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High voltage low quiescent current LDO
with self-regulation impedance buffer

Lei Tian1∗ , Zhong Chen2 , Qinqin Li1 , Weiheng Wang3

To improve the whole characteristic of the LDO, a low quiescent current structure of high voltage LDO with self-regulation
impedance buffer and bandgap amplifier is presented in this paper. With the bandgap amplifier proposed, the function of
voltage reference and error amplifier can be achieved simultaneously, which can efficiently reduce the consumption. The load
capacitor can be as small as 0.47µF by using the self-regulation impedance buffer and current buffer compensation scheme.

The LDO has been implemented in a 0.18 µm process with die size 0.03mm2 . Without the load, the consumption quiescent
current of the LDO is 1 µA. Experimental result shows that the overshoot and undershoot of line transient response are less
than 30mV/V. The load regulation is about 0.1A, and line regulation is about 0.07mV/V at no load condition.
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1 Introduction

With the improving demands of the green power IC
(integrated circuit), the LDO (low-dropout regulator)
with its low power consumption and stable output voltage
gets a lot of applications [1-3]. During the design process,
low dropout voltage, low consumption, adequate output
current and the fast-transient response are four main is-
sues which should be focused [4,5]. The traditional LDO
consists of the EA (error amplifier), the power MOS, the
feedback resistor network and the bandgap voltage refer-
ence circuit. The low quiescent current will restrict the
transient response of LDO, and then slow down the tran-
sient response speed [6]. It leads to a substantial overshoot
or undershoot, even makes the device misoperation or the
load damaged. Zero-tracking is proved to be an effective
compensation scheme [7-9]. The internal zero position can
be changed with the variation of the output pole. But the
structure and more transistors are required. It leads to a
larger die size and more power consumption. PCA (pro-
grammable capacitor array) is also suffered from more
die size and high cost [10]. Reference [11] employed the
structure called super-source-follower that can decrease
the buffer output impedance greatly without much tail
current [12], but the problem is the negative feedback
loop cannot be stable in all cases, especially when driv-
ing a capacitive load [13]. FVF (flipped voltage follower)
is also a good way to enhance the transient response but
more transistors and current will be consumed [14].

In order to reduce the chip die size and the power
consumption for enhance transient response, a novel
bandgap amplifier with current buffer compensation and

self-regulation buffer is proposed to realize a compact
LDO [15]. The current buffer compensation can reduce
60% size of the on-chip frequency compensation capacitor
without influencing the stability. The output stage of the
LDO uses auto adjusting buffer, which can improve the
response speed.

2 The structure of the proposed LDO

In this section, the stability of the proposed LDO will
be discussed by the loop-gain transfer function H(s) of
the regulation loop. Small-signal block diagram of the
proposed LDO with current-buffer is shown in Fig. 1.
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Fig. 1. Small-signal block diagram of the proposed LDO

In Fig. 1, gmEA, gNMB and gmp are the trans-
conductance of bandgap amplifier, current buffer stage
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Fig. 2. Schematic of the proposed LDO

NMB and power MOS Mp, respectively. Req is the out-
put impedance of power MOS, and F is the feedback
factor, then

Hout =−
[
gmEAHin +

Vout

1/gNMB +
(
R.z|| 1

sCZ

)
+

1

sCC

]
×

× (
rOM||sC1

)
gmp

(
Req|| 1

sCL

)
F.

(1)

Here, CL, CC, CZ >> C1, F = RF2/(RF1 + RF2) and

gmp ∝ √
Iload, Req ∝ 1/

√
Iload.

Based on above, the loop-gain transfer function of the
proposed LDO is given as

H(s) =
Hout

Hin
≈

−
Fgm1rON1gmpReq

(
1 + sCC

gNMB

)
(1 + sRZCZ)

as4 + bs3 + cs2 + ds+ 1
.

(2)

When the load current Iload = 0, current flowing
through the power MOS MP is very small, thus gmp is so
small, the transfer function H(s) can be approximated
by

H(s) ≈ − Fgm1rON1gmpReq

(sCLReq + 1)(srON1C1 + 1)
, (3)

with two poles: p1 = −1/(CLReq), p2 = −1/(rON1C1),
the value of C1 is so small that p2 is out of the UGB
(unit gain bandwidth). So, there is only one pole p1 in
the range of the UGB, and the loop can achieve good
phase margin under Iload = 0.

When the load current increases sharply, gmp gets rel-
atively large, and the equivalent output resistance in out-
put stage, Req is quite small. Then the transfer function
of H(s) is approximated as

H(s) ≈ − FgmEArON1gmpReq

(sReqrON1gmpCc + 1)(s
C1CL

gmpCc
+ 1)

. (4)

According to the transfer function in (4), there are also
two poles ⎧⎪⎪⎨

⎪⎪⎩
p1 =

1

ReqrON1gmpCc

p2 =
gmpCc

C1CL
∝ Cc

C1CL

√
Iload

.

Because of the range of gmp is large, p1 is the domi-
nant pole and p2 is the non-dominant pole. Since C1 is
small, p2 locates at high frequency. Furthermore, the unit
gain frequency can be expressed as

ω0 =
1 +DgmEAgmprON1Req

ReqrON1gmpCc +
C1CL

gmpCc

≈ DgmEA

Cc
. (5)

Because the value of ω0 is independent of the load cur-

rent,
gmpCC

C1CL
>>

gm1

CC
. There is also a pole in the range

of UGB. Good phase margin can be guaranteed. In addi-
tion, p2 increases with the load current, implying a better
phase margin with the load current increased.

3 The implementation of the proposed LDO

In order to control the quiescent current and re-
duce the compensation capacitor, the proposed LDO
with bandgap error amplifier (BGEA) and current buffer
scheme is presented. At the same time, the output stage
of the proposed LDO using the self-regulation buffer, so
it is called BGEA LDO. This scheme can resolve the
trade-off among the quiescent current, the chip die size
and the transient response. The traditional LDO usually
uses separate voltage reference and EA. In this paper, the
proposed LDO with bandgap amplifier structure is shown
in Fig. 2. It consists of the startup circuit, the BGEA,
the self-regulation impedance buffer and the power MOS
MP.
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3.1 The structure of the bandgap error amplifier

In Fig. 3(a) is the Bandgap error amplifier (BGEA),
it is performed by the feedback voltage VFB , Fig. 3(b) is
the curve of collector current relationships of Q1 and Q2

varying with VFB. ICQ1 and ICQ2 are the collector cur-
rent of Q1 and Q2 , VX and VY are the emitter voltage
of Q1 and Q2 , gmQ1 and gmQ2 are trans-conductance of
Q1 and Q2 and the ratio of collector current ICQ1 and
ICQ2 is m: 1, so

ICQ1 =
gmQ1VFB

1 + gmQ1(1 +
1
m )R1

, (6)

ICQ2 =
gmQ2VFB

1 + gmQ2 [(1 +m)R1 +R2]
, (7)

where, Gm1 and Gm2 are defined as the equivalent trans-
conductance of Q1 and Q2, respectively:

Gm1 =
∂ICQ1

∂VFB
=

gmQ1

1 + gmQ1

(
1 +

1

m

)
R1

≈ 1(
1 +

1

m

)
R1

,

(8)

Gm2 =
∂ICQ2

∂VFB
=

gmQ2

1 + gmQ2 [(1 +m)R1 +R2]

≈ 1

(1 +m)R1 +R2
.

(9)

Set m ≥ 1, it is easy to obtain Gm1 > Gm2 and
ICQ1 ≥ ICQ2. When the base voltage VFB gets higher,
both currents get bigger, because of faster variation rate
of ICQ1 . Hence the current variation flow through PM2

is larger than the current flow through NM4, then the
output of BGEA gets higher and so does the gate voltage
of Power MOS MP. So the feedback loop of the circuit
is negative. The base voltage can be fixed at VFB and
the VOUT regulation is accomplished. Set (W/L)PM1 :
(W/L)PM2 = 1 : 1 and (W/L)NM3 : (W/L)NM4 = 1 : 1,
the trans-conductance gmEA and the output impedance
rON1 are

gmEA =
ΔIEA

ΔVFB
=

Gm1ΔVFB −Gm2ΔVFB

ΔVFB
= Gm1−Gm2 ,

(10)
rON1 = (gmNMBrONMBrONM4) || (gmPM6rOPM6rOPM2) .

(11)

So the gain of BGEA can be expressed as

G = gmEArON1 . (12)

For the requirement of low quiescent current, cur-
rents flow through the branch of PM1 and PM3 are
only around several hundred nano-amperes, the output
impedance rON1 of BGEA is about several hundreds of
MΩ. The value of gmEA is small, as impedance rON1 is
large enough, so the gain BGEA is large enough to guar-
antee the accuracy of output voltage. As described above,
ICQ1 : ICQ2 = m, m ≥ 1, the size of Q2 is n times than
Q1, the voltage VFB and VOUT can be expressed as

VFB = VBEQ2 +

[
1 +

(1 +m)R1

R2

]
VT ln(mn) , (13)

VOUT =
(
1 +

RF1

RF2

){VBEQ2+

+

[
1 +

(1 +m)R1

R2

]
VT ln(mn)

}
,

(14)

where, VBEQ2 is negative temperature dependent, the
term in (square) brackets is a positive temperature de-
pendent term, so VFB and VOUT can be set to reach a
zero temperature dependence.
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Figure 4 gives the simulation results of VOUT varying
with temperature under different supply voltage. From
the figure, just about 1.804 V at VIN = 5V, the temper-
ature coefficient is about only 18 ppm, the line regulation
is about 0.07 mV/V at no load condition.

3.2 Self-regulation impedance buffer

In many proposed works, source-follower buffer is used
to separate large output impedance of EA from large
parasitic capacitor of the power MOS. Fig. 5(a) shows
the self-regulation impedance buffer circuit.
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Fig. 5. (a) – the self-regulation buffer circuit and, (b) – the varia-
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The threshold of the power PMOS MP is higher than
that of the NMOS NM13, MP can be turned off com-
pletely. INM13 is the bias current of the output stage in
the self-regulation buffer circuit. Itail is the charging or
discharging current during the transient response. ID is
the dynamic bias current of the self-regulation buffer.
IS is the static bias current of the output stage. As
(W/L)NM5 : (W/L)NM6 = 1 : 1, when VOUT is regulated
at a constant voltage

Itail = INM13 −
(
ID + IS

)
= 0 . (15)

The trans-conductance and output impedance of self-
regulation impedance buffer circuit are

gmB =
ΔItail

ΔVBGEA
=

ΔINM13 −ΔID
ΔVBGEA

= gmNM13 +
gmPM7

1 + gmPM7R5
, (16)

rON2 =
1

gmNM13
|| [gmNM11rONM11

(
rONM8||rONM6

]

≈ 1

gmNM13
, (17)

where,

gmNM13 =

√
2μnCox

(W
L

)
NM13

(
ID + IS

)
. (18)

The variation ΔVOUT during the load transient re-
sponse in Fig. 5(b), ΔItail is the charging or discharging
current of the power PMOS MP, CL is the output capac-
itance.

The load transient response is

ΔVOUT = −ΔIMP

(
RESR +

trec
CL

)
, (19)

while the recovery time can be estimated as

trec <
[
CL

1 +
RF1

RF2

gmMPgmEArON1
−RESR

]
. (20)

Hence, the self-regulation buffer can speed up the re-
covery time. The pole generated at N2 node is

p3 = −gmNM13

Cpra
. (21)

As the value of rON1 and Cpra are quite small, the
pole p3 is out of UGB. It can be concluded that p3 has
no influence on the stability of the proposed LDO.

4 Experimental results

The proposed LDO has been implemented in a 0.18
m CMOS process. Fig. 6 and Fig. 7 show the simulation
results of loop gain transfer function of the proposed LDO
for no load and full load, respectively.
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From the Fig. 6, the load current in the no load and

the full load cases, the open loop gain reached 74 dB and

58 dB, respectively. In Fig. 7, the load current in no load

and the full load cases, the phase margin is 52 deg and 105

deg, respectively. In order to represent the phase margin

more completely, the simulation results of the circuit at
different load currents are shown in Fig. 8.

The simulation results show that the phase margin is
always greater than 51 deg in the current range from 1 μA
to 50mA, which also verifies the stability of the system

Fig. 9. The measurement result of the line transient response,
Vout = 1.8V

Fig. 10. The measurement result of the load transient response,
Vout = 1.8V
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at full load current. Therefore, the LDO is stable with
the proposed compensation scheme. To verify transient
response of the circuit structure, line and load transient
response are also measured. The measurement results are
shown in Fig. 9 and Fig. 10.

Figure 9 shows the output voltage variation in line
transient response from 5V to 6 and from 5V to 12V in
1 μs with 10mA load current, respectively. The overshoot
voltage is 32mV and the undershoot voltage is 28mV.

Figure 10 gives the measured load transient response
for a step load change from 1mA to 10mA and from
0.1mA to 50mA within 1 μs. The overshoot voltage is
32mV and the undershoot voltage is 34mV. It takes 10
μs for output to return to its normal value, the variation
ΔVOUT is about 4mV to10mV, the load regulation is
about 0.1%/A. A comparison of some other proposed
LDO is given in Tab. 1. From the table the LDO presented
here realize the minimum quiescent current, chip die size
and small off-chip capacitor.

Table 1. 1 Comparison with previous reported LDOs

Reference [6] [14] [15] This work

Technology (µm) 0.35 0.13 0.13 0.18

Supply voltage (V) 3.3 1.2 1.25 5

Output voltage (V) 2.9 1 1 1.8

Load current:
100 50 100 50

ILmax (mA)

Quiescent current:
55 42 0.7 9.5

Iq (µA)

Load transient (mV)
90 140 76 32

(Iload -rising)

Load transient (mV)
160 80 198 34

(Iload -falling)

Load regulation (mV) - 10 10 4

Line regulation (mV) - 30 16.6 10

CL(pF) 100 400 106 0.47×106

Year 2016 2019 2020 2023

5 Conclusions

This paper presents a novel structure of LDO using
the self-regulation impedance buffer which can improve
transient response. Compared with the traditional LDO,
the proposed LDO consume 1A quiescent current in the
no load condition and 10 μA quiescent current even in the
full load. Meanwhile the LDO can realize good stability
under full range of load current using the current buffer
compensation. The circuit can realize as large as 50mA
load current with input voltage range between 2.5V and
30V.
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