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High variability of Blue Carbon 
storage in seagrass meadows at the 
estuary scale
Aurora M. Ricart1,2*, Paul H. York3, Catherine V. Bryant3, Michael A. Rasheed3, 
Daniel Ierodiaconou4 & Peter I. Macreadie4

Seagrass meadows are considered important natural carbon sinks due to their capacity to store organic 

carbon (Corg) in sediments. However, the spatial heterogeneity of carbon storage in seagrass sediments 
needs to be better understood to improve accuracy of Blue Carbon assessments, particularly when 
strong gradients are present. We performed an intensive coring study within a sub-tropical estuary to 

assess the spatial variability in sedimentary Corg associated with seagrasses, and to identify the key 
factors promoting this variability. We found a strong spatial pattern within the estuary, from 52.16 mg 
Corg cm−3 in seagrass meadows in the upper parts, declining to 1.06 mg Corg cm−3 in seagrass meadows 

at the estuary mouth, despite a general gradient of increasing seagrass cover and seagrass habitat 
extent in the opposite direction. The sedimentary Corg underneath seagrass meadows came principally 

from allochthonous (non-seagrass) sources (~70–90 %), while the contribution of seagrasses was low 
(~10–30 %) throughout the entire estuary. Our results showed that Corg stored in sediments of seagrass 

meadows can be highly variable within an estuary, attributed largely to accumulation of fine sediments 
and inputs of allochthonous sources. Local features and the existence of spatial gradients must be 

considered in Blue Carbon estimates in coastal ecosystems.

Seagrass ecosystems are among the most signi�cant natural carbon sinks worldwide, since they can sequester sig-
ni�cant amounts of carbon, store it as organic carbon (Corg) in the sediments for long periods of time, and have a 
worldwide distribution1–3. It is estimated that seagrass ecosystems store globally up to 19.9 petagrams (Pg) of Corg 
in sediments2, or between 4.2 and 8.4 Pg of Corg from a more conservative approach2, where Corg could be stored 
in sediments for hundreds of years and even millennia4.

Due to the high mitigation potential for seagrass ecosystems to help o�set carbon dioxide (CO2) emissions, 
there has been a major e�ort in recent years to improve the accuracy of estimates of carbon stored in seagrass sed-
iments, and so, include seagrass ecosystems within greenhouse gases (GHG) abatement schemes5,6. Consequently, 
an increasing number of studies have attempted to quantify sedimentary Corg stocks associated with seagrass 
meadows from direct measurements7–9, demonstrating an enormous variability in the seagrass sedimentary Corg 
stocks reported worldwide.

Variability of sedimentary Corg stocks has been associated with multiple interrelated biological and environ-
mental factors: type of seagrass species7, depth and light availability10,11, landscape con�guration12, physical dis-
turbances13, wave height and turbidity14, and even faunal presence such as bioturbators and top predators15,16 
Most of these studies highlighted the type of carbon sources and the sediment grain size as the main factors 
in�uencing carbon storage in seagrass sediments, suggesting that the processes a�ecting these factors explain the 
high variability found in seagrass sedimentary Corg stocks17.

Variability in seagrass sedimentary Corg stocks has been described at a range of spatial scales: from cm and 
meters, at the seagrass patch and meadow scale18–20 to bioregions and latitudinal scales7,9. Studies at small scales 
(up to ~1′s km) have shown how sedimentary Corg can be spatially distributed inside seagrass meadows18,20,21. 
However, in studies at higher spatial scales (~100′s to ~1000′s km), comparisons and estimates are usually made 
based on a relatively low number of sediment cores from each site22–24, therefore, not accounting for the potential 
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spatial variability in seagrass sedimentary Corg stocks among meadows in the same area. Just a few studies focus 
on the variability at intermediate spatial scales (~10′s km), comparing among seagrass meadows within a local 
system14,25,26, such as estuaries, where seagrasses can make up a large proportion of available habitat27.

Estuaries are dynamic transition zones acting as pathways for the transfer of sediments and organic materials 
from land to the sea. Estuaries are characterized by a high variability in geo-morphology, and the presence of 
spatial gradients, in�uenced by large tidal cycles, longer water residence times and poorer mixing compared to 
the open ocean. Carbon �uxes to estuarine sediments can be conceptualized in two main axes28. �e horizontal 
axis is determined by a hydrodynamic control, exerted between the river and the ocean and/or following estuary 
geo-morphology, where terrestrial carbon is directly delivered and rapidly deposited in the sediments29, thus cre-
ating a strong spatial gradient of Corg in sediments from the upper parts of the estuary to the ocean. �e vertical 
axis is determined by a biological control, where Corg in sediments is the result of direct deposition and burial of 
in situ photosynthetic production between the surface (i.e. phytoplankton) and the benthos (i.e. seagrasses and/
or algae if present). �e prevalence of one control or the other will largely determine the magnitude and origin 
of Corg stocks in the sediments within estuaries, and also its spatial distribution, thus, expecting a more homoge-
neous spatial distribution of Corg in sediments of seagrass meadows with a prevalence of biological control, and a 
more heterogeneous distribution where hydrodynamic control dominates.

Variation also exists among and within estuaries, in terms of turbidity and water �ow, which may determine 
seagrass meadows’ habitat extent or landscape con�guration30,31 and also species composition and structural 
traits, such as shoot density and cover32. Other coastal vegetated habitats, such as mangroves and saltmarshes can 
be present in estuaries also contributing to Corg stocks33,34 and to seagrass sedimentary Corg stocks35. Variation is 
also re�ected in sedimentation rates, which can be in�uenced by seagrass canopies trapping particulate organic 
materials, thus decreasing turbidity and increasing sedimentary Corg stocks36. Some of these factors may deter-
mine spatial patterns of Corg storage in sediments of seagrass meadows. However, despite the large number of 
studies that have appeared recently providing empirical evidence of processes explaining Corg storage in sea-
grass sediments, there are a lack of studies providing the spatial component needed to improve accuracy of Blue 
Carbon assessments, particularly at the within estuary scale. �e current work aimed to contribute to under-
standing the spatial variability of Corg storage in seagrass sediments by providing a comprehensive assessment of 
the spatial distribution of sedimentary Corg stocks and carbon sources in seagrass meadows within a coastal plain 
estuary and exploring the site-speci�c factors driving the patterns found.

We expected that sedimentary Corg storage in seagrass meadows within the estuary will present a high spa-
tial heterogeneity due to the presence of spatial gradients of environmental and biological factors. �erefore, 
we investigated how sediment Corg content (%), Corg stocks (mg Corg cm−3) and carbon sources (δ13C) vary as a 
function of seagrass cover, meadow extent or landscape con�guration (hereina�er “meadow type”), sediment 
particle size, water turbidity and the proximity to mangroves, as the main environmental and biological factors 
present within the estuary studied that have been already described to be a�ecting Corg storage in seagrass sedi-
ments12,14,26. Speci�cally, we hypothesized that (1) seagrass sedimentary Corg storage will increase with seagrass 
cover and will be higher in continuous meadows due to a greater accumulation of seagrass carbon sources and 
�ne sediments; (2) proximity to mangroves and a higher water turbidity will increase sedimentary Corg storage 
due to higher contribution of allochthonous carbon sources.

Results
All sediment parameters and environmental and biological drivers are summarized in Table 1. �e sediment Corg 
content in seagrass meadows within the estuary ranged from 0.08% to 6.01%, and Corg stocks ranged from 1.06 
mg Corg cm−3 to 52.16 mg Corg cm−3, where in both cases the lowest values were found in seagrass meadows at the 
mouth of the estuary and the highest values in seagrass meadows at the upper estuary reaches. Values of δ13C were 
in general highly depleted along the estuary, from −18.32‰ to −26.20‰, with enriched (more positive) values 
in sediments of seagrass meadows at the mouth of the estuary and more depleted values in sediments in the upper 
estuary. Similar patterns were found at all depths analysed. All three sediment carbon variables assessed presented 
spatial autocorrelation on the original data (Moran I test p < 0.01; Supplementary Table S1). Sediment dry bulk 
density ranged from 0.38 g cm−3 to 3.08 g cm−3, with the lowest values in seagrass meadows at the upper parts of 
the estuary and the highest in seagrass meadows at the mouth. �e proportion of �ne sediments (<63 µm) ranged 
from 3.16% to 93.92%, with the lowest values in seagrass meadows at the mouth of the estuary and the highest in 
seagrass meadows at the upper estuary.

�e non-spatial GLS models (except those with meadow type as explanatory variable and those assessing 
Corg (%) with proportion of �ne sediments) presented spatial autocorrelation on the residuals (Moran I p < 0.01, 
Supplementary Table S2), showing that the explanatory variables were not removing the e�ect of spatial depend-
ence among samples, and that error correlation structures were then necessary. All the spatial GLS models, except 
some cases assessing δ13C in core section 1–3 cm, did not present spatial autocorrelation in the residuals (Moran 
I p > 0.01, Supplementary Table S2). We will therefore describe just the results from spatial GLS models when 
spatial autocorrelation was removed by the correlation structure (Table 2).

�e Corg (%) content in the sediment for all core sections was positively related with the proportion of �ne 
fraction of sediments (Fig. 1a, p ≤ 0.02, Table 2). �e Corg stocks (mg Corg cm−3) in the sediment for all core sec-
tions were signi�cantly related to meadow type (p ≤ 0.02, Table 2). �e highest Corg stocks were associated with 
continuous meadow types and patchy meadows, although there was a high variability present in patchy meadows 
as shown by the model estimates’ standard errors and con�dence intervals (Supplementary Table S3, Fig. 1b). �e 
δ13C values in the sediments for all core sections were signi�cantly related to meadow type, turbidity and seagrass 
cover (p ≤ 0.01, Table 2). �e most depleted values were associated with patchy meadows (Fig. 2a) and to high 
water turbidity (Fig. 2b); and these were positively related with seagrass cover (Fig. 2c).
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�e mixing models applied indicated that allochthonous, non-seagrass, sources were the most important 
source of sediment Corg (contribution range from 58% to 92%; Table 3), followed by seagrass (contribution range 
from 8% to 42%; Table 3). In general, seagrass presented a minor contribution to sedimentary Corg stocks along 
the estuary (~8 mg Corg cm−3) (Fig. 3), although this contribution increased in the lower regions of the estuary 
(up to ~20 mg Corg cm−3), coincident with the presence of the largest seagrass meadows in the estuary (Table 1). 
�e contribution from adjacent habitat sources and marine algae was higher (~35 mg Corg cm−3 on average) and 
also decreasing along a gradient from the upper (with up to ~92 mg Corg cm−3) to the lower parts of the estuary 
(Fig. 3).

Predicted seagrass Corg stocks within the estuary were �ve times higher in the upper regions than in the lower 
regions, with Corg stocks ranging from 25 Mg Corg ha−1 to 5 Mg Corg ha−1 in the �rst 10 cm of sediment (Fig. 4).

Discussion
�e distribution of sedimentary Corg storage in seagrass meadows within the Port Curtis estuary, Queensland, 
Australia, was spatially heterogeneous, following a general pattern of higher Corg accumulation in sediments of 
seagrass meadows in the upper reaches of the estuary than in seagrass meadows at the estuary mouth. Contrary 
to our expectations, seagrass sedimentary Corg content (%) or Corg stocks (mg Corg cm−3) did not increase with 
seagrass cover. Although, Corg content (%) was signi�cantly related with a higher proportion of �ne sediments 
and sedimentary Corg stocks (mg Corg cm−3) were related with the meadow type. Water turbidity was related with 
carbon sources, as well as seagrass cover and meadow type. �us, a higher seagrass contribution was found in 
sedimentary Corg in continuous meadows, which also presented higher seagrass cover and low water turbidity. 
Despite this, the contribution from seagrasses (as a source) to Corg stored in sediments was still very low through 
all seagrass meadows in the estuary. Overall, sedimentary Corg storage in seagrass meadows within the estuary 
studied seems to be governed by the accumulation of �ne sediments and allochthonous carbon sources along a 
gradient from land to the ocean, suggesting that these patterns should be considered when quantifying Corg stocks 
at similar scales.

Sedimentary Corg beneath seagrass meadows in the upper parts of the estuary, were more than ten times 
higher than in the lower estuary. �e highest values in the upper estuary are comparable to those from long-lived 
seagrass species of the Posidonia genus, while values for the same seagrass species (Zostera muelleri) in the lower 
estuary are comparable to other fast-growing seagrass species7 including those from estuaries within the same 
region14,37. �e strong spatial gradient on sedimentary Corg stocks in seagrass meadows exerted from the upper 
to the lower estuary suggests that the estuary studied is governed by a strong hydrodynamic control of carbon 

Site

Environmental and Biological drivers Sediment parameters

Seagrass species 
and number of 
cores sampled in 
brackets

Seagrass 
cover 
(%)

Meadow 
type

Turbidity 
level

Distance to 
mangroves 
(m) <63 µm (%)

DBD  
(g cm−3) Corg (%) δ13C (‰)

Corg stocks 
(mg Corg cm−3)

Redcli�e
Z. muelleri (1); 
H. ovalis (1); H. 
decipiens (1)

0–1 patchy high 140–140 80.17 85.19 0.38 0.87 2.81 6.01 −26.00 −24.46 12.91 52.16

Black Swan Z. muelleri (3) 0–10 patchy high 200–300 27.82 75.92 0.86 1.48 0.87 2.92 −25.67 −24.72 11.26 35.58

Fishermans 
Landing

Z. muelleri (2); H. 
ovalis (1)

0–1 patchy medium 515–565 47.16 85.47 0.82 1.47 0.44 2.51 −25.37 −23.32 4.60 25.11

Channel Islands Z. muelleri (3) 5–20 patchy medium 100–200 8.29 35.60 1.25 2.97 0.28 2.03 −25.09 −22.51 4.55 31.81

Wiggins Island Z. muelleri (3) 0–10 patchy high 610–680 50.62 73.73 0.90 1.45 0.19 0.99 −24.10 −22.99 2.08 10.79

Grahams Creek H. decipiens (3) 0–5 patchy high 35–35 56.37 93.92 0.71 1.04 1.50 4.55 −26.20 −25.29 11.61 33.84

Pelican Banks 
South 1

Z. muelleri (3) 0–15 continuous medium 3500–3500 9.49 12.47 1.38 2.12 0.39 1.45 −22.07 −20.90 7.07 21.62

Pelican Banks 
South 2

Z. muelleri (2); H. 
ovalis (1)

10–20 continuous medium 3400–3400 7.73 11.56 1.37 1.93 0.37 2.08 −21.83 −19.11 5.21 34.57

Pelican Banks 
North 1

Z. muelleri (3) 30–65 continuous low 1230–1230 13.69 16.55 1.13 1.83 0.44 1.03 −19.99 −18.51 5.96 17.15

Pelican Banks 
North 2

Z. muelleri (3) 45–70 continuous low 1120–1120 15.02 18.43 1.06 1.63 0.39 1.17 −19.44 −18.61 5.65 12.41

Facing Island
Z. muelleri (2); H. 
ovalis (1)

0–5 patchy medium 3255–3280 7.45 28.87 1.25 1.91 0.24 1.42 −23.35 −19.87 4.47 19.67

Pelican Banks 
North 3

Z. muelleri (3) 57–60 continuous low 1950–1950 9.91 16.11 1.33 1.75 0.3 1.72 −19.17 −18.32 4.70 24.86

South Trees Z. muelleri (3) 0–1 variable medium 150–250 5.96 17.71 1.12 1.95 0.18 1.57 −24.11 −20.44 3.49 17.52

Boyne Island H. uninervis (3) 2–10 variable medium 1000–1025 3.16 3.45 1.07 3.08 0.08 0.25 −22.89 −20.43 1.06 3.68

South Facing 
Island

Z. muelleri (3) 0–10 variable medium 250–250 12.50 17.35 1.45 2.54 0.09 1.41 −21.99 −20.40 1.30 22.18

Table 1. Environmental and biological drivers, and sediment parameters. A total of 45 cores were collected 

in 15 sites along the estuary. For summary purposes data is shown per site but cores are treated independently 

on the spatial GLS models applied. Data show ranges of minimum and maximum values or category of each 

variable.
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deposition processes28. �erefore, it is likely that a higher deposition of �ne sediments, carrying particulate 
organic materials through freshwater inputs (e.g. land runo�), is occurring in the upper parts of the estuary. 
�is explains the higher carbon levels in these seagrass meadows and is corroborated also by the more depleted 
values of δ13C in these areas38. �ese results highlight the necessity to account for spatial gradients when assessing 
Corg stocks within estuaries to adequately account for the variability present. Our results also support that spatial 
autocorrelation is an important consideration when assessing drivers of Corg stocks where strong spatial gradients 
are present20.

Among the main environmental and biological factors explaining the variability found within the estuary, the 
proportion of �ne sediments appeared as the only signi�cant explanatory variable for Corg content (%) in sedi-
ments. Seagrass sediment carbon storage has been widely related with a high proportion of �ne sediments12,39 as 
�ne sediments will slow down decomposition processes by avoiding oxygenation40. In agreement with our results, 
recent studies suggest that in fast growing seagrass species, such as the ones in this study, this relationship is even 
stronger when the contribution of seagrass-derived carbon to the sedimentary Corg pool is relatively low41.

Seagrass meadow type (i.e. landscape con�guration) was among the main factors associated with sedimen-
tary Corg stocks (mg Corg cm−3) and carbon sources within the estuary. As shown by the spatial models applied 
Corg stocks were positively related with continuous seagrass meadows and negatively related with variable 
non-permanent meadows, while results on patchy meadows were uncertain due to the high variability present. In 
fact, in the di�erent patchy meadows sampled in this study, sedimentary Corg storage varied by one order of mag-
nitude depending on the location within the estuary. In addition, the cores with the highest records of Corg stocks 
on this study were from patchy meadows in the upper extreme of the estuary, demonstrating that the spatial 

Depth

Dependent variable Corg (%) C stocks (mg Corg cm−3) δ13C (‰)

Driver ∆AIC Estimate SE ∆AIC Estimate SE ∆AIC Estimate SE

0–1 cm

Seagrass cover* 38.75 0.00 0.00 30.61 0.00 0.00 63.93 0.03 0.01

<63 µm* 12.28 0.01 0.00 18.44 0.00 0.00 47.21 −0.01 0.01

Distance from 
mangroves*

36.74 0.00 0.00 33.64 0.00 0.00 71.45 0.00 0.00

Turbidity (low) 22.78 0.55 0.34 19.26 2.23 0.64 36.68 −20.14 0.83

Turbidity (medium) 22.78 −0.20 0.27 19.26 −0.12 0.29 36.68 −2.09 0.42

Turbidity (high) 22.78 0.42 0.39 19.26 0.16 0.40 36.68 −4.05 0.57

Meadow type 
(continuous)

24.38 0.51 0.47 5.34 2.52 0.17 24.64 −19.94 0.96

Meadow type (patchy) 24.38 0.42 0.55 5.34 0.20 0.24 24.64 −4.55 1.11

Meadow type 
(variable)

24.38 −0.19 0.56 5.34 −0.90 0.27 24.64 −1.12 1.24

1–3 cm

Seagrass cover* 28.51 0.00 0.00 7.64 0.00 0.01 61.09 0.04 0.01

<63 µm* 8.06 0.01 0.00 3.21 0.01 0.00 48.06 0.00 0.01

Distance from 
mangroves*

30.54 0.00 0.00 8.57 0.00 0.00 60.62 0.00 0.00

Turbidity (low) 17.52 0.34 0.32 9.27 1.61 1.29 29.26 −19.11 0.76

Turbidity (medium) 17.52 0.12 0.27 9.27 0.44 0.40 29.26 −2.95 0.87

Turbidity (high) 17.52 0.67 0.38 9.27 0.50 0.51 29.26 −5.93 0.95

Meadow type 
(continuous)

19.21 0.46 0.43 2.87 2.47 0.20 21.41 −19.95 0.46

Meadow type (patchy) 19.21 0.50 0.50 2.87 0.21 0.27 21.41 −4.71 0.62

Meadow type 
(variable)

19.21 −0.19 0.52 2.87 −0.65 0.31 21.41 −1.67 0.74

3–10 cm

Seagrass cover* 26.84 −0.01 0.00 13.19 −0.01 0.01 48.87 0.04 0.01

<63 µm* 8.94 0.01 0.00 9.92 0.00 0.00 55.64 0.00 0.01

Distance from 
mangroves*

27.19 0.00 0.00 11.85 0.00 0.00 69.80 0.00 0.00

Turbidity (low) 16.28 0.38 0.31 13.04 1.62 1.53 31.19 −18.97 1.10

Turbidity (medium) 16.28 0.19 0.27 13.04 0.63 0.48 31.19 −3.74 1.15

Turbidity (high) 16.28 0.56 0.37 13.04 0.38 0.61 31.19 −5.95 1.29

Meadow type 
(continuous)

16.56 0.45 0.42 6.94 2.60 0.24 36.75 −20.34 0.80

Meadow type (patchy) 16.56 0.49 0.49 6.94 0.12 0.33 36.75 −4.47 0.95

Meadow type 
(variable)

16.56 −0.19 0.47 6.94 −0.89 0.37 36.75 −1.69 1.08

Table 2. Coe�cient estimates for carbon sediment variables in the GLS spatial models. Signi�cant terms 
(p-value < 0.05) are shown in bold. ∆AIC represents the AIC di�erence between the non-spatial GLS and the 
spatial GLS accounting for spatial autocorrelation on the response variable; positive value means lower AIC on 
the spatial GLS model. SE, standard error. (*) shows continuous explanatory variables.
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location of seagrass meadows within the estuary matters in Blue Carbon assessments. On the other hand, con-
tinuous meadows showed a low variability in sedimentary Corg stocks, and a higher contribution from seagrass 
sources. �is could be related to higher, and probably more constant, burial of seagrass-derived carbon in contin-
uous meadows, compared to patchy and non-permanent variable meadows, promoting more accumulation and 
burial of seagrass-derived material18, that are generally less labile and will decompose at lower rates promoting 
long lasting Corg stocks42. �is relationship could also be related with the capacity of seagrass meadows to avoid 
resuspension and mixing of sediments36,43–45, which is presumably higher in continuous meadows18. �is fact is 
also corroborated by the positive relationship found here among seagrass cover and carbon isotopic signature, 
and the low isotopic signature of Corg in patchy and non-permanent variable seagrass meadows suggesting less 
seagrass contribution in these meadows.

Although we found a signi�cant relationship between carbon sources and water turbidity, but not water tur-
bidity and Corg stocks (mg Corg cm−3), our results support the hypothesis14 that high sediment carbon storage 
occurs in areas of high turbidity due to high levels of allochthonous carbon. High water turbidity was related 
with depleted values of δ13C, suggesting a high contribution of allochthonous sources, while low water turbidity 
was related with δ13C values close to seagrass sources. �e latter suggests two potential mechanisms: (1) in low 
turbidity conditions, higher levels of light promote seagrass growth, and so, more seagrass contribution to sed-
iment Corg; and (2) that the seagrass canopies �ltering capacity decreases water turbidity, thus relating seagrass 
contribution and low turbidity (see also results for seagrass cover and meadow type). In fact, low water turbidity 
occurred only in areas with presence of continuous seagrass meadows. However, in this study we did not assess 

Figure 1. Relationships among sediment carbon variables and drivers per each depth core section. (a) Biplot 
of Corg content (%) and sediment grain size <63 µm (%); (b) Boxplot of Corg stocks (mg Corg cm−3) and meadow 
type. Symbols for grain size: circle, depth section 0–1 cm; triangle, depth section 1–3 cm; quadrat, depth section 
3–10 cm. Legend for meadow type: C, permanent continuous meadows; P, permanent patchy meadows; V, 
variable meadows.

Figure 2. Relationships among sediment carbon sources and drivers per each depth core section. (a) Boxplot 
of δ13C (‰) and meadow type; (b) Boxplot of δ13C (‰) and turbidity; (c) δ13C (‰) and seagrass cover. Legend 
for meadow type: C, permanent continuous meadows; P, permanent patchy meadows; V, variable meadows. 
Legend for water turbidity: H, high; M, medium; L, low. Symbols for seagrass cover: circle, depth section 0–1 
cm; triangle, depth section 1–3 cm; quadrat, depth section 3–10 cm.
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the relative importance of each driver compared to the others, making it di�cult to make conclusions about the 
particular processes involved, which should be further studied. In addition, if measured during the rainy season, 
water turbidity could have led to di�erent results in the surface sediments, by a�ecting seagrass physiology (e.g. 
photosynthetic processes), sedimentation and eventually Corg storage. Finally, despite the presence of mangroves 
being highlighted as an important factor promoting seagrass carbon storage in other studies35, our results showed 
no relationship between proximity to mangroves and seagrass sedimentary Corg for any variable assessed, proba-
bly due to the low carbon exchange between those habitats within the estuary.

�ese results suggest that, within this estuary, the seagrass plant itself is not governing the amount of Corg 
stored in the sediment, and that multiple other interacting factors are involved (e.g. sediment deposition). Light 
availability is known to be a major control of seagrass growth46 and seems to be dominating seagrass meadows 
distribution within the estuary. �e upper parts of the estuary presented higher water turbidity, a low seagrass 
cover, and a higher presence of patchy meadows when compared with the lower parts of the estuary, usually with 
less turbid water, more seagrass cover and where continuous meadows are found. Although seagrass cover is 
usually associated with higher Corg storage12, in this estuary, seagrass cover values found were small, and seagrass 
sedimentary Corg seems overwhelmingly driven by the proximity to the upper estuary. �is leads to an inverse 
correlation between Corg and seagrass cover that we suggest is coincidental and driven by the light environment 
rather than a causal link between seagrass cover and low Corg storage.

In this study plant traits other than seagrass cover were not measured. However, annual seagrass monitoring 
in Port Curtis estuary since 2009 show that aboveground biomass follows the same spatial pattern as seagrass 
cover in the same study sites used here, ranging from 0.88 g DW m−2 in the upper estuary to 18.02 g DW m−2 in 
continuous meadows at the estuary mouth47–49. All seagrass species found in the estuary are considered fast grow-
ing, characterized by a small size and a small above- and below-ground fraction, with roots and rhizomes that do 
not penetrate deeper than the �rst few centimetres. �is could be related with the small seagrass contribution to 
carbon storage found in this estuary. Small intra-speci�c or inter-speci�c variation in plant traits could potentially 
in�uence spatial patterns of carbon storage14,20 and should be included in further studies.

Although seagrass cover was a determinant of the type of carbon sources entering into the sediments, the 
contribution of seagrasses as carbon sources along the estuary was low. �e increase of seagrass contribution to 

Adjacent habitats (mangroves 
& saltmarshes)

Algae (benthic 
algae & seston) Seagrass

Allochthonous 
sources

Autochthonous 
sources

Mean 50.57 26.65 22.79 77.21 22.79

SD 15.50 5.50 12.37 12.37 12.37

Min 27.45 17.59 8.12 58.39 8.12

Max 74.07 39.04 41.61 91.88 41.61

Table 3. Results from the mixing models. Values represent summary statistics of the proportion (%) of each 
source (mean, standard deviation and range by minimum and maximum values). Autochthonous sources 
represent the seagrass contribution, while allochthonous sources represent the sum of non-seagrass sources.

Figure 3. Contribution of the di�erent carbon sources to total sediment Corg stocks (mg Corg cm−3) of seagrass 
meadows on each core within the estuary. Sources: adjacent habitats sources (including mangroves and 
saltmarshes); marine algae (including benthic algae and seston); seagrass sources. �is �gure is based on the 
mean results and standard deviation of each source fraction from mixing models (see Table 3). Total sediment 
Corg stocks (mg Corg cm−3) represent the cumulative amount of Corg on each 10 cm depth core.
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sedimentary Corg in the lower parts of the estuary could be related to a lower deposition of allochthonous carbon 
(compared to the upper parts), and also a major presence of continuous meadows that could facilitate the trap-
ping and burial of seagrass materials into the sediments and a higher local production contributing autochtho-
nous carbon50. Despite this, allochthonous sources were the most important contributors, and followed the same 
spatial pattern as Corg stocks within the estuary.

Overall, �ne sediments and allochthonous carbon sources accumulating more in the upper parts of the estu-
ary seem to be driving spatial heterogeneity found in sedimentary Corg storage in seagrass meadows within the 
estuary studied. �is highlights the necessity to account for the river-ocean continuum gradients on Blue Carbon 
assessments within-estuaries. We therefore recommend, when assessing carbon stocks in seagrass meadows 
within estuaries, to identify the main sources of variation, and, in order to adequately capture the highest varia-
bility, sample sediments in di�erent seagrass meadows following the main spatial gradients. Comprehensive and 

Figure 4. Predictive map of Corg stocks (Mg Corg ha−1) in the �rst 10 cm of sediment of seagrass meadows 
within the Port Curtis estuary, Queensland, Australia, based on data from this study. �e map was built using 
Esri ArcGIS 10.4 (www.esri.com/so�ware/arcgis).
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accurate assessments of sediment Corg stocks are required to understand the role of estuaries as carbon sinks, and 
ultimately disentangle their total carbon budget and climate change mitigation potential.

Materials and methods
Study site and sampling design. �e study was conducted in Port Curtis (23°46′57″S; 151°18′0″E), a 
macro-tidal estuary on the central Queensland coast of north-eastern Australia. Port Curtis is a large natural 
harbour that has been industrialized and urbanized over the last half century. Despite this, much of it remains in 
a relatively natural state with a forested catchment dominating, and mangrove vegetation followed by saltmarshes 
landward of the mangroves in the upper estuary. �e estuary contains large intertidal and subtidal sand and 
mud �ats, which support seagrass meadows dominated mainly by the species Zostera muelleri, with Halodule 
uninervis, Halophila decipiens, Halophila ovalis and Halophila spinulosa also present. Seagrass appears sparsely 
distributed in the upper reaches of the estuary while meadows become larger (and more continuous) on the 
lower parts47–49. �ese relatively low cover seagrass meadows are typical of much of the tropical and sub-tropical 
Queensland coast where they play key roles in supporting megagrazers, such as dugong and green turtles, and as 
a �sh habitat for juvenile commercial and recreationally important species51.

To study the Corg storage variability of seagrass sediments within the estuary, and to identify the main factors 
promoting it, we sampled across all areas of seagrass distribution within the estuary (Fig. 5)47,48. We sampled a 
total of 45 sediment cores in order to cover the main environmental and biological gradients within the estuary. 
�us, sediment cores were taken in 15 sites along the estuary in groups of three. In each site, cores were sampled 
with a minimum distance of 50 m among them and sampling all the seagrass species present inside each site in 
order to embrace all potential variability present (Table 1). Cores of sediments were sampled at low tide by man-
ually inserting open-barrel PVC pipes (20 cm length, 5 cm internal diameter) into soils to a depth of 10 cm and 
using a piston to provide suction as cores were withdrawn. Compaction during coring was low (<10%). Once 
extracted, cores were capped at both ends and transported to the laboratory. Cores were kept upright during 
transport to prevent mixing of sediment layers within the core. GPS coordinates and a 50 × 50 cm photo quadrat 
were taken at each core location. Seagrass cover (%) and species composition in each quadrat were estimated 
visually following Seagrass-Watch percent cover standards52.

Laboratory procedures. In the laboratory, the sediments were sliced into three sections at 0–1, 1–3, 3–10 
cm intervals. Coarse inorganic particles (i.e. large carbonate materials) and living plant material were manually 
removed7,9. Depth sediment sections were dried at 60°C and weighed in order to calculate bulk density. Each 
depth section was then homogenized by mixing the sediments with a clean stainless-steel spoon thoroughly 
or until visually homogeneous, and split into two sub-samples, with grain size particle distribution analysed 
from the �rst subsample using a Malvern Mastersizer 2000 laser microgranulometer. Prior to grain size analysis, 
organic matter in this sub-sample was removed by addition of hydrogen peroxide 10%. Particle size distribution 
was expressed as percentage (%) of volume for particle diameters from 0 to 2000 µm. �e second sub-sample 
was ground to a �ne powder with a laboratory ball grinding mill and split again into two sub-samples for Corg 
and N elemental and isotopic analysis. Half were washed with acid for Corg analysis, and the other half remained 
untreated, as this chemical procedure has been reported to alter δ15N values53. Sub-samples were acidi�ed drop 
by drop with HCl 1M, until there was no visual evidence of e�ervescence to remove any carbonates and re-dried 
without rinsing54,55. A�er drying, samples were re-ground, placed in tin capsules and analysed for Corg and N ele-
mental and isotopic composition. Measurements of Corg and N elemental composition and stable isotope ratios 
were performed using a continuous-�ow isotope-ratio mass spectrometer MAT253 (�ermo Finnigan) coupled 
to an elemental analyser EA1108 (Carlo Erba Instruments) through a Con�o III interface (�ermoFinnigan). �e 
C and N isotope ratios are expressed as δ values in parts per thousand (‰) relative to Vienna Pee Dee Belemnite 
and the atmospheric air standard, respectively, according to standard notation (δX = [(Rsample/Rstandard) − 1] 
× 1000, where R is the ratio 13C/12C or 15N/14N). International Atomic Energy Agency standards were inserted 
every 12 samples for calibration. Replicate assays of standards indicated measurement errors of ± 0.1 and 
± 0.2 ‰ for C and N, respectively. Standing Corg stocks per volume unit were calculated using dry bulk density 
data and Corg content and expressed as mg Corg cm−3.

Environmental and biological drivers of seagrass carbon storage. Environmental and biological 
drivers of seagrass carbon storage were characterized using categorical and numerical variables as a function of 
the seagrass cover, meadow type, sediment particle size, water turbidity and their proximity to other vegetated 
habitats such as mangroves (Table 1). We did not compare among the di�erent seagrass species due to the low 
number of cores for some of them (Table 1) and cores from di�erent species were integrated in data analysis (see 
below). Meadow type was classi�ed based on de�nitions by47,49 using three categories, permanent continuous 
meadows, permanent patchy meadows and variable meadows, the last de�ning non-permanent meadows that 
have been reported to appear intermittently as continuous or as isolated or aggregated patches. �e proportion 
(%) of the smallest sediment fraction (silt and clay < 63 µm) was used for further statistical analysis. Water tur-
bidity was classi�ed using three categories, based on monthly averaged data from Gladstone Ports Corporation56 
in Nephelometric Turbidity Units (NTU) measured in the bottom of the water column during the dry season 
(May to October) where: low was <6 NTU, medium <7–15>, high 15 NTU>. Finally, we calculated the shortest 
distance from each core to mangroves using aerial photographs (Google Earth, 2013) and Euclidean distance 
measures representing shortest travel paths (ArcGIS 10.4; ESRI So�ware Inc).

Data analysis. Due to the potential presence of spatial gradients within the estuary and the grouped sam-
pling of the sediment cores, we initially estimated the spatial autocorrelation in carbon sediment variables Corg 
(%), δ13C (‰) and Corg stocks (mg Corg cm−3) for each core depth section by calculating Moran I statistics. We 
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then used generalized least squares (GLS) to model carbon sediment variables for each core depth in relation 
to the environmental and biological explanatory variables (i.e. seagrass cover (%), meadow type, <63 µm (%), 
distance to mangroves (m) and turbidity). Each explanatory variable was assessed individually in separate models 
given the high correlation among them. All GLS models were developed with and without spatial correlation 
structure in the error term of the regression model (GLS spatial models and GLS non-spatial models, respec-
tively) to model spatially autocorrelated residuals when present57. Exponential, rational quadratic, gaussian, linear 
and spherical correlation structures were assessed for each spatial GLS model. �e best �tting model and corre-
lation structure were de�ned by the minimum Akaike’s Information Criterion (AIC)58–61. �e non-spatial GLS 
model is equivalent to Ordinary Least Squares (OLS), and the spatial GLS extends OLS by providing for possibly 
unequal residual variances and covariance of residuals between locations62. Finally, we tested for spatially auto-
correlated residuals visualizing semivariograms of normalized residuals and calculating Moran’s I statistic for 
the GLS non-spatial and GLS spatial models. Normality and homoscedasticity were explored in �nal models via 
visual estimation of trends of model residuals (errors associated with homogeneity of variance, independence, 

Figure 5. Map of the Port Curtis estuary, Queensland, Australia, and areas of seagrass distribution. Sediment 
core locations are indicated with black dots. �e map was built using Esri ArcGIS 10.4 (www.esri.com/so�ware/
arcgis).
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and normality). We also checked if the 95% con�dence intervals for parameter estimates of numerical explan-
atory variables were reasonable or included zero, which indicates �tting problems63. We �t all the models using 
restricted maximum likelihood with the nlme package64, and Moran tests and semivariograms were done with 
package ape65 and spdep66 in the R Statistical Computing Environment. Non-transformed values (means ± SE) 
are shown in the �gures and tables. For all analyses, core section values of Corg (%) and Corg stocks (mg Corg cm−3) 
were log transformed.

�e Bayesian mixing model SIAR 4.267 in the R Statistical Computing Environment was used to estimate the 
contribution of potential sources to the sedimentary Corg pool. �e model was run with two isotopes (δ13C and 
δ15N) and three sources (see Supplementary Fig. S1): seagrasses (δ13C −12.94 ‰ ± 3.08 SD; δ15N 4.06 ‰ ± 1.31 
SD), adjacent habitat sources (including mangroves and saltmarshes) (δ13C −26.23 ‰ ± 1.03 SD; δ15N 3.4 ‰ 
± 1.1 SD), and marine algae (including benthic algae and seston) (δ13C −21.34 ‰ ± 3.29 SD; δ15N 4.69 ‰ ± 
1.47 SD). Isotopic signatures of sources were collected and averaged from previous studies in the same area 
(see Supplementary Table S4). Separate mixing models were computed for each core. �e isotopic values for all 
sources were assumed to be constant for each model. We did not consider any fractionation with aging (0 ‰) in 
the model because previous studies suggest small diagenetic shi�s for δ13C and δ15N during decomposition68,69. 
�e proportion of each source on the mixing model outputs was used to calculate the total contribution of each 
source to the Corg stocks accumulated per core (the sum of mg Corg cm−3 in 10 cm of core depth).

Finally, to elaborate a predictive map of Corg stocks, and their variability, at the estuary scale the total Corg 
stock in the �rst 10 cm soil depth in tonnes per hectare (Mg Corgha−1) was interpolated across known areas of sea-
grass distribution47–49 in the estuary extent using ArcGIS and the Empirical Bayesian kriging tool Geostatistical 
Analyst extension (ArcGIS 10.4; ESRI So�ware Inc). Areas of seagrass distribution integrated information of all 
seagrass species within the estuary because of the non-monospeci�c nature of most seagrass meadows. Empirical 
Bayesian kriging is an interpolation method that accounts for the error in estimating the underlying semivari-
ogram through repeated simulations70. �e standard deviation from each site (see Table 1) was interpolated to 
provide a measure of variability in the values and used as error terms. For each seagrass de�ned area or seagrass 
patch we calculated the mean and error term per hectare.

Data availability
�e datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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