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Abstract

In this paper, we consider the problem of super-resolving

a human face video by a very high (×16) zoom factor. In-

spired by recent literature on hallucination and example-

based learning, we formulate this task using a graphical

model that encodes 1) spatio-temporal consistencies, and

2) image formation & degradation processes. A video

database of facial expressions is used to learn a domain-

specific prior for high-resolution videos. The problem is

posed as one of probabilistic inference, in which we aim

to find the high resolution video that best satisfies the con-

straints expressed through the graphical model. Traditional

approaches to this problem using video data first estimate

the relative motion between frames and then compensate

for it, effectively resulting in multiple measurements of the

scene. Our use of time is rather direct: We define data struc-

tures that span multiple consecutive frames, enriching our

feature vectors with a temporal signature. We then exploit

these signatures to find consistent solutions over time. In

our experiments, a 8 × 6 pixel-wide face video, subject to

translational jitter and additive noise, gets magnified to a

128 × 96 pixel video. Our results show that by exploiting

both space and time, drastic improvements can be achieved

in both video flicker artifacts and mean-squared-error.

1 Learning-based Super-Resolution

Imagine we are given an extremely low resolution video

(Fig. 1, top). Assuming that there is a human face in these

images, can we guess the missing details, and estimate (or

“hallucinate”) a highly zoomed, super-resolved video that

resembles the original (bottom)? In this paper, we present

a model for this task, formulate it as an inference problem,

and describe an algorithm for solving it.

The problem of estimating high resolution image details

is commonly referred to as Super-Resolution (SR) [9], al-

though in practice approaches may differ in their use of a

single static image, a sequence of thereof, or a video of

a dynamic scene [17, 13, 11, 16]. Mathematically, such

problems are highly ill-posed [18], motivating the use of

Bayesian techniques and generic smoothness assumptions

about high resolution images [8] (Fig. 1, middle).

Figure 1: Given only a low-resolution video (top), how can one

estimate (or “hallucinate”) the original high-resolution video (bot-

tom)? Unfortunately, simple methods such as bicubic interpolation

are insufficient (middle). In this paper we explore zooming us-

ing a database of videos with an inference procedure that enforces

spatio-temporal consistency of the resulting hallucinated video.

Recently, learning-based approaches to SR have pro-

duced compelling results [12, 2, 5, 15, 6]. The essence of

these techniques is to use a training set of high resolution

images and their low resolution counterparts to build a co-

occurence model (stored either directly as image patches, or

as coefficients of alternative representations). At the time of

applying the learnt model, the task is to predict high reso-

lution data from the observed low resolution data. In [12],

an example-based learning scheme was applied to generic

images and zooming results up to a factor of 4 were re-

ported. A direct application of this to video sequences was

attempted in [4], but severe video artifacts were found. As a

remedy, an ad-hoc solution was proposed, which consisted

of re-using high-resolution solutions for achieving more co-

herent videos.

An interesting aspect of learning approaches is that they

can be made much more powerful when images are limited

to a particular domain: For instance, [2] considered super-

resolving human faces only. Their recognition algorithm re-

ferred to a database of registered face images, and collected

best matching image patches given the input, enabling con-

vincing results with zoom factors up to 8.

The model we propose for super-resolving videos is in-

spired by the following key aspects of earlier work: By

limiting our learning task to faces only, and using a spa-
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Figure 2: Model of blur and degradation (See section 2.1)

tially varying prior (as in [2]), we keep the computational

requirements relatively low. Inspired by the use of spatial

couplings in [12], we model both spatial and temporal con-

sistencies in the super-resolved videos. In contrast to [4],

we do not resort to re-seeding our high resolution hypothe-

sis space with earlier solutions, but instead model and deal

with temporal visual phenomena directly.

2 Modeling the High-Zoom Problem

In this section, we present a model for the high-zoom prob-

lem, through which we integrate our domain knowledge

about the videos of interest with the physical principles of

image formation.

2.1 Generative Image Model

A graphical model is a concise tool for expressing causal

and statistical dependence relationships between random

variables of interest. We now introduce our graphical model

for the formation of low-resolution observations. For clar-

ity, we describe this generative model for the static image

case, then extend it to the temporal dimension for videos in

subsection 2.2.

Our model for low-resolution observations comprises

three steps: organized upwards in Fig. 2, 1) Generation of

template image T , 2) addition of illumination offset I to

generate a noisy high-resolution image H , and 3) down-

sampling and corruption for forming the low-resolution im-

age L. We now discuss each of these steps in detail.

The starting point is a high-resolution template image T ,

generated following a prior model about possible images in

the domain. Building a generative statistical model of T

that can account for all possible face images represents a

formidable challenge. In order to circumvent this modeling

problem, we will take a non-parametric approach, and draw

samples from a large database of examples. Since capturing

all possible variations of facial expressions and features re-

quires a very large number of examples to be stored, one can

adopt local models, defined over image patches, and treat

Figure 3: Spatial (left) and spatio-temporal (right) coupling be-

tween neighboring template patches is shown in the Markov ran-

dom field graphs for image (2-d, left) and video (3-d, right).

them independently, as in [2]. Such a choice, however, fails

to capture those events which span multiple patches, result-

ing in unrealistic face compositions. As a computational

trade-off between treating these patches all independently

and building a full statistical co-occurence model, we will

impose compatibility constraints only between neighboring

patches. In particular, we will use a Markov Random Field

(MRF) (Fig. 3, left) to model spatial interactions, allowing

us to compose face template images without artifacts.

After the template image T is formed, we consider a de-

viation from the illumination conditions in which the prior

model was built: An intensity offset I is added to T to pro-

duce the high resolution image H . Finally, we model the

severe blur and downsampling operations for obtaining the

low-resolution observation L by a linear, local-averaging

operator followed by additive noise [1].

2.2 Exploiting Time

Just as neighboring pixels in natural images tend to be

highly correlated, so too are consecutive frames in video

sequences. In our work, we exploit these temporal depen-

dencies in further constraining the space of high resolution

solutions. By extending the MRF framework into the time

dimension (Fig. 3, right), we model couplings between con-

secutive frames. This results in a three-dimensional net-

work of video patches, defined as data structures spanning

multiple consecutive frames. For instance, as shown in

Fig. 4 (bottom), we can choose a temporal support of 2

frames for the nodes in T , and make consecutive nodes

overlap by one frame. This is equivalent to stating that the

underlying video sequence is first-order Markov in time.

Our scheme gives the temporal dimension an uncon-

ventional role compared to traditional approaches to super-

resolution: In the literature, the relative motion between

frames is estimated, then eliminated via warping or opti-

cal flow. These approches are essentially two-dimensional,

treating time, in effect, as a nuisance parameter to be com-

pensated for.

By contrast, we take advantage of the richer local sig-

nature that the combination of space and time provides. In
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Figure 4: Implementation details of spatial (top) and temporal

(bottom) overlap consistencies. The black pixels (top) indicate the

locations where neighboring patches must have similar intensity.

Whole image frame for overlapping video patches must agree as

well for the video case (bottom)

fact, the very small size of inputs (8×6 pixels) considered in

this work would make the recovery of facial motions (e.g.,

opening and closing of the eyelids and mouth, the appear-

ance of pupils and teeth, etc.) particularly difficult. Avoid-

ing this motion estimation problem, our representation deals

with complicated visual phenomena such as occlusions, ap-

pearance of new structures, and non-diffeomorphic defor-

mations naturally, in terms of interacting chunks of high-

resolution video that constitute the nodes in T .

3 Theory of High-Zoom Inference

In this section, we formulate the problem of super-resolving

videos by combining the conditional independencies in our

graphical model with a basic observation that we call the

unique template assumption.

Using our graphical model, we pose the problem of

super-resolution as one of finding the Maximum A Poste-

riori (MAP) high-resolution image HMAP and the illumi-

nation offset IMAP given the low-resolution image L:

(HMAP , IMAP ) , arg max
H,I

logP (H, I | L).

To express the MAP estimate in terms of known quantities,

we first marginalize over the unknown template image T :

P (H, I | L) =
∑

T

P (H, I, T | L).

By applying the chain rule1 twice, the posterior becomes

∑

T

{

P (H | I, T, L) P (I, T | L)
}

=
∑

T

{

P (H | I, T, L) P (I | T,L) P (T | L)
}

.

1The chain rule asserts that P (X, Y ) = P (X | Y )P (Y ).

Using Bayes rule in the first term, the posterior becomes

∑

T

{P (L | H, I, T ) P (H | I, T )

P (L | I, T )
P (I | T,L) P (T | L)

}

.

Observing the conditional independence2 P (L | H, I, T ) =
P (L | H) entailed by our graphical model, and capturing

the denominator by a constant C, we rewrite the posterior as

C
∑

T

{

P (L | H)P (H | I, T )P (I | T,L)P (T | L)
}

. (1)

At this point, we would like to tease out a premise that

underlies the entire enterprise of super-resolution. The very

assumption that we can perfectly succeed at the task of

super-resolution (i.e., uniquely, and to arbitrary resolution)

implies that the underlying distribution P (T | L) is peaked

around the true high-resolution solution. As an approxima-

tion, we assume that this posterior is a delta-function at the

true configuration, which we estimate using the input.

Unique Template Assumption. Assume that the

probability P (T | L) over all possible configurations of T

is highly concentrated around T ∗ = T ∗(L), i.e.,

P (T | L) ≈ δ(T − T ∗). (2)

Deferring the computation of T ∗ until section 4, we substi-

tute (2) into (1) so that P (H, I | L) is approximately

C P (L | H)P (H | I, T ∗)P (I | T ∗, L). (3)

Using (3), HMAP and IMAP approximately maximize

log P (L | H) + log P (H | I, T ∗) + log P (I | T ∗, L). (4)

The individual terms of this objective function have natu-

ral interpretations: The first term states that through H we

should aim to increase the likelihood of the reconstructed

observation L. The second term encourages those H that

differ from T up to an intensity offset, effectively imposing

only a gradient match to the template T . Finally, the last

enforces the illumination to be consistent with the assumed

template T ∗ and observation L.

4 Finding the Peak Template T
∗

Now we describe our method for computing the peak tem-

plate T ∗ in (2) by estimating the maximum of P (T | L).
Using Bayes rule, we first rewrite this posterior in terms of

likelihood and prior terms. Observing that nodes in L are

2Two nodes which are not connected by a link are independent when

conditioned upon their neighbors.
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Figure 5: Each database entry contains an image patch, the neigh-

boring pixels (for enforcing consistency), a feature vector (for

matching to the low-resolution image), and its location (for sup-

porting non-homogeneous spatial statistics). This structure is re-

peated for all frames within the temporal support considered.

conditionally independent given the high-resolution tem-

plate T , we obtain a factorized likelihood term

P (T | L) ∝ P (L | T ) P (T )=

N
∏

p=1

P (Lp | Tp) P (T ). (5)

Unfortunately, in the case of extremely blurred images, the

likelihood term P (Lp | Tp) is too weak; that is, many tem-

plates match with a given Lp. One remedy to this problem is

based on the observation that there are spatial dependencies

in the observed data. Thus, by pooling contextual informa-

tion about Lp into a local feature vector, one can make the

likelihood term more descriptive. The downside of such an

extension is that the factorized form of (5) will no longer be

valid. In section 4.2, we will present the details of such a

feature vector, and expose our assumptions for achieving a

computationally tractable algorithm.

4.1 The Template Prior

We restrict the space of possible T ’s to a domain-specific

collection of example templates. To this end, a database is

generated from training data by artificially downsampling

high-resolution images and computing their low-resolution

feature images. As shown in Fig. 5, we store these ex-

amples patch-wise, in that each record is a quadruple,

(tk, nk, fk, sk), containing high-resolution template patch

pixels tk, a thin strip of surrounding pixels nk, the feature

vector fk computed at the corresponding low-resolution

pixel, and the location of the template sk.

The MRF model assigns a probability to each template

patch configuration T , and according to the Hammersley-

Clifford theorem, P (T ) is a product
∏

Tp,Tq
φ(Tp, Tq) of

compatibility functions φ(Tp, Tq) over all pairs of neigh-

boring nodes. We define φ using similarity between pixel

values in the overlapping areas of example patches.

φ(Tp = tk, Tq = tl) ∝ exp
(

−
∑

overlap

(

tk(u)− nl(v)
)2

−
∑

overlap

(

nk(u)− tl(v)
)2

)

.

Figure 6: Interactions involved in determining optimal template

T
∗. For illustration purposes, a 1-dimensional version of the

model in Fig. 2 is shown on left. After applying the factoriza-

tion assumption, the resulting graph structure (right) is tractable

enough to apply inference methods such as ICM.

4.2 The Feature Vector

To render the likelihood term more descriptive, we use a

multi-scale feature vector derived from the low resolution

observation L. Following [2], we adopted the parent vector

[10] as our feature Fp, which stacks together local intensity,

gradient and Laplacian image values at multiple scales. Fig.

6 (left) shows a 1-dimensional version of Fig. 2 with the

feature vector nodes added.

Factorization Assumption. Observe that we have two

random fields, F and T , which are coupled through the im-

age degradation model. For computational tractability, we

invoke the pseudo-likelihood approximation [14] to assume

that P (F | T ) factorizes across feature image pixels:

P (F | T ) ≈
N
∏

p=1

P (Fp | T ). (6)

Correspondingly, the graphical model of Fig. 6 (left) is sim-

plified to Fig. 6 (right).

The likelihood P (Fp = fp | Tp = tk) will be defined

using the similarity between the feature vectors fp and fk,

where k is an index to database entries. For a spatially-

varying (i.e., inhomogeneous) prior for Tp, we consider a

similarity of the form

P (Fp = fp |Tp = tk)∝
{

exp
(

−‖fp − fk‖2
)

if sk = p,

0 otherwise.

Using the factorized form (6), T ∗ is approximately

arg max
T

N
∏

p=1

P (Fp | Tp)
∏

(p,q)

φ(Tp, Tq). (7)

4.3 ICM Algorithm for T
∗

Maximizing the joint probability of T in (7) to obtain T ∗ is

a non-trivial task. We adopt a greedy approach commonly
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taken in the field of Bayesian image estimation: The Iter-

ated Conditional Modes (ICM) algorithm [3] takes advan-

tage of the Markov structure and maximizes local condi-

tional probabilities sequentially.

input : observed feature vectors F

output : template image T ∗

/* initialize T
∗ with local Maximum Likelihood estimates */

1 for all video patches p do

T ∗

p ← arg max
tk

P (Fp = fp | Tp = tk)
end

/* choose a video patch, and update it using its neighbors */

2 repeat

pick a random location p

T ∗

p ← arg max
tk

P (Fp|T ∗

p = tk)
∏

q∈N(p)

φ(T ∗

p = tk, T ∗

q )

until T ∗ converges;

Algorithm 1: Finding T ∗ with ICM

5 Hallucinating H

Now we introduce the details of the likelihood models of

image formation and observation, and show that video hal-

lucination (computing HMAP and IMAP ) only requires a

quadratic minimization in addition to the ICM algorithm

for computing T ∗. We then note that a particular case of

our framework provides a probabilistic interpretation for the

objective function used in [2] for static images.

5.1 Likelihood Models

After the high-resolution template image T ∗ is composed,

an intensity offset field I is applied, producing the high-

resolution image H , where

H = T ∗ + I + ηH .

To express the uncertainties due to both template and illumi-

nation models, we include pixel-wise independent additive

Gaussian noise ηH ∼ N(0, diag(σH)):

P (H |T, I)=

MN
∏

h=1

1

σH

√
2π

exp
(

−
(

H(h)−T (h)−I(h)
)2

2 σH
2

)

.

After the high-resolution image H is blurred and downsam-

pled, sensor noise is added, resulting in our model for the

low-resolution observation L:

L = AH + ηL,

where matrix A is a local averaging operator with N rows

and MN columns. We assume a pixel-wise independent

noise model for L:

P (L | H)=

N
∏

l=1

1

σL

√
2π

exp
(

−
(

L(l)−(AH)(l)
)2

2 σL
2

)

.

5.2 Computing HMAP and IMAP

Assuming that I and the kernel for blur operator A do not

vary within each patch, one can show that − log P (I |
T ∗, L) is a quadratic form. Combined with the likelihood

models above, we can evaluate (4). Thus, HMAP and

IMAP minimize

‖L−AH‖2 +
σ2

L

σ2
H

‖T ∗ +I−H‖2 +‖L−AT ∗−I‖2. (8)

Individual terms above have intuitive interpretations: From

left to right, first, we require the high-resolution image H

to be able to reconstruct the observation L as closely as

possible. Second, we would like H to match T ∗ up to an

illumination shift I . Third, I may not take arbitrary values

and should be a consistent illumination offset with respect

to T ∗ and L. Finally, we observe that (8) is quadratic in the

unknowns H and I , and employ a gradient ascent scheme

for this maximization.

5.3 Comparison to Baker-Kanade

The algorithm (8) obtained in the previous subsection can

be compared to an existing approach for static images [2].

Specializing the illumination offset to be constant across the

image (i.e., I(h) = Ic for h = 1, 2, ..,MN ), the Euler-

Lagrange equations for the maximization in (8) w.r.t. a

high-resolution pixel h become
(

AT (L−AH)
)

(h) + H(h)− T ∗(h)− Ic = 0. (9)

Consider two neighboring high-resolution pixels, h = i and

h = j. Taking the difference of their constraints yields

H(i)−H(j) ≈ T ∗(j)− T ∗(j). (10)

Note that for pixels i and j, the first terms of (9) are ap-

proximately equal: When we backproject an error in the

low-resolution reconstruction onto high-resolution pixels,

we cannot distinguish the effect of high-resolution pixel i

on L from that of its neighbor j. (10), in turn, suggests an

approximate match of the gradients

∇H(i) ≈ ∇T ∗(i).

In other words, our scheme encourages the gradients of the

hallucination H to match those in T ∗. Contrasting this ob-

servation with the Baker-Kanade [2] objective function

HBK = arg max
H
‖L−AH‖2 + λ‖∇H −∇T‖2,

we observe that our graphical model setup and its subse-

quent specialization motivates the objective of matching

gradients as well. Again, note that [2] dealt with static im-

ages only, without modeling spatial interactions.
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6 Results

6.1 Training Data and Testing

We generated our database of face template patches from a

1200 frame-long (40 sec) video of a speaking person, where

the face covered an area of 128 × 96 pixels. The global

motion in this video was removed using a translation-only

motion model.

In our learning, we used individual low resolution pix-

els as patches, corresponding to 16 × 16 pixel-wide high

resolution patches in both T and H . The neighboring pixels

come from the 2-pixel wide frame that surrounds each patch

(Fig. 5). Finally, the feature vector stacks 12-dimensional

(composed of intensity, horizontal and vertical derivatives,

and Laplacian, each computed over 3 scales) vectors for

each frame within the temporal support considered.

In order to generate the test data, we used a separate,

30 frame-long video sequence of the same person, whose

translational motion is removed as above. After adding

translational jitter noise (zero-mean Gaussian with σ = 1
high-resolution pixel), we blurred and downsampled this

test video at a resolution of 8 × 6 pixels (examples of such

images can be seen in the top row of Fig. 8). We also added

Gaussian noise (zero-mean, σ = 1) to its intensity values

to account for uncertainties in sensing. Finally, since our

data sets exhibited minimal change in the illumination con-

ditions, we considered a constant illumination offset value

for the entire image.

To better contrast the roles of spatial and temporal cou-

plings, we ran multiple hallucination experiments in which

we turned these couplings on and off and varied the range

of temporal interaction from one to five frames.

6.2 Spatial Interaction

Fig. 8 displays a selected subset of frames corresponding to

time instants t=2, 4, 14, and 19, for three such settings 3. In

the first row, 8 × 6 input images are displayed whereas the

last row shows the underlying 128 × 96 pixel-wide ground

truth images.

The second row shows hallucination results with no in-

teraction among patches Tp (i.e., each patch in each frame is

hallucinated independently using the local Maximum Like-

lihood estimate computed in step 1 of Alg. 1). We ob-

serve that the results look very patchy due to blocking ar-

tifacts and extraneous edges. For the third row, we ig-

nore temporal interactions but enforce spatial interactions

so that hallucination is performed independently for each

frame, or frame-wise. We note that many of the blocking

artifacts have disappeared, but unfortunately, hallucinations

now contain some incorrect estimates of the underlying face

motions (e.g., closed vs. open eyelid and mouth).

3Test input, output, and ground truth videos can be downloaded from

http://www.cs.cmu.edu/ ˜dedeoglu/cvpr04
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Figure 7: Bias-Variance Trade-Off: We ran 36 hallucination ex-

periments with independent jitter and noise, and compared out-

put videos against the ground truth. To summarize the measured

bias and variance videos, we plot their value averaged spatially

and temporally. Enforcing spatio-temporal couplings reduces the

Mean Squared Error (left), primarily by reducing the variance and

enhancing the stability of hallucinated videos (right). However,

stronger temporal couplings induce a larger bias (middle).

6.3 Spatio-Temporal Interaction

In the fourth row of Fig. 8, we included representative

results for temporal hallucination, where we used three

frames of temporal support. First, we note hallucinations

become more correct when temporal interactions are al-

lowed (compare the opening of eyelid and mouth with

spatial-only hallucinations).

Inspected as static images, the results in Fig. 8 already

exhibit considerable improvements due to both spatial-

only and spatio-temporal modeling of the problem at hand.

Moreover, as can be verified from the attached video files,

our results as video sequences are even more compelling:

Frame-to-frame transitions that are not directly observable

in static images can have perceptually detrimental effects

when seen as a time sequence. We observe that such flicker

artifacts, amply present in frame-wise hallucinations, van-

ish to a large extent when temporal couplings are taken into

account (i.e., when two or more frames of temporal support

are used). These observations show that time plays a crucial

role as a regularizer in our inference.

In order to quantify the role of time, we provide an em-

pirical analysis of the effect of various levels of temporal

couplings. While varying the amount of temporal support

in the nodes of T from a single frame (i.e., frame-wise hal-

lucination, using spatial coupling only) to five frames, we

compared the resulting hallucination videos to the ground

truth video using the L2-norm. Fig. 7 (left) shows a notice-

able drop in the Mean-Squared-Error (MSE) metric as soon

as temporal couplings are considered. In fact, the Bias-

Variance decomposition of MSE [7] reveals a more inter-

esting phenomenon: Temporal models dramatically reduce

the variance of our video hallucinator (Fig. 7, right), result-

ing in more stable videos. However, as temporal couplings

become stronger, the bias also increases.
To further analyze the reduction in the amount of video

flicker artifacts, we have measured frame-to-frame differ-
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Figure 9: Incorporation of temporal couplings reduces the errors

in the estimates of temporal derivatives. The two peaks observed

around frames 8 and 21 are due to blinking eyes, indicating that

both algorithms are challenged. Error bars indicate one standard

deviation from a sample set of size 36.

ences between consecutive time instants (i.e., temporal

derivatives) in videos, and we have investigated how well

these matched. Fig. 9 plots the L2-norm of the errors (rela-

tive to the ground truth video) in estimated temporal deriva-

tives as a function of time. We notice that errors observed in

frame-wise hallucinations are consistently higher compared

to those of temporal hallucinations. In addition, the vari-

ability in error is lower when temporal couplings are used

(bottom curve).

7 Limitations and Conclusion
Our training and testing sets have dealt with only one sub-

ject’s videos. Yet our experimental results already expose

the benefits of using spatial and temporal interactions in

hallucinating high-zoom videos. In the future, we will be

enlarging our database to include more subjects.

This work used a spatially inhomogeneous prior for the

template T . While such priors require input images to be

registered, they also render database referencing and fea-

ture comparison steps more efficient. Although we chal-

lenged the registration assumption with translational jitter

noise, space-invariant priors remain to be studied. Finally,

since our data set did not include illumination variations,

the additional power of our intensity offset model remains

to be tested.

In summary, we formulated the task of hallucinating
high-zoomed face videos as one of probabilistic inference,
and dealt with the temporal nature of the problem directly.
Through experiments, we visually displayed and quantified
the benefit of incorcorating spatial and temporal couplings
among units of estimated high-resolution videos.
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