary version of the paper appeared as the report  [13]. The report  
is self-contained since it includes an appendix describing a needed construction 
of [12]. Here we only refer to [12] omitting the appendix. 

2 Definit ions  and results  

Af denotes the set of nonnegative integers, A* the set of finite sequences of 
elements of A. 

A labelled net is a tuple ~ = (P, T, F, L) where P and T are finite disjoint 
sets of places and transitions respectively, F : (P  x T)  U (T x P )  ~ {0, 1} is 
a flow function (for F ( x , y )  -" 1, there is an arc from x to y; we do not use 
multiple arcs in the paper) and L : T ) A is a labelling (attaches an action 
name - from a set A - to each transition). We can suppose a fixed (countable) A 
containing a special, unobservable, action v, the other actions being observable. 

By a Petri net we mean a tuple N -- (~ ,M0),  where Z is a labelled net 
and M0 the initial marking; a marking M being a function M : P ~ .h/'. (A 
marking gives the number of tokens for each place). A transition t is enabled 

at a marking M, M t )~ ,  if M(p)  >_ F(p , t )  for every p E P.  An enabled 

transition t may .fire at a marking M yielding marking M I, M ~)~ M ~, where 
i ~ ( p )  - i ( p )  - F(p,  t) + F(t ,  p) for all p E P .  
In the natural  way, the definitions can be extended for finite sequences of tran- 
sitions a E T*. 

For any a E A (including v), by M a)~ M~ we mean that  M ~*~ M ~ 

a i ~  for some t with L(t)  - a; by M ~ we mean that  M ~ )~ M ~ for some 
sequence a of transitions, one of them being labelled by a, the others by v (in 

T 
case a = v~ the sequence can be empty; i.e. M ==:~ M for all markings M).  

w w Mi 
In the natural way, we define the relations M :=:~2 and M :::~2 for finite 
sequences w E A*. 
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The sel of (observable) traces (or the language) of a Petri net N - (Z, M0) 
is defined as T ( g )  = {w e (A \ {r})* ] M0 ~ } .  Two Petri nets N1, N2 are 
(weakly) trace equivalent if 7-(N1) = 7"(N2). 

Given two labelled nets E1 = (PI,T1,F~,L1), E2 = (P2,T2, F2, L2) , a bi- 
nary relation R C )~fP1 X .Af P2 is a weak bisimulation (cf. [16]) if the following 
conditions hold for all (M1, M2) E R : 

a a 
- for every a and M~ s.t. M1 ~ ,  M~, there is M~ s.t. M2 ~ 2  M~, where 

! ! 
(M1, M6) E R 
and conversely 
- for every a and M~ s.t. M2 ~ 2  M6, there is M~ s.t. M1 _2_~, M~, where 

I I M6) R. 

Two Petri nets N1, N2 are weakly bisimilar if there is a weak bisimulation 
relating their initial markings. 

(If the relation ~ is replaced by a ~, we get the notion of strong bisimilar- 
ity.) 

Let T E  denote the set of (Gbdel numbers, codes or notations of) all pairs of 
Petri nets (NI, N2) which are (weakly) trace equivalent. N T E  will denote the 
set of all (weakly) trace non-equivalent pairs. 
Similarly, let W B  denote the set of all pairs of Petri nets (N1, N2) which are 
weakly bisimilar and N W B  the set of all weakly non-bisimilar pairs. 

The next theorems show the position of the defined sets in the (hy- 
per)arithmetical and analytical hierarchies, the details of which can be found 
e.g. in [1]. 

T h e o r e m  1. 

N T E  is E~ (i.e. complete among the recursively enumerable sets); 
hence T E  is II~ 

T h e o r e m  2. 

WB is in E~ (the 1st level of the analytical hierarchy); hence NWB is in II~. 

T h e o r e m  3. 

W B and N W  B reside at least at the level w in the hyperarithmetical hierarchy. 

Theorem 1 is established using some well-known results regarding 
(un)decidability in Petri nets. 

The upper bound of Theorem 2 is established by using directly the definition 
of weak bisimilarity. 

The proof of the lower bound in Theorem 3 is more involved. It shows an 
algorithm which, given a 1st order formula r of the standard arithmetic structure 
(Af, 0, S, +, .), constructs two Petri nets which are weakly bisimilar iff r is true. 
This yields the result since the set of true 1st order sentences of arithmetics lies 
at level w in the hyperarithmetical hierarchy (cf. e.g. [1], p. 560). 
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3 P r o o f s  

We start with the proof concerning the trace equivalence. 

P r o o f  o f  T h e o r e m  1. 

It is well-known that  the halting problem is E~ Since it is recur- 
sively reducible to N T E  (via Hilbert's 10th problem as in [6] or directly as in 
[12]), it suffices to show that  it is semi-decidable, given two Petri nets N1, N2, 
whether T ( N 1 )  # T ( N 2 ) .  

The semi-decidability follows immediately from the decidability of the prob- 
lem T': 

Instance:  a Petri net N and an (observable) sequence w. 
Question:  Is w E T ( N )  ? 

We can then generate all finite (observable) traces and stop when reaching a 
sequence belonging to one of the sets T(N1), T(N2) and not belonging to the 
other. 

The decidability of the problem P can be shown by various ways using some 
well-known results from Petri net theory. We outline one of these ways. 

To the net N we can add a finite control unit whose states determine which 
transitions are allowed to fire next; it simplifies our considerations but, of course, 
it could be modelled by a modification directly in the net N (cf. e.g. [10]). In our 
case, for w = ala2 �9 �9 �9 a,~, the control unit will have states ql, q2, �9 . . ,  qn+l, where 
ql is the initial one. Each qi (i = 1, 2 , . . . ,  n) only allows transitions labelled by 
r or hi; any r-transition leaves the control unit in the (current) state qi whereas 
any al-transition moves it into the (next) state qi+l. Then it suffices to ask 
whether qn+l is reachable, which is decidable (cf. [15]). 

(In fact, we do not need the decidability of reachability. A technique using 
the Karp, Miller teachability tree, related to the coverability problem, would 
suffice; cf. e.g. [18] for definitions.) 

We continue with a short proof of the upper bound for W B .  

P r o o f  o f  T h e o r e m  2. 

By definition, 

El 

(the code of) a pair (El, M1), (E2, M2) is in W B  

iff 
there is a set X _ N "rl x Af r2 (where ri is the number of places in Ei) such that  

(M1,M2) E X  A 
h v(~, y) e x [ VaVx' ( (x =:::~,-~. x') , 3v'(y =~s~ v' ^ (,r r ~ x )  ) ] A 
A v(~:, y) e x [ v,:,vr ( (y =:%~ v') ,3x'(~ =:%~, ~' A (~', r ~ X) ) ] 

where Va means for all a which occur in E 1 and/or  E2. 
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Because the relation ~ surely is arithmetical (it is even recursive due to 
the decidability of the teachability problem), it can be easily verified that  there 
is a 2nd order formula r X) with one free individuum variable x, one free set 
variable X and with no set quantifiers such that for all (codes) c E N': 

c ~ WB ~ 3Xr X) 

Thus the desired upper bound is established. El 

Now we prove Theorem 3. 

The main idea lies in showing a certain (algorithmic) construction CON'S 
which can be used for any Minsky counter machine C ([17]) with an even (for 
convenience) number of (nonnegative) counters cl, c2 , . . . ,  c2n; the construction 
yields a pair of Petri nets N1, N2 such that 

N1, N2 are weakly bisimilar 
iff 

it is true that  qxlvx2. . .  3X2n-lVX2nm!C(xl, x 2 , . . . ,  z2n) 

By the notation --~!C(xl, x2, . . . ,  x2,) we mean that  C does not halt for the input 
counter values Xl~ X2~..., X2n. 

When we show the construction CONS, the claim is obvious: 

P r o o f  o f  T h e o r e m  3. (supposing the construction CONS) 

Given any 1st order formula r of the standard arithmetic structure 
(N', 0, S, +, .), we can transform it into an equivalent formula in the form 
3xlVx2..  �9 3x2n-lVX2nr x2, . . . ,  x2n) for some n, r being quantifier-free. (It 
can be accomplished by a standard transformation into the prenex normal form 
and by using dummy variables.) 

Formula r is, in fact, a recursive predicate and it is a technical routine to 
construct a counter machine C with 2n counters such that  for all xi ,  x2, �9 �9 �9 x2n 

--,!C(xl,x2,... ,x2,~) iff r  is true 

(in fact, C could need some additional counter(s); in this case we could use more 
dummy variables and then use the respective counters as the additional ones). 

For C, we can construct N1, N~ by our (promised) construction CON'S and 
we have 

r is true in (N', O, S, +,  .) 
iff 

3xlVz2.. .  3x2,-1Vx2nr x2 , . . . ,  x2,) is true in (N', O, S, +,  .) 
iff 

3ziVx2 . . .  3x2,~-lVx2,~'-,!C(xi, x2, �9 . . ,  z2,,) is true 
iff 

N1, N2 are weakly bisimilar 

by which the proof is finished. 
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Figure 1: 

[] 

Now we have to describe the construction C O N S .  

As a basis, we use a result from [12]. It shows a construction which, given 
a counter machine C with m counters, yields two Petri nets N C and N c (cf. 
Fig.l)�9 The nets have the same static structure; places cl, c2 , . . . ,  cm for counters, 
a "start" place (the upper one in Fig�9 two special places (drawn inside the 
box) and some other places (and transitions, of course)�9 They only differ in the 
(predefined) initial marking which is zero except for the two special places (as 
shown in Fig.l).  

Remark�9 By labelling the transitions in N c (and hence also in N C) no 
r-labels are used; therefore weak and strong bisimilarity coincide in this case. 

We do not describe details of the construction, which can be found in [12] or 
in the appendix of [13]. They are only necessary for checking the proof of the 
following (basic) proposition. 

P r o p o s i t i o n  B P  

There is an algorithm which, given any counter machine C, constructs two Pelri  
nets N ~ ,  N C, each containing a designated start place and places Cl, c 2 , . . . ,  Crn 
where rn is the number of counters of C, such that: 
for  any x l Xrn and x] , . . i i f  we put a token in lhe start place of both N C , . . � 9  �9 , Xrn, 

�9 , . . . ,  ~ tokens in and N C, X l , . . . , X  m tokens in places c l , . .  Crn of  N F and x i ,  Xrn 
Cl , . �9  era of N C respectively then the resulting nets are (weakly) bisimilar iff  
xi = x~ for all i, 1 < i < m, and ~ ! C ( x i , . . . , x m ) .  

P r o o f .  

If we considered the case with the same input counter values only (xi = x~ for 
all i), the construction from [12] would be the desired algorithm, in fact. 

When a counter machine C has different computations for any different inputs 
i then an easy inspection of the construction of [12] X l , . . . , X r n  and x ~ , . . . , x m  
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shows that  N C and N C are nonbisimilar when starting with different counter 
values (Player 1 in the below described bisimulation game forces the situation, 
when the counter to be tested is zero in one net and nonzero in the other; i.e. 
in one net a transition, with its unique label, is enabled while in the other net 
not). Therefore for such a machine C, the construction of [12] is sufficient again. 

To prove the proposition completely, it suffices to realize that  for any C we 
can construct the following C ~ with an additional auxiliary counter: C ~ starts 
with "moving" the value of each counter, successively, into the auxiliary counter 
and back and then computes like C. Therefore C ~ really has different computa- 
tions for any different inputs (and is equivalent to C w.r.t, halting). Hence the 
nets N c '  and N C' in the "original" sense of [12], with the place for the auxiliary 
counter viewed as "internal", can be taken as N C, N C in our proposition. [] 

For describing and verifying CONS, some game terminology will be useful. 
First we recall a natural  definition of a bisimulation game (cf. e.g. [19]). 

(Weak} Bisimulation Game 

1. Prerequisities 
There are two players, Player 1 and Player 2, and a pair of Petri nets 
N1, N2 (as the "playboard").  

2. Rules 
Player 1 chooses one of the nets and changes the marking (by firing a 
sequence of transitions) according to the relation :=~ for some a. 
Then Player 2 replies by changing the marking in lhe olher net according 
to ~ for the same a (if it is possible). 
Again, Player 1 chooses one of the nets ..., Player 2 replies ... etc. 

3. Result 
The player who has no possible move (being his turn) loses; the other player 
wins. The case of an infinite run of the game is considered as successful 
for Player 2 (he defends successfully). 

It is not difficult to see that  Player 1 has a winning strategy if and only if N1, N2 
are not weakly bisimilar. 

In the rest of this section, we suppose a fixed counter machine C with 2n 
counters cl, c2, . . . ,  e2n. Let us now consider another game. 

Game G (for Player 1 and Player 2) 

a~ Board: Petri nets N c and N c (of. Fig. i)  

b~ Rules: 

1. First, there are 2n special moves: 
- Player 2 begins and puts an arbitrary number of tokens xl in the 



358 

places cl in both nets (the same value in both nets), 
- Player 1 continues and puts an arbitrary number of tokens x2 in 
the places c2, 
- Player 2 continues setting the value of c3, 

- Player 1 sets the value of c2n. 

2. After these 2n moves, a token is put in the start place of N c as well 
as in the start place of N2 c and the bisimulation game starts (Player 
1 chooses ... ). 

Proposition BP ensures that  Player 1 has no winning strategy in the game 
G (in other words: Player 2 has a defending strategy) iff it is true that  
3xlVx2. . .  3x2~_lVx2,-~!C(xl, x2 , . . . ,  x2.). 

In fact, g(gAf$ will yield Petri nets N1, N~ such that  the game G on N~,  
N C can be simulated by playing the bisimulation game on N1, N2. These Petri 
nets will be based on (more copies of) N C, N2 c.  Any concrete run of the game 
G on N c ,  N2 c will correspond to a run of the bisimulation game on N1, N2. 
There will be runs on N1, N2 which do not correspond to runs on N1 e,  N2 e but 
it will be shown that  neither of the Players can get any advantage by causing 
such runs. In this sense, the "external" rules of G for the first 2n moves on N c ,  
N2 c are inherently present in the bisimulation game on N1, N2. Let us remark 
that  setting a counter value will be accomplished by r-transitions, which is their 
"only" use. 

Now we show an inductive construction, for j = 2n, 2n - 1 , . . . ,  1, 0, of Petri 
nets N L,  Nj n (L for "left", R for "right"). N0 L, No n will be the desired N1, N2 

(the output of COA/'S). Intuitively, (starting) the pair N L,  Nj n corresponds to 
the situation in the game G where j counters have been set. 

We illustrate the construction in figures where we use broken arrows leading 
from a place to a (sub)net; the meaning is explained in Fig.2. Such an arrow 
leading from a place r to a (sub)net ~ and being labelled by a subset of places of 

denotes the fact that  there are special r-labelled transitions; r is a "run-place" 
for these transitions and firing a sequence of them allows to add (or to subtract) 
an arbitrary - but the same for all - number to (or from) all places in the subset. 
Fig.2 illustrates it for a 2-element subset. 

N L and Nj n will contain more "copies" of (places corresponding to) counters. 
By labelling a broken arrow by c2k+1, for example, we understand that  the label 
c2k+1 stands for the set of all copies of the counter c2k+1 in the target subnet. 

The (i,,duetive) co,,stT,,etio,, o/ g] and Nf 

1. Let NLn be N C and let N2Rn be N2 c.  

2. For an odd j = 2k + 1, NL+I, N~+ 1 are shown in Fig.3. (NLk+I contains 
N2~+1 as a subnet). 
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r 

r 

Figure 2: Meaning of broken arrows 

3. For an even j = 2k, NL2k, N ~  are shown in Fig.4. (N~ contains NLk as a 
subnet). 

The  action a in the figures is observable (not r) .  By the "start place" of N L (or 

Nil)  we mean the upper place in the figure. 

Consider now the bisimulation game on the nets N L and NoR with a token 
in the start  place of both - and zero elsewhere with the exception of the special 
(internal) places of copies of N1 c ,  N f  (recall Fig.l) ,  which are subnets of the 
nets being considered. 

Notice that ,  within any move, none of the Players has any reason for firing 
a r-sequence only or for adding some r-sequence after firing an a - the results 
with and without such a v-sequence are obviously weakly bisimilar (the effect 
of such a sequence can be achieved or "undone" freely by a r-sequence starting 
the next move). Therefore we can suppose the beginning of the game as follows: 
Player 1 fires some r-sequence and an a-transition in one net, Player 2 replies 
with firing a r-sequence and an a-transition in the other net etc. - after 2n such 
moves of Player 1 (and 2n answers of Player 2), two from the copies of N~ ,  g ~  
are "started" (with some input values determined by previous r-sequences). 

Now it suffices to prove the following propositions P j ,  j = 2n, 2 n -  1 , . . . ,  1, 0. 
P0 shows that  N L, No R are really our "desired" N1, N2 (the output  of gOAlS 
relevant to our fixed counter machine C). We again deal with the cases "j even" 
and "j odd" separately. 

P r o p o s i t i o n  P2k 

F o r a n y x l , X 2 , . . . , x 2 k  andx~,x~2, . . . ,x2k w h e n w e p u t a t o k e n i n t h e s t a r t p l a c e  
of both N ~  and N ~ ,  x l , x 2 , . . . , x 2 k  tokens in all copies of c l , c2 , . . . , c2k  in NLk 
and ~ i . x ~ tokens in all copies of cl ,c2, .  .,c2k in N ~  respectively then X l , ~ 2 , "  " ,  2k 
the resulting nets are weakly bisimilar iff xl = x~ for all i = 1 , 2 , . . . , 2 k  and 
3x2k+lW2k+2. . .  3z2 , - lW2,-~!C(~1,  x2, �9 �9 �9 x2,) .  
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Proposition :P2k+l 

For any Xl ,X2,  . . . , x 2 k ,  any x ' l , x '2 , . . . , x '2  k and any x2k+l, when we put a token 
in the start place of  both N2Lk+I and N R 2k+l, x l , x 2 , . . . , x 2 k  tokens in all copies 

O f  C l , C 2 ,  . . . , C2k in N n2k+l' x~ ,x~ , .  . . ,  x2 tokens in all copies of  cl ,c2,  �9 �9 �9 ,c2k 
in R N~k+l respectively and x2k+l tokens in all copies o f  c2k+l in N L + I  then the 

i f o r  all i = 1,2, 2k and resulting nets are weakly bisimilar if f  xi = x i . . . ,  

Vz2k+23x~k+3Vx2k+4... 3x2,-iVx2,-~!C(xl,  z 2 , . . . ,  z2~). 

First note that  the base case, Proposition P2n, follows immediately from 
Proposition B P .  (Recall that  NL, is N C and N ~  is Nc . )  Therefore to prove :P2k 
(P2k+l), we can suppose that  :P2k+�92 (P2k+2) holds. We start with Proposition 
:P2k since it is a bit easier. 

P r o o f  o f  P r o p o s i t i o n  7)2k 

Consider NLk and N2~ , k < n, (cf. Fig.4) with a token in the start place of both 
andxl ,X2,  , x2k tokens in all copies of  cl, c2, . . , c 2 k i n N L k a n d  ' ' . x' . . . .  ; g l ~ ; g 2 ~  " "~ 2 k  

tokens in all copies of cl, c2 , . . . ,  c2k in N ~  respectively. 

If xi # x~ for some i, 1 < i < 2k, then Player 1 can "start" N ~ +  1 firing the 
"left" a-transition in N ~  after which Player 2 is forced to start NLk+I - but not 
having the possibility to change the inequality xi # x~, he reaches a "situation" 
which is non-bisimilar due to Proposition P2k+i. 

' for a l l i ,  1 < i < 2k. If Player 1 wants to win, he Now suppose x/ = x/ _ _ 
has to choose the left a in N2~ - by choosing another a, Player 2 could ob- 
viously reach the identical situation in both nets (the same "active" subnets). 
Recall that  it has no sense for Player 1 to add a r-sequence and note that  
values of Cl, c2 , . . . ,  c2k remain unchanged in (now active) N2~+l. Player 2 an- 
swers by firing a in NLk preceeded by setting an arbitrary value x2k+l in (all 
copies of) c2k+~ in NLk+I (which now becomes active). If there is some x2k+l 
such that  VZ2k.l-2~;g2k+3VX2k+4... ~Z2n_l~X2n--n!C(zl, z 2 , . . .  , X 2 n  ) then Player 
2 could choose such x2k+l and reach a bisimilar situation; otherwise, no mat-  
ter what he sets in c2k+1, the resulting situation is non-bisimilar (both variants 
follow from Proposition P2k+l). [] 

P r o o f  o f  P r o p o s i t i o n  ~O2k+l 

Consider NLk+I and R N~k+l, (cf. Fig.3) with a token in the start place of both, 
x l ,  x 2 , . . . ,  x2~ tokens in all copies of cl, c 2 , . . . ,  c2k in NLk+I, x~, x~ , . . . ,  x~k to- 
kens in all copies of cl, c2 , . . . ,  c2k in N ~ +  1 respectively and x2k+l tokens in all 
copies ofc2k+l in L g~k+l" 

for some i, 1 < i < 2k is similar to that  in the proof The case with xi # x i 
for P2~. 

for all i, 1 < i < 2k. It is clear that  if Player 1 wants to Now suppose xi = x i 
win, he has to choose the left a - now in NL~+I, thus starting NLk+2. But before 
this starting he can set any value x2~+2 in (all copies of) c2~+2 in NL+~. Player 
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2 answers in R N~+I  by setting the same values of (all copies of) c2k+1 and c2k+2 
in N~+ 2 as are set in N~+  2 (in fact, Player 2 sets the same value of c~k+l as 
he chose in the "left" net in the previous move and sets the same value of c2k+2 
as Player 1 has just chosen); note that if he had not set the same values, he 
would have reached a nonbisimilar situation due to Proposition P2k+2. If now 
for all x2k+2 it holds that 3X2k.l.3VX2k+4...3x2n_lVX2n~!C(xl, x 2 , . . .  , X2n ) we 
have surely arrived at a bisimilar situation; otherwise Player i could choose some 
x2k+2 which ensures arriving at a nonbisimilar situation (again due to induction 
hypothesis/)2k+2). [] 

Thus we have finished the description and the correctness proof for the con- 
struction COALS and we are done. 
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