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Abstract

Recent likelihood theory produces p-values that have remarkable accuracy and wide
applicability. The calculations use familiar tools such as maximum likelihood values
(MLEs), observed informations, and parameter rescaling. The usual evaluation of such
p-values is by simulations, and such simulations do verify that the global distribution
of the p-values is uniform(0,1), to high accuracy in repeated sampling. The derivation
of the p-values however asserts a stronger statement, that they have a uniform(0,1) dis-
tribution conditionally, given identified precision information provided by the data. We
take a simple regression example that involves exact precision information and use large
sample techniques to extract highly accurate information as to the statistical position of
the data point with respect to the parameter: specifically, we examine various p-values
and Bayesian posterior survivor s-values for validity. With observed data we numeri-
cally evaluate the various p-values and s-values, and we also record the related general
formulas. We then assess the numerical values for accuracy using Markov chain Monte
Carlo (McMC) methods. We also propose some third-order likelihood-based procedures
for obtaining means and variances of Bayesian posterior distributions, again followed
by McMC assessment. Finally we propose some adaptive McMC methods to improve
the simulation acceptance rates. All these methods are based on asymptotic analysis
that works from the effect of additional data. And the methods use simple calculations
based on familiar maximizing values and related informations.

The example illustrates the general formulas and the ease of calculations, while the
McMC assessments demonstrate the numerical validity of the p-values as percentage
position of a data point. The example however is very simple and and transparent, and
thus gives little indication that in a wide generality of models the formulas do accurately
separate information for almost any parameter of interest, and then do give accurate
p-value determinations from that information. As illustration an enigmatic problem in
the literature is discussed and simulations are recorded; various examples in the litera-
ture are cited.
Key words and phrases: Asymptotics, Bayesian posterior s-value, canonical parame-
ter, default prior, higher order, likelihood, maximum likelihood departure, Metropolis-
Hastings algorithm, p-value, regression example, third-order.
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1 Introduction

We explore various large sample and likelihood methods for obtaining Bayesian and fre-
quentist p-values from a regular statistical model and data. Numerical values are obtained
for a simple example that indicates the ease with which the methods can be applied, given
the typically available maximum likelihood and related calculations. The general formulas
are presented and discussed.

The example, ignoring the non-normality of error, is simple and transparent: one could
plot the data, calculate means and standard deviations, do the bootstrap, or even record
likelihood and get broadly about the same answer. But the large sample techniques, more
exactly data accretion techniques, provide accurate separation of component parameter in-
formation, precisely summarize the available information, and give accurate determinations
of corresponding p-values.

In Section 2 we take a pragmatic approach and obtain p-values using simple departure
measures and distributional approximations related to the Central Limit Theorem. Then
in Section 3 we formally reference the statistical model and obtain a p-value based on the
signed likelihood root. In Section 4 we add a widely accepted default prior and obtain the
posterior survivor value, the analogue of the frequentist p-value. For the example these
require three dimensional integration.

But then in Section 5 we examine recently developed likelihood-based approximations that
have third order accuracy; numerical values are obtained for the example, and the gen-
eral formulas are discussed. In Section 6 we discuss the corresponding frequentist third
order p-values. Numerical values for the example are then presented together with various
intermediate values that indicate how the calculations proceed.

In Sections 7 and 8 we consider exact p-values for the preceding methods, as derived by
Markov chain Monte Carlo. As part of this we note that a N = 4 × 106 simulation in the
particular context gives about two figure accuracy for probabilities, about the same as the
third order approximation methods.

In Section 9 we briefly discuss the role of precision information in the Bayesian and frequen-
tist contexts. Section 10 looks directly at Bayesian means and variances and how they can
be approximated by recent likelihood-based methods. Again Markov chain Monte Carlo is
used to evaluate the accuracy.

Section 11 presents some intuitive thoughts on the Metropolis-Hastings step in Markov
chain Monte Carlo and then proposes several asymptotic and adaptive modifications of the
direct McMC approach; these are explored for p-values in Sections 12 and 13. A controversial
example is examined in Section 14, and some concluding remarks are recorded in a discussion
Section 15.

The Bayesian and frequentist methods give about the same answer for the example. In
fact for the particular example they give theoretically the same answer, a consequence of
the judicious choice of default prior for the Bayesian analysis. We do not address here the
manner of making such judicious choices or how the choice typically needs to be targetted
on the particular parameter of interest; this will be addressed subsequently.
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2 A simple example: departure of data from parameter value

Consider an example to illustrate the formulas coming from large sample or more exactly
data-accretion techniques: a small data set involving a response y with possible linear de-
pendence on a related variable x

x -3 -2 -1 0 1 2 3

y -2.68 -4.02 -2.91 0.22 0.38 -0.28 0.03
(1)

The response variability is taken to be thicker tailed than the normal, say the frequently
suggested Student(7) distribution. Then with linear dependence and constant response
variability, we have the model

f (y; θ) = σ−7
7∏

i=1

h
{
σ−1 (yi − α− βxi)

}
,

where h (z) =
{
Γ (4) /Γ (1/2) Γ (7/2)

√
7
} (

1 + z2/7
)
−4

is the Student(7) density. Or using

an inverted pivotal form, we can write yi = α + βxi + σzi where the latent errors zi are
independent Student(7). Now suppose we are interested in assessing the response depen-
dence on x as given by the regression parameter β, with particular interest in whether β = 1.

As background we note that the response data were in fact generated from the given model
with Student (7) error and then rounded to two decimal places; the parameter values used
to generate the data were: α = 0, β = 1, and σ = 1. In passing we note that σ is an error
scaling and does not record directly the error standard deviation. Also there is no implied
connection between the number of observations n = 7 and the degrees of freedom for the
error density df = 7. The example has simple and transparent structure, and we use it to
examine various frequentist and Bayesian assessment methods; we then apply Markov chain
Monte Carlo sampling to check the distributional validity of the resulting values.

The example is simple and transparent and we could probably do as well by plotting or
by least squares and standard deviations. The likelihood model theory however gives a
precise separation of information concerning parameters of interest and an accurate de-
termination of the p-value or percentage position of data with respect to a value for the
parameter of interest. As a more general illustration, we later record simulation data for
a challenging example from the literature. We also cite various examples that have been
examined in the literature.

For the example considered, a pragmatic first step is to use least squares to separate out
the general location and the linear dependence on the related variable x. The fitted values
for α and β are

a = −1.322857, b = 0.675000,

with residual length s = (SSR)1/2 = 2.660046 obtained from the sum of squares of residuals.

The parameter β records the indicated linear dependence of y on x. To assess the value β = 1
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in the presence of the data we can reasonably examine the raw departure b−β = −0.325000,
and then standardize it by its estimated standard deviation to obtain a standardized mea-
sure of departure of data from parameter value, giving

t =
b (y) − β

s/
√

5
√

28
, t0 =

.675000 − 1

2.660046/
√

5
√

28
= −1.445634. (2)

To interpret this statistically we need information concerning the distribution of possible
values for t in the context where the true value of β is 1. To this end, some reference
to large sample theory suggests the use of the standard normal distribution function, say
Φ (·). The observed value of this distribution function then gives an approximation to the
percentage of possible values of t that would be less than the observed t0, in other words,
to the percentage position of the data with respect to the hypothesized value β = 1; this
is called the observed p-value. Using the standard normal then as an approximation, we
obtain the approximate p-value

pN = Φ
(
t0
)

= Φ(−1.445634) = .07414 = 7.414%, (3)

which records the observed level of significance in an elemental form, as just the percentage
position of the data point or the probability left of the data point, under the hypothesis.

A simple modification hopefully to accommodate the estimation of error scaling is obtained
by using the Student(5) distribution function, sayH5 (·), as a revised approximation method.
We then obtain the approximate p-value

pS = H5

(
t0
)

= H5 (−1.445634) = .10395 = 10.395%. (4)

An alternative to the direct use of the large sample distribution theory is provided by the
bootstrap approach. Using the least squares values, we separate the data values into a
location or fit component ŷi and a residual component yi − ŷi

x -3 -2 -1 0 1 2 3

ŷ -3.3479 -2.6729 -1.9979 -1.3229 -.6479 .0271 .7021

y − ŷ .6679 -1.3471 -.9121 1.5429 1.0279 -.3071 -.6721

For the bootstrap we randomly sample the residuals with equal probability and add them
back to the location component thus obtaining a bootstrap data set, from which we calculate
the bootstrap t-statistic value

t∗ =
b∗ − 1

s∗/
√

5
√

28
,

where b∗ and s∗ are the regression coefficient and residual length from the bootstrap sample.
We repeated this bootstrap sampling a convenient total of N = 10, 000 times, and the
empirical distribution function was evaluated at the observed t0 = −1.445634. This gave an
observed bootstrap p-value:

pBS = F̂
(
t0
)

= 0.1051 = 10.51%, (5)
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Table 1: Simple frequentist p-values for the regression example in Section 2: a p-value records
the percentage position of the data relative to a possible true value β for the parameter;
β = 1 is in fact the true value underlying the data set; β = 1.5 and β = 2 are other
values that might have been of interest. Multiple zeros are indicated by a superscript, thus
.02148 = .00148.

Measure of Distributional β = 1 β = 1.5 β = 2

departure approximation p-value p-value p-value

t-statistic Normal .07414 .03121 .08189

t-statistic Student(5) .10395 .02722 .02100

t-statistic Bootstrap N = 104 .10750 .02790 .03800

t-statistic Bootstrap (exact) N = 77 .10332 .02833 .03888

SLR Normal .05774 .02148 .04830

where F̂ (t) is the empirical distribution function of the bootstrap t∗ values.

With the present small sample size n = 7 we can calculate the bootstrap p-value exactly,
pExBS, by using equal probability for each of the 77 = 823, 543 possible bootstrap samples.
We then take

pExBS = {proportion(t∗ < t0) + proportion(t∗ ≤ t0)}/2, (6)

called a mid-p-value, and obtain

pExBS = 0.1033231 = 10.333%; (7)

with our particular rounded t0 value there were no values at the boundary point. These
four approximate p-values make use of a pragmatic choice of departure measure combined
with distributional information provided by Central Limit Theorem type approximations or
by resampling from the nonparametric maximum likelihood distribution; and they provide
us with four determinations of the observed percentage position of the data relative to the
model with β = 1. Other initial departure measures could have been considered, as well as
other distributional approximations or determinations.

These p-values for testing β = 1 are recorded in Table 1 together with a likelihood based
method discussed in the next section. The table also records p-values for testing the
more extreme β values, 1.5 and 2 with corresponding observed values t0 = −3.669685
and t0 = −5.893737.
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3 The example: simple likelihood departure measure

More intrinsic departure measures are available from long available likelihood theory. The
likelihood function in the present Student regression context is

L (α, β, σ; y) = cσ−7
7∏

i=1

{
1 +

(yi − α− βxi)
2

7σ2

}
−4

, (8)

with log-likelihood

` (α, β, σ; y) = a− 7 log σ − 4
7∑

i=1

log

{
1 +

(yi − α− βxi)
2

7σ2

}
; (9)

the observed likelihood L0 (α, β, σ) and observed log-likelihood `0 (α, β, σ) are obtained by
substituting the data y0 =

(
y0
1 , · · · , y0

7

)
from the data array (1) into the above expressions.

In a general context the observed likelihood function is given as

L0 (θ) = L
(
θ; y0

)
= cf

(
y0; θ

)
= f0 (θ) ,

which is the observed density function, that is, the statistical model f (y; θ) examined at
the observed data point y0; it records the amount of probability sitting at that data point,
viewed as a function of possible values for the parameter. The constant c is taken as
arbitrary but positive and indicates that only relative values from one θ value to another
are of relevance given the data point. If we consider in general how likelihood depends on
data we can write

L (θ; y) = cf (y; θ)

` (θ; y) = a+ log f (y; θ) ,

where c > 0 and a, c are otherwise arbitrary for each choice of data point y.

Suppose now that we are interested in a scalar component ψ = ψ (θ). Most likelihood
methods make use of maximum likelihood values (MLEs); we do however avoid referring
to them as estimates, as they are useful but typically not directly as estimates. We write
θ̂ = arg supL (θ) for the value that maximizes L (θ). Also if ψ (θ) is a component parameter
of particular interest, we write θ̂ψ = arg supψ(θ)=ψ L (θ) for the value that maximizes L (θ)
subject to the interest parameter ψ (θ) having some value ψ (θ) = ψ of special interest. Then
based on the likelihood L (θ) alone, an important departure measure of data from ψ (θ) = ψ
is obtained as the signed likelihood root (SLR)

rψ = sign
(
ψ̂ − ψ

) [
2
{
`
(
θ̂
)
− `

(
θ̂ψ
)}]1/2

; (10)

this measure examines how probability at the data point under the full model exceeds that
when ψ (θ) is restricted to the value ψ, and theory has shown it to be fundamental. One way
of viewing this measure is to picture how much the log-likelihood rises from the maximum

when ψ (θ) = ψ up to the overall maximum when θ is unrestricted, that is `
(
θ̂
)
− `

(
θ̂ψ
)
,
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often written ˆ̀− ˜̀. We take this rise as having quadratic form r2
ψ/2 in terms of some quantity

rψ; solve for rψ; and then attach the appropriate sign. For testing a true value ψ (θ) = ψ the
signed likelihood root rψ has to first order a standard normal limiting distribution, a follow
through from the Central Limit Theorem. Related measures could be based on the slope of
the log-likelihood at the tested value or on the displacement from θ̂ψ to θ̂ but neither has
the same mathematical invariance or the same track record in applications.

For many likelihood calculations, particularly recent higher order calculations, the compu-
tationally challenging aspects often arise in the maximization steps rather than in other
steps.

For our simple regression example and the related likelihood calculations we now use max-
imum likelihood rather than least squares variables; the observed values obtained by com-
puter iteration are

α̂ = −1.3504512, β̂ = 0.6504019, σ̂ = 0.9641110

for the overall MLEs, and

α̃ = α̂β=1 = −1.366699, β̃ = β̂β=1 = 1, σ̃ = σ̂β=1 = 1.154527

for the constrained MLEs when β = 1. In passing we note that the use of MLE variables
can be convenient but can be awkward when the error distribution itself has dependence on
the parameter; for if the distribution for the error itself has dependence on the parameter
rather than as here being just Student(7), then the maximum likelihood value could also
have that parameter dependence and thus not be a statistic. From the preceding numerical
values we obtain from (10) the signed likelihood root

rβ=1 = −1.574053. (11)

The corresponding observed p-value based on the first-order normal approximation for r is
then

pSLR = Φ(rβ=1) = 5.774%; (12)

this is also recorded in Table 1. In Figure 1 we plot the SLR p-value against a full range of
possible β values; this is called the p-value function; some related determinations discussed in
later sections are also recorded in the figure. Other likelihood departure measures based on
the score and maximum likelihood estimates are sometimes considered, but they frequently
have serious distributional and measurement bias difficulties. By contrast the SLR-based
approximate p-value uses a departure measure that directly relates to the statistical model;
it summarizes background information contained in the model combined with distributional
information derived from the large sample behavior of the likelihood function.

4 Analysis with default prior

An alternative first-order likelihood-based method comes from the use of a model-based flat
prior called a default prior together with conditional-probability type calculations, typically
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Figure 1
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Figure 1: For the example in Section 2: the third order Bayesian survivor function, the
third order frequentist p-value, and the first order SLR p-value.

referred to as Bayes algorithm. Let π (θ) be a weight function for θ based on symmetries, in-
variance, or other relevant properties of the model. The corresponding posterior distribution
viewed as providing inference information concerning θ is

π(θ| y0) = c π(θ) L (θ) , (13)

where c now indicates the norming constant. This default approach was implicit in Bayes
(1763), was strongly promoted by Laplace (1812) and Jeffreys (1946) and acquired the name
inverse probability. More recently its development has been stimulated by the Valencia
conferences (see for example, Bayesian Statistics 7, 2003); the default priors are called
objective priors but in such contexts the objective can only refer to model structure, not to
any objective frequencies in the context being examined.

For inference concerning an interest parameter, say ψ (θ), one might then reasonably calcu-
late the marginal posterior density function

π
(
ψ|y0

)
=

∫
π
(
θ| y0

)
dλ,

where λ is a complementing nuisance parameter here chosen so that θ is one-one equivalent
to (ψ, λ) and to have say Jacobian |∂θ/∂ψ∂λ| ≡ 1 so that support volume corrections can
be ignored.

This marginalization to obtain an inference distribution for a component parameter can
produce misleading results (for example, Dawid, et al, 1973). To overcome this issue, a
preferred approach is to have a prior that depends on the particular parameter of interest,
and thus to use a targetted prior πψ (θ) where the subscript indicates the particular pa-
rameter being targetted (for example: Jeffreys, 1946; Bernardo, 1979; Fraser et al, 2003).
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We do not address this important issue of choosing default priors but do acknowledge that
it is of major interest for the Bayesian community at the present time and in part for the
frequentist community.

For our simple regression example we might possibly consider the model-based default prior
π (θ) to be the invariant prior

π (θ)dθ =
dα dβ dσ

σ3
=
dα dβ d log σ

σ2
;

this derives from parameter transformations on the sample and parameter spaces and is
referred to as the left invariant prior (for example: Jeffreys, 1946; Fraser, 1979): under
transformations that make location and scale changes on the initial sample space, the differ-
ential rewritten as say dα dβ dσ/σ3 remains unchanged, is invariant. This left prior avoids
the marginalization issues for certain parameter components that are linear in a location
parameterization implied by asymptotic theory (Fraser & Reid, 2002); for many familiar
parameters of interest, however, it can lead to the marginalization issues; and furthermore
it does not correspond to the confidence theory pivotal inversion based on the usual equa-
tions (yi − α− βxi)/σ = zi.

For the parameter β, various approaches (for example, Dawid, Stone and Zidek, 1973; Fraser,
1979) suggest the targeted prior

πβ (θ) dθ =
dα dβ dσ

σ
= dα dβ d log σ;

and for many parameters having a certain linearity it does avoid the marginalization issue;
some discussion of this linearity and a related curvature measure may be found in Fraser &
Reid (2002); the curvature issue does not arise in the present problem for the nice parameters
α, β, σ and we do not pursue the issue here. From the transformation viewpoint this is called
the right invariant prior. The corresponding model-based posterior for θ is then given by

π
(
α, β, τ ; y0

)
dθ = cσ−7

7∏

i=1

{
1 +

(
y0
i − α− βxi

)2

7σ2

}−4

dαdβd log σ; (14)

for this, if we now take θ to be (α, β, τ) = (α, β, log σ), the implied prior is π (θ) = 1 and it
conforms to confidence inversion.

In order then to obtain the marginal density for the interest parameter β, an integration
over α and τ is required. Repeated numerical integration over 2 dimensions can be quite
feasible but often are not easily implemented; we next consider some alternative integration
procedures.

For more general use of this Bayesian approach the choice of the default prior becomes a
crucial issue and is the focus of much present activity in the Bayesian community; the term
objective Bayesian prior is sometimes used in place of the term default Bayesian prior, but
this is misleading as the objective would indicate that it is describing the physical context
rather than being based as here on model characteristics, a level removed from the physical
context.
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5 Third order with default prior

For many regular densities, posterior or otherwise, the Laplace integration method provides
an accurate alternative route for obtaining the marginal density of a component, such as β
in our case. As before, but in general notation, we use π (ψ, λ) for the proposed prior and
L (ψ, λ) for the likelihood. Then with third-order accuracy, the marginal posterior density
for ψ can be obtained by Laplace integration over the nuisance parameter divided by Laplace
integration over the full parameter, giving

π
(
ψ; y0

)
=

ek/n

(2π)d/2
e−r

2
ψ
/2





∣∣∣ĵθθ
∣∣∣

∣∣∣jλλ
(
θ̂ψ
)∣∣∣





1/2
π
(
θ̂ψ
)

π
(
θ̂
) , (15)

where k indicates a first-order constant: r2
ψ is the likelihood ratio quantity

r2ψ = 2
{
`
(
θ̂
)
− `

(
θ̂ψ
)}

(16)

discussed earlier but now used more generally with ψ of dimension d, nuisance parameter λ
of dimension m, and p = d+m; the Hessian matrices

jθθ (θ; y) = − ∂2

∂θ∂θ′
` (θ; y) , jλλ (θ; y) = − ∂2

∂λ∂λ′
` (θ; y)

are information functions for the full and for the nuisance parameters, and have dimensions
p × p and m × m; they are just negative second derivative matrices of the log-likelihood
function, and when evaluated at θ̂ and θ̂ψ give the observed information matrices

ĵθθ = jθθ
(
θ̂; y

)
, j̃λλ = jλλ

(
θ̂ψ
)

= jλλ
(
θ̂ψ; y

)
. (17)

Numerically, the information matrices can typically be computed by taking second differ-
ences based on very small and equally spaced values for each coordinate.

The preceding marginal density can also be written

π
(
ψ; y0

)
=

ek/n

(2π)d/2
LP (ψ)

LP

(
ψ̂
)





∣∣∣ĵθθ
∣∣∣

∣∣∣jλλ
(
θ̂ψ
)∣∣∣





1/2
π
(
θ̂ψ
)

π
(
θ̂
) , (18)

where
LP (ψ) = sup

λ
L (ψ, λ) = L(ψ, λ̂ψ)

is the profile likelihood function for ψ, obtained by maximizing the full likelihood over λ for
fixed value ψ of the interest parameter ψ (θ).

The methods inherent in the Laplace integration procedure can be described fairly eas-
ily. A regular function here L(ψ, λ) for fixed ψ whose logarithm has additive and maximum
likelihood value properties under increasing sample size n can be rewritten

f (λ) = eh(λ) = c exp
{
−ĵλλλ2/2

}
exp

{
aλ3/6n1/2 + bλ4/24n

}
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to third-order as a function of λ, with obvious generalization for vector λ; for this we are
letting λ designate a standardized departure of the original λ from the maximizing value for
f (λ) with ψ fixed. After expanding the second exponential in a power series and similarly
for the log-prior, and then integrating term by term with respect to λ we obtain to fourth
order,

∫
f (λ) π(ψ, λ)dλ = ek/n (2π)m/2

∣∣∣ĵλλ(ψ)
∣∣∣
−1/2

f
(
λ̂ψ
)
π(ψ, λ̂ψ),

where ĵ is the negative Hessian with respect to λ as evaluated at the maximum for the
fixed ψ. The integrations are based on simple reference to the multivariate normal integral;
for some background, see Strawderman (2000) and for some discussion of term by term
integration, see Andrews et al, (2005).

For a scalar interest parameter ψ we can reasonably be more interested in an integral of
its density function, and particularly in the right tail integral called the posterior survivor
function. Why the right tail? Well consider the simple case of a variable x measuring a
parameter ψ with error density f (e) and distribution function F (e), we have: the observed
p-value is p0 (ψ) = F 0 (ψ) = F

(
x0 − ψ

)
; the right tail posterior survivor function with a

natural flat prior is s (ψ) =
∫
∞

ψ f
(
x0;α

)
dα =

∫
∞

ψ f
(
x0 − α

)
dα = F

(
x0 − ψ

)
; and these are

equal. In more general model situations the p-value as discussed in the next section records
in a statistical sense where the data is with respect to ψ in a left to right distributional
sense and then corresponds as in the simple case to the survivor posterior value s(ψ).

For the general case a highly accurate approximation to the posterior survivor function is
available from likelihood theory (see for example, Fraser, Reid & Wu, 1999, generalizing
DiCiccio & Martin, 1991);

s (ψ) = 1 −G
(
ψ|y0

)
= Φ

(
r − r−1 log

r

q

)
= Φ(r∗) . (19)

For this, G designates the posterior distribution function for ψ, r is the signed likelihood
root rψ given as (10) in Section 3, qB is a score-type departure measure for ψ,

qB = `ψ
(
θ̂ψ
)




∣∣∣ĵλλ
(
θ̂ψ
)∣∣∣

∣∣∣ĵθθ
∣∣∣





1/2
π
(
θ̂
)

π
(
θ̂ψ
) (20)

where

`ψ (θ) =
∂

∂ψ
`
(
θ̂ψ
)

=
∂

∂ψ
`
(
θ; y0

)∣∣∣∣
θ̂ψ

(21)

is a score departure measure, and r∗ is implicitly defined. Note that for convenience we
have taken the full parameter θ to be given as (ψ, λ′)′ in terms of the components, and this
applies as well to the information matrices at (17).

Also we have chosen to record the upper tail for presenting posterior probability from the
posterior distribution; the interest parameter will often have physical meaning in a particu-
lar application and investigators will think in terms of a variable measuring the parameter
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as say with a maximum likelihood estimate. In such a framework the usual p-value is left
tail for the variable and correspondingly is right tail for the parameter as in the location
case: accordingly for harmony between the two inference approaches we take the reference
Bayesian probability to be the upper tail survivor value. In the next section we will find that
formula (19) using r from (10) and qB from (20) can be derived directly from frequentist
formulas in the next section by acting as if π

(
ψ; y0

)
in (15) were obtained from a location

model π
(
ψ − x; y0

)
with a nominal variable x taking the observed value x = 0.

For our simple example and testing β = 1, we have r = −1.574053 from (11) and we
have

qB = −0.9483686, (22)

where
`β
(
θ̂β=1

)
= −5.868699,

and the full and constrained information matrices for θ = (α, β, τ) are

ĵθθ = jθθ
(
θ̂
)

=




5.7894195 1.311060 −0.3286837
1.311060 27.288552 −1.3395559

−0.3286837 −1.339556 12.1900132


 , (23)

jλλ
(
θ̂β
)

=

(
4.0240689 −0.3319537
−0.3319537 8.5925687

)
(24)

with corresponding determinants
∣∣∣ĵθθ

∣∣∣ = 1892.702,
∣∣∣jλλ

(
θ̂β
)∣∣∣ = 34.4669. (25)

This gives r∗ = −1.252169; the Bayesian posterior survivor value from (18) is then

sB (1) = 0.1052542; (26)

this is recorded in Table 2 together with the Bayesian survivor values for testing β = 1.5
and β = 2, as well as some McMC validation results discussed in later sections.

The first-order likelihood method in Section 3 requires the full and the constrained maximum
likelihood values θ̂ and θ̂ψ with of course corresponding values for the log-likelihood function.
In order to take advantage of the approximate integration formulas in this section, we require
in addition the second derivative values at each MLE; such derivatives are of course also
needed for familiar score and MLE departure measures and typically can be obtained by
differencing.

We can also calculate the Bayesian survivor value s (β) for a range of values for β. For our
special example the Bayesian survivor function sB (β) is plotted in Figure 1 together with
the likelihood ratio p-value Φ (rβ) and a third order frequentist p-value to be discussed in
the next section.

6 Third order p-value

Recent likelihood methods give highly accurate approximations for frequentist inference in
much the same manner as for the Bayesian context just described. The methods require
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Table 2: For the simple regression example in Section 2, Bayesian s-values for assessing
the values β = 1, β = 1.5 and β = 2: using the third order formula (19); using the
McMC (Section 8 with Normal proposal); using AMcMC (Section 12 with adaptive choice
of Student proposal)

β = 1 β = 1.5 β = 2

Test procedure s-value s-value s-value

Bayesian: Third order (N = 4 × 106) .10525 .02725 .03923

Bayesian: McMC (N = 4 × 106, Normal) .10744 .02841 .02118

(Simulation SD) (.03484) (.03186) (.04789)

{Acceptance rate} {41.9%} {41.9%} {41.9%}

Bayesian: AMcMC (N = 4.106, adaptive Student) .10752 .02836 .02118

(Simulation SD) (.03332) (.03100) (.04366)

{Acceptance rate} {51.1%} {51.1%} {51.1%}

full and constrained maximum likelihood values θ̂ and θ̂ψ, as well as full and constrained
information determinants. They also, however, need something more in the way of informa-
tion from the model and data. The nature of this extra information can best be described
in terms of parameterization scaling or reexpression. In particular, we need to express the
initial parameter θ as a canonical-type parameter, say ϕ = ϕ (θ). In the Bayesian context,
such additional information is closely related to the development of an appropriate default
prior; thus the use of a weighted likelihood L (θ)π (θ) can partly be interpreted in terms
of seeking a location reparameterization β = β (θ) such that π (θ)dθ = dβ. Bayesian pa-
rameter reweightings have long been sought in the developmental sequence from invariant
(Bayes, 1763; Laplace, 1812) to Jeffreys (1946) to reference priors (Bernardo, 1979).

In the frequentist context the accessible reparameterizations are of an exponential rather
than a location type, but they give some access to the related location information. The ex-
ponential type reparameterization can be examined initially in the context of an exponential
model. To this effect, consider an exponential model with canonical parameter ϕ,

f (y;ϕ) = exp
{
ϕ′s (y) − κ (ϕ)

}
h (y) , (27)

where ϕ and s have the same dimension say p. For such a model, the saddlepoint approxi-
mation (Daniels, 1954) can be remarkably accurate, and has the density form

f̄ (y;ϕ) dy =
ek/n

(2π)p/2
e−r

2/2
∣∣∣ĵϕϕ

∣∣∣
1/2

dϕ̂ (28)

=
ek/n

(2π)p/2
e−r

2/2
∣∣∣ĵϕϕ

∣∣∣
−1/2

ds (29)

where r2 is the likelihood ratio quantity for assessing the full parameter ϕ and ĵϕϕ =
−
(
∂2/∂ϕ2

)
`
(
ϕ; y0

)
|ϕ̂ is the observed information matrix from a data point y. The renor-
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malized (28) is third-order accurate.

For the important special case of a scalar parameter ϕ, a corresponding distribution func-
tion approximation was developed by Lugannani & Rice (1980) and in an alternative form
by Barndorff-Nielsen (1991). Both versions use the signed likelihood ratio r = r (ϕ, s)
corresponding to (10), plus a maximum likelihood value departure q = q (ϕ, s)

qf = (ϕ̂− ϕ) ĵ1/2ϕϕ .

The approximate distribution function in the Barndorff-Nielsen (ibid) form for ϕ̂ or s is
then

F̄ (s;ϕ) = Φ

(
r − r−1 log

r

qf

)
= Φ(r∗) , (30)

and has third-order accuracy; this has the same form as (19) but uses a different departure
q appropriate to the present frequentist context. The similarity of the Bayesian formula
(19) and the above frequentist formula can appear more plausible by defining the following
reexpressions of the variable and the parameter:

β (ϕ) =

∫ ϕ

ĵ1/2ϕϕ dϕ̂, b (s) =

∫ s

ĵ−1/2
ϕϕ ds.

In terms of these, Welch & Peers (1963) showed in effect that b has a location model f (b− β)
to second order accuracy. This has profound implications for possible second order agree-
ment between Bayesian and frequentist methodologies, but Welch & Peers (1963) presented
their results in terms of the frequentist approach of obtaining confidence bounds by inte-

grating likelihood with respect to the Jeffreys (1946) prior i
1/2
ϕϕ (ϕ) dϕ. The same result with

some greater generality can be obtained by Taylors series expansion of an asymptotic model
with scalar variable and parameter; simple reexpressions of variable and parameter show
that to second order the model can be written either as a location or as an exponential
model; see for example, Cakmak et al, (1998) and Andrews et al (2005); a somewhat similar
result is available with vector variable and parameter; see Cakmak et al (1994).

For the case of a location model f (s− β) with a flat prior π (β) = c, the expression (20) for
qB simplifies to

qB = `β (β) ĵ
−1/2
ββ .

As `β (β; s) = (∂/∂β) ` (β; s) = − (∂/∂s) ` (s− β) = −`;s (β; s) from the location property,
and −`β (β) = `;s (β, s) = ϕ from the exponential form (27), we obtain through simple
algebra that qf = qB, which implies that the frequentist distribution function is equal to
the Bayesian survivor function, as would be expected. In other words this Welch & Peers
(1963) Bayesian-frequentist equality is obtained from the Jeffreys prior for the scalar expo-
nential model, and thus as demonstrated by Cakmak et al (1994, 1998) has an extension for
general asymptotic models. The advantages of this scalar parameter use of Jeffreys prior
has recently been discussed for the discrete binomial distribution context by Brown, Cai &
DasGupta (2001).

Now consider the vector exponential model (27) with p-dimensional canonical parameter
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ϕ and p-dimensional canonical variable s, and suppose that we are interested in a scalar
component parameter ψ (ϕ) having reasonable smoothness properties.

The signed likelihood root r = rψ in (10) is the primary departure measure and a max-
imum likelihood departure

qf (ψ) = sign
(
ψ̂ − ψ

)
|χ̂− χ̂ψ|





∣∣∣ĵϕϕ
∣∣∣

∣∣∣j(λλ)

(
θ̂ψ
)∣∣∣





1/2

. (31)

is the secondary departure measure. For this, θ = (λ, ψ) has been presented as a combina-
tion of ψ with a nuisance parameter λ which complements the interest parameter ψ; in the
vector case we should perhaps write the combination in term of row vectors as θ ′ = (ψ′, λ′).
The scalar parameter χ (θ) is a rotated coordinate of ϕ (θ) that acts as a surrogate for ψ (θ)
and has linearity in terms of ϕ (θ). Explicit formulas for the surrogate parameter χ (θ) and
the nuisance informations are recorded in the Appendix; some discussion also appears in the
next section; the parentheses around (λλ) are to indicate that the information has been re-
calibrated in terms of the new parameterization ϕ. All of this is easily accessible numerically,
and uses primarily just the typical ingredients of the Bayesian type approximation.

7 Third order for the example

We have just described how third-order p-values are available to assess a scalar parameter
ψ (θ) in an exponential model. While exponential models are of course quite important,
they do represent a very specialized type of model. However, recent likelihood theory has
shown that for a general continuous statistical model together with data, there exists a
corresponding exponential model that provides highly accurate third-order p-values for the
original model and data, using the formulas in the preceding section.

For our example in Section 3, the corresponding exponential model with data has the same
observed log-likelihood ` (θ) = log f

(
y0; θ

)
given as (9) and has a nominal reparameteriza-

tion ϕ′ = (ϕ1, ϕ2, ϕ3) given as a row vector; some discussion is given later. See also Davison
et al (2006). The reparameterization is

ϕ′ (α, β, σ) = 8
7∑

i=1

(
α+ βxi − y0

i

)
/7σ2

1 +
(
y0
i − α− βxi

)2
/7σ2

(
1, xi, d

0
i

)
, (32)

and is explained later in detail; here d0 is just the standardized residual vector
(
y0 − ŷ0

)
/σ̂0

recorded numerically preceding (35). The corresponding general formulas are recorded at
the end of this section.

To obtain the p-value for assessing any scalar component parameter, it suffices to treat
the observed likelihood as a function of ϕ, which of course means explicitly or implicitly
that the observed informations need to be reexpressed or recalibrated in terms of the ϕ
parameterization and the maximum likelihood departure needs also to be expressed in the
ϕ parameterization.
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The recalibration of the information is obtained from the derivative ϕθ (θ) = ∂ϕ/∂α∂β∂σ
of ϕ with respect to the initial parameters as evaluated at the maximum likelihood values.
For this with ψ = β and λ′ = (α, log σ), we obtain

ϕθ
(
θ̂0
)

=




5.7894195 1.311060 −0.3286837
1.3110600 27.288552 −1.3395559
−0.3286837 −1.339556 12.1900132


 ,

ϕλ
(
θ̂β=1

)
=




4.0240689 −0.3319537
−0.1474505 −7.5706463
−0.5188019 7.5500100


 .

Using these as scaling matrices along with the matrices (24) gives the recalibrated informa-
tion determinants:

|jϕϕ| = |jθθ| |ϕθ|−2 = 0.000528345∣∣∣j(λλ)

(
θ̂β=1

)∣∣∣ =
∣∣∣jλλ

(
θ̂β=1

)∣∣∣
∣∣ϕ′

λϕλ
∣∣−1

= 0.01844021.

The special maximum likelihood departure used in (31) is sgn(β̂ − β)|χ̂− χ̂β| = −5.602751.
We then use rβ=1 = −1.574053 from (11) together with

qβ=1 = −0.9483686 (33)

from (31) to substitute in (30); this gives the third order p-value

p3rd = .10525, (34)

which is recorded in Table 3 along with other values including those for testing the parameter
values β = 1.5 and β = 2.

We can also calculate the third order frequentist p-value p(β) for a range of values for β; for
our example, this p-value function is plotted in Figure 1 using dots to allow for comparison
with the Bayesian s(β) obtained in Section 4.

We record now some general thoughts on the reparameterization ϕ(θ). In the context with
independent scalar coordinates, we have

ϕ(θ) =
n∑

i=1

∂` (θ; yi)

∂yi

∣∣∣∣
y0
i

dyi
dθ

∣∣∣∣
(y0i ,θ̂0)

.

The first factor is a function of θ that records how the i-th coordinate influences the likeli-
hood function:

∂` (θ; yi)

∂yi
=

∂

∂yi
log fi (yi; θ) ;

it is the coordinate gradient of likelihood and can be viewed as a parameter when the
observed data values are substituted. For our example we have

∂` (θ; yi)

∂yi

∣∣∣∣
y0
i

= 8

(
α+ βxi − y0

i

)
/7σ2

1 +
(
y0
i − α− βxi

)2
/7σ2
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Table 3: Frequentist p-values for the simple regression example in Section 2, for assessing
the values β = 1, β = 1.5, and β = 2: using the third order formula (30) with (11) and (31);
using McMC with normal proposal centered at a value at hand with standard deviation 0.35
(Section 8); using McMC with a centered Student(7) proposal; and using McMC using an
adaptive Student proposal (Section 13).

β = 1 β = 1.5 β = 2

Test procedure p-value p-value p-value

Frequentist; Third order .10525 .02725 .03923

Frequentist; McMC (N = 4.106, Normal) .10832 .02819 .02118

(Simulation SD) (.03398) (.03109) (.04406)

{Acceptance rate} {38.0%} {38.0%} {38.0%}

McMC (N = 4.106, Student(7)) .10765 .02827 .02113

(Simulation SD) (.03196) (.04510) (.04185)

{Acceptance rate} {75.9%} {75.9%} {75.9%}

AMcMC (N = 4.106, adaptive Student) .10792 .02823 .02109

(Simulation SD) (.03204) (.04646) (.04264)

{Acceptance rate} {81.6%} {81.6%} {81.65%}

and it appears in (32) above. The second factor in (32) is a numerical row vector that
records how parameter change near the overall maximum likelihood value affects the i-th
coordinate; it records the sensitivity of the i-th coordinate to parameter change at the
maximum likelihood value. This uses the error zi as an i-th coordinate pivot, which with
continuity is necessarily one-one equivalent to the distribution function Fi (yi; θ); and then
with the pivot inverted to express yi = yi (θ, zi) in terms of θ and zi we obtain the derivative

dyi
dθ

∣∣∣∣
(y0i ,θ̂0)

for the i-th coordinate at the data point. For our example with zi = (yi − α − βxi)/σ) we
obtain

yi = α+ βxi + σz0
i

and then have
∂yi
∂α

= 1,
∂yi
∂β

= xi,
∂yi
∂σ

= zi.

Then for evaluation at (y0, θ̂0) we need the observed standardized residual ẑ0 = d0 = d(y0):

d0 =
{
d1

(
y0
)
, · · · , d7

(
y0
)}

′

= (0.5614092,−1.1324253,−0.7667588, 1.2969452, 0.8640297,−0.2581882,−0.5650118) ′

as calculated from

d0
i =

y0
i − α̂0 − β̂0xi

σ̂0
. (35)
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We thus obtain the final vector in
(
1, xi, d

0
i

)
as used in (32).

For some background theory see Fraser & Reid (1993, 1995, 2001) and for an overview
of the methodology for the regression context see Fraser, Reid & Wong (2005).

8 The exact p-values and s-values

Higher-order p-values and higher-order posterior survivor s-values are usually validated by
simulations, by verifying that the large sample distribution in each case is close to the
uniform(0,1) distribution. The formulas however have been developed in the context of a
conditional model: in the Bayesian context it is conditional on the full data, and in the fre-
quentist context it is conditional on data indicators of statistical precision, which typically
are given by exact or approximate ancillaries that reflect structure and continuity of the
model with respect to the variable and the parameter.

For a general frequentist context, the approximate ancillaries for third order inference are
well defined theoretically but are only needed near the observed data point and typically
are only available near the observed data. In such contexts this can make a full conditional
validation unattainable as typically there is no accessible information concerning other con-
ditioned points, beyond the tangent direction at the data. Our example however has special
linear and transformation properties that do provide an exact conditioning variable here
d (y), and thus an exact conditional distribution; some background and details are recorded
in the Appendix at point (i). Again as in Section 2 we describe the model in terms of
the convenient least squares coordinates (a, b, s), and then record the density for just the
standardized or null case with α = 0, β = 0, σ = 1; the conditional density for (a, b, s) is

g (a, b, s) = c
7∏

i=1

h {a+ bxi + sdi} s4, (36)

where as before h (z) is the Student(7) density; this is derived in Fraser(1979) and discussed
briefly in Fraser (2004). Note that we could also have used maximum likelihood variables, as
the error distribution is free of the parameter, but the least squares variables have convenient
simplicity; the non-null conditional density is then available directly as

σ−3g
{
σ−1 (a− α) , σ−1 (b− β) , σ−1s

}
.

The null and non-null distributions can also be expressed directly in terms of the observed
likelihood function L0 (α, β, σ), by simple change of argument; for details, see the Appendix
at point (i).

More generally, for a regression model y = Xβ + σz where z has error density f (z) =∏n
i=1 g (zi) and X is n× r with full column rank, the conditional null density for the least

squares (b, s) given the observed value of the residual vector d = s−1 (y −Xb) is

cf
(
Xb+ sd0

)
sn−r−1 (37)
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which is the original density reexpressed in terms of the new variables coupled with a
Jacobian scaling factor with power equal to the effective number of coordinates that are
conditioned. For sample simulations, next to be discussed, we will however switch from s
to log s to obtain an unbounded range, with corresponding effect on the density expressions
(36) and (37).

To assess the accuracy of the third order Bayesian values from Section 5 or the third order
frequentist p-values from Section 6, we will use large scale computer simulations from the
posterior density (15) or from the precision-based conditioned density (36) or (37). While
for our example with three coordinates, numerical integration would be feasible we choose
the more flexible and generally available Markov chain Monte Carlo (McMC) sampling
procedure.

For the McMC sampling we will refer to the distribution to be sampled as the target dis-
tribution or target density and use the notation g (y); in our case and frequently in general
such target distributions come to us unnormed, that is, we do not know the value of the inte-
gral

∫
g (y) dy. We describe a procedure for successively obtaining sample values y1, y2, . . ..

In particular, with a given sample value yi in hand, we sample from a normal distribution
located at that sample value with coordinate standard deviation here say .35 to obtain a
possible next sample value; this normal distribution is called a Gaussian proposal. We then
use a ratio of likelihood at the possible new value to likelihood at the value in hand to
decide whether the next value yi+1 is to be the just obtained trial sample value or is to be a
repeat of the value in hand; the likelihood ratio is called the Metropolis-Hastings criterion;
we are thus using a random walk Metropolis (RWM) algorithm with a Gaussian proposal

distribution to generate a sequence
(
y1, . . . , yN

)
of points where y here refers to the variable

in the target distribution being sampled, that is, the posterior (15) or the modified version
of the three-dimensional distribution (36) or (37). The limiting distribution of the sequence
approximates the distribution of the target but does have serial correlation that complicates
the estimation of the effective simulation sampling variance. An alternative and convenient
proposal distribution is the uniform proposal, a uniform distribution centered again at the
value in hand with range here say 1.50. For a recent overview see Robert & Casella (2004).

To estimate the true p-value based on the observed t-departure from our original data
set, we then check for each sample point whether t in (2) calculated from a simulated y is
less than the observed −1.445634; the simulated exact p-value is obtained as the proportion
satisfying the inequality; we will also report the estimated simulation standard deviation;
results are recorded in Table 3 together with the third order p-value from Section 7 and some
other values. The simulation size was N = 4, 000, 000; in the sample sequence we would
dump 50 values then retain 950 values and repeat this pattern; from this sampling pattern
we were able to obtain an estimate of the simulation standard deviation, using the 4,000
repeats of sample means from batches of 950; for some details, see the Appendix at point
(ii). The table also records p-values for testing β = 1.5 and β = 2.0 using corresponding
observed values t0=-3.669685 and t0 = -5.893737.
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9 Precision information and Bayesian-frequentist agreement

With continuous parameters and theory based nominally on increasing amounts of data
we have noted that p-values for scalar parameters are available with third-order accuracy.
Similarly, upper tail posterior values or s-values for scalar parameters are also available
with third-order accuracy assuming of course the acceptability of the prior. In the default
prior community, it seems acknowledged that the choice of sensible prior needs to be based
on the parameter of interest, in other words, targeted on the parameter of interest; the
development of targetted default priors will be examined separately.

For the frequentist approach we have noted that third-order methods relate implicitly to
conditioning on precision information obtained from the data; and the conditioning effec-
tively reduces the dimension of the active variable to the dimension of the parameter; for
some recent discussion see Casella et al (1995) and Fraser (2004).

In a paper presented at the International Workshop on Objective Bayesian Methodology
at the University of Valencia on June 13, 1999 one of the present authors discussed strong
matching defined to be the effective equivalence of the Bayesian s-value and the frequentist p-
value. The issue in the Bayesian context of having the choice of prior also reflect conditioning
on precision information provided by the model and data was mentioned by the presenter
and independently by the discussant T. Severini of Northwestern University. The issue
centered on a model with scalar parameter θ and a data precision indicator a such that
the actual measurement of θ was made by the submodel f1 (y; θ) if a = 1 and by submodel
f2 (y; θ) if a = 2; the data indicator had a fixed distribution equivalent to the toss of a fair
coin. This random choice of measurement model was proposed by Cox (1958).

Suppose that the model f1 (y; θ) has information i1 (θ) and the model f2 (y; θ) has informa-
tion i2 (θ): the information for the composite model is then i (θ) = {i1 (θ) + i2 (θ)} /2. The
Jeffreys prior gives the posterior

p (θ |y, a) = cf (y, a; θ) i1/2 (θ) , (38)

and it has a second-order location relationship with a reexpressed θ (Welch & Peers, 1963).
This Bayesian posterior distribution is of course conditional on the observed data, but the
indicated choice of prior does not reflect the information that the data has identified the
model type that actually made the measurement. If the corresponding information is used
to assist the determination of the prior, then the posterior, with reference to Jeffreys, would
be

p (θ |y, a) = cf (y, a; θ) i1/2a (θ) , (39)

where a has its observed value; see also Fraser (2004).

Clearly (38) and (39) differ whenever i1 (θ) differs from i2 (θ). Should the default Bayesian
allow the default or invariant prior to depend on information provided by the data?

At the workshop there was some acknowledgement of a place for such precision information
in the choice of default prior. If such conditioning is accepted among Bayesians and fre-
quentists then agreement to third-order is possible: the p-values are equal to the s-values
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and the professional disagreement would seem to vanish. What then seems clear in the
context of continuous parameters and modest regularity, is that the frequentist p-value and
the Bayesian s-values become equal if the frequentist accepts conditioning on observed pre-
cision information and the Bayesian suitably targets his default prior, responding to similar
information.

10 Bayesian posterior means and variances

We have been discussing the use of model precision information for the choice of a default
prior. Now suppose we take a prior for convenience or expediency or otherwise, and wish to
obtain some general posterior characteristics such as posterior means and variances. Means
and standard deviations can often provide a convenient summary for purposes of inference,
both frequentist and Bayesian. The data accretion techniques apply to likelihood of course
and consequently to weighted likelihood as given by a posterior. Accordingly we discuss
briefly how these large-sample type techniques can help in the Bayesian context.

Consider a component scalar parameter ψ (θ) and suppose we want just its mean and vari-
ance

M = E ψ (θ) =

∫
cψ (θ)L (θ)π (θ)dθ

V = E {ψ (θ) −M}2 =

∫
c {ψ (θ) −M}2 L (θ)π (θ) dθ,

where c here is the norming constant for the posterior distribution. We have of course the
option of extensive McMC simulations. We first however examine higher-order likelihood-
based methods that can be applied or adapted to this purpose.

From Section 2 and assuming we have a convenient nuisance parameterization λ we ob-
tain

f̄ (ψ) = ce−r
2
ψ
/2





∣∣∣ĵθθ
∣∣∣

∣∣∣jλλ
(
θ̂ψ
)∣∣∣





1/2
π
(
θ̂ψ
)

π
(
θ̂
) (40)

as the third-order posterior density approximation when renormalized, and

F̄ (ψ) = 1 − Φ

(
rψ − r−1

ψ log
rψ
qψ

)
(41)

as the third-order posterior distribution function approximation: the signed likelihood root
rψ is given by (10) in Section 3 and the adjusted maximum likelihood departure qψ by
(20) in Section 4. / With third-order accuracy for f̄ and F̄ we have third-order accuracy
available in principle for obtaining the means and variance. A generating-type function to
accomplish this would be appealing but seems inaccessible. Using the distribution function
directly, however, we do have the following reexpressions:

E (ψ) =

∫
∞

0
{1 − F (ψ) − F (−ψ)} dψ (42)

E
(
ψ2
)

=

∫
∞

0
{1 − F (ψ) + F (−ψ)} 2ψdψ. (43)
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Table 4: Third order posterior mean, variance and standard deviation by method I, II, III;
validation by McMC with N = 4.106

Computation method I II III McMC

Mean = E (β) .67642 .67639 .67208 .67172

Simulation SD (.03550)

Variance = V (β) .08096 .08101 .08615 .08436

Simulation SD (.03665)

SD = SD (β) .28453 .28463 .29352 .28642

Simulation SD (.03763)

As part of the usual computation of quantities such as the distribution function F̄ (ψ), a
familiar numerical practice is to evaluate the quantity at equally spaced points, say

· · · , ψ0 − 2δ, ψ0 − δ, ψ0, ψ0 + δ, ψ0 + 2δ, · · ·

taken about some convenient central value ψ0 using a small value for δ. Let

· · · , F−2, F−1, F0, F1, F2, · · ·

designate such distribution function values, which can conveniently be stored in a file. We
then have that

E (ψ − ψ0) = δ {· · · + F−2 + F−1 + (1 − F1) + 2 (1 − F2) + · · ·}
E (ψ − ψ0)

2 = 2δ2 {· · · + 2F−2 + 1 · F−1 + 1 · (1 − F1) + 2 (1 − F2) + · · ·}

are available immediately by cumulative sums through the stored file; we then directly ob-
tain E (ψ) and V (ψ).

For our regression example as discussed in Section 2 and 3, we have used a conventional
default prior for the Bayesian considerations in Section 4. The corresponding posterior sur-
vivor function for β was recorded as Figure 1 in Section 3. We processed the related file by
the above summation formulas allowing for the fact that F̄ (β) = 1 − sB (β) and obtained
the values in Table 4, column I.

We also differenced the distribution function values to get density values and used them
for ordinary numerical integration to obtain the mean and variance; the results are recorded
in column II.

As a more direct numerical approach, we used the estimated density f̄ as given by (40)
to obtain an alternate value by ordinary numerical integration; the results are recorded in
column III.
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Finally we used the Markov chain Monte Carlo methods as described in Section 7 to simulate
these posterior means and variances; the simulation size was N = 4, 000, 000. The results
for the normal sampling proposal are recorded in column IV of Table 4; the results for the
uniform sampling proposal were very close. We note the high accuracy of the third-order
procedures relative to the simulated exact, but do not here attempt a detailed comparison
of I, II, III.

11 Some thoughts on McMC

Consider a target density g (y) that we wish to sample from: for the example the target
g (y) is given by (14) for the Bayesian approach and by (36) for the conditional frequentist
case. In both cases the g (y) is unnormed; it is a relative density function. The sampling
difficulty for simulations is typically due to the fact that the target density is not a product
of independent variables with the related ease of sampling coordinate by coordinate. For
notation we will assume that g (y) is normed, but this will not be used other than to facili-
tate the discussion.

In this section we briefly discuss the McMC methodology from a statistical rather than
probabilistic point of view and accordingly use notation that is more statistical. This seems
particularly appropriate in the present context of comparing statistical inference from the
Bayesian and frequentist approaches: both give unnormed density functions that are con-
ditional. The large sample techniques give highly accurate third-order results; these can be
assessed by McMC and improvement can be obtained by increasing the simulation size N .

The theme behind the Markov chain Monte Carlo procedure is to use an accessible density
function, say f (x |y ) to produce a possible value x for the next value in a sample sequence,
based of course on the most recent value, say y. This accessible density is typically taken
to have an amenable product form with independent coordinates. In the McMC sampling
process with values y1, · · · , yn in hand, we sample from the proposal density f (x |yn ) to
obtain a candidate x for the next sample value. This candidate will either be accepted with
an acceptance probability A (x |yn ) with the result that yn+1 is set equal to x, or be rejected
with complementary probability 1 − A (x |yn ) with the result that yn+1 is set equal to yn

which is a repeat of the value in hand. The acceptance probability is often taken to be a
Metropolis-Hastings ratio (Metropolis, 1953, Hastings, 1970), now to be described.

For discussion we let g (x) and f (x |y ) designate probabilities of being in a neighborhood
of a point x. Of course we should properly write g (x)4 and f (x |y )4, where 4 is a small
volume element at the point x but all the 4’s will cancel and expressions are easier without
them.

Consider two sample space points a and b, and how a next sample point might be a tran-
sition or a repeat among these points. If we are at a first time point with data value a
and sample from the proposal f (x |a) when the target to sample from is g (x), then the
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likelihood ratio

L (b) =
g (b)

f (b |a)

records how things ideally should be scaled to agree with the target at b. Alternatively, if
we are at the same first time point with data value b and sample from the proposal f (x |b)
when the target to sample from is g (x), then the likelihood ratio

L (a) =
g (a)

f (a |b)

records how things ideally should be scaled to agree with the target at a. The ratio of these
likelihoods is called the Metropolis-Hastings ratio,

MH (b |a) =
L (b)

L (a)
=
g (b) /f (b |a)

g (a) /f (a |b) =
g (b) f (a |b)
g (a) f (b |a)

;

it gives us the mechanism to adjust the transition from a to b to give conformity to the
target density g (y); its reciprocal addresses the transition from b to a. Accordingly, the
acceptance probability for going from a to b is taken to be MH (b |a) but capped at the
maximum 1 possible for a probability:

A (b |a) = MH (b |a) ,

where the bar indicates the capping: Ā = min (A, 1). The capping can of course give a
shortfall in transitions from a to b but we see that the related rejection and repeat of the
preceding value precisely compensates.

Consider the typical case where the proposal f (x |y ) does not duplicate the target g (x).
And without loss of generality, consider a pair of points a, b where L (a) ≥ L (b) or

MH (b |a) = A (b |a) =
g (b) f (a |b)
g (a) f (b |a)

≤ 1.

Suppose the probabilities for the sampling process are correct at some possible point in
time, that is, they are equal to g (a) and g (b) corresponding to a and b for that time point.
Then suppose we consider transitions within the pair {a, b}. Concerning a transition going
from a to b the probability of being at a and going to b is

g (a) f (b |a)A (b |a) = g (b) f (a |b) ;

this represents a probability increase at b and probability loss at a. Concerning a transition
from b to a, while noting that A (a |b) = 1, the probability of being at b and going to a is

g (b) f (a |b)A (a |b) = g (b) f (a |b) ;

this represents a probability increase at a and probability loss at b. We note that the
two probability movements cancel each other and thus the probabilities at a and b are
maintained; we do note however that the rejection probability 1 −A (b |a) represents a loss
of new sampling information. One can thus view the acceptance probability as an effective
adjustment of the proposal f (x |y ) to yield proper transitions between pairs of points so as
to accomplish what is prescribed by the target g (y).
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12 Asymptotic McMC

For our example, the large-sample likelihood-based methods gave us a Bayesian analysis
in Section 4 and a frequentist analysis in Section 6. In both cases, we used Markov chain
Monte Carlo methods for validation: in the first case we sampled the unnormed posterior
π (θ)L (θ) given by (14) which is a conditional distribution given the data; in the second
case we sampled an unnormed sample space conditional distribution given by (36) which
is conditional on observed precision information. Of course the example is sufficiently low
dimensional that numerical integration could have been used, but McMC is easier to imple-
ment and readily extends to larger and more complicated sample spaces and target densities
g (y). We now examine how we can make use of the asymptotic form of the target distri-
bution to give a more efficient version of the proposal distribution. For our example, the
Metropolis-Hastings acceptance rates were approximately 38% for the normal proposal and
25% for the uniform proposal, and both yielded reasonable convergence rates. We now in-
vestigate ways to smartly increase this acceptance rate, by introducing a proposal density
that generates wiser moves and thus improves the precision of the McMC sampling process.

For our asymptotic context we have that the unnormed density g (y) has a maximum den-
sity value at a point which we designate as ŷ, and has a negative Hessian designated as
ĵ = −∂2 log g (y) /∂y∂y′ as evaluated at the maximum ŷ. We now assume that the variable
y has dimension say d, and investigate the choice of an expedient proposal f (x |y ). In
Section 7, we used a proposal that was a product of independent normals and another that
was a product of independent uniforms:

f
(
xn+1 |yn

)
=

d∏

i=1

h
(
xn+1
i |yni

)
, (44)

where h is either normal or uniform centered at yn, with scaling chosen pragmatically; in
the present case x and y have dimension d with coordinates x1, · · · , xd and y1, · · · , yd. Of
course a proposal that mimics the target g (y) would have advantages in efficiency, giving
candidate sample values that tend to agree with the target g (y) and thus have less loss.

A simple choice for the proposal f (x |y ) is the N
(
ŷ; ĵ−1

)
distribution which does not

depend on the preceding value. Such a multivariate normal is available in many computing
packages for random sampling and has here both the same point of maximum value and the
same local scaling as the target distribution. The normal however has short tails and thus
in sampling would often neglect the tails of a target distribution g (y), with loss of efficiency
perhaps serious in some contexts.

A more refined choice is the multivariate Student distribution with degrees of freedom chosen
pragmatically to give longer tails; see Brazzale (2000); this proposal is purely for the McMC
simulations and does not relate to the objective of interest, the p-value, although it does
affect the McMC simulations, as we will see. A canonical version of this Student distribution
with degrees of freedom say f is designated Studentf (0; I) and has density

h (T ) =
Γ
(
f+d

2

)

πd/2Γ
(
f
2

)
(
1 + T 2

1 + · · · + T 2
d

)
−
f+d

2 ; (45)
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sample values for this can be obtained as

T ′ =

(
z1
χf
, · · · , zd

χf

)
,

where the zi are independent standard normal and χf is a Chi variable with f degrees of
freedom, both easily accessible in computer packages. The negative Hessian of the canonical
log-density from (45) is (f + d) I and for use in the present context would need to be adjusted
by scaling and also of course by location to give the desired location and Hessian to match
the target. Accordingly, we take the modified proposal f (x |y ) replacing (44) to be the
Studentf{ŷ, (f + d)ĵ−1} with values available as

x = ŷ + (f + d)1/2 ĵ−1/2 T

= ŷ + (f + d)1/2 w/χf (46)

= ŷ +W/χf

where T designates a vector from the canonical Studentf (0, I), w designates a value from

the multivariate normal MV
(
0, ĵ−1

)
, W designates a value from the MN

(
0, (f + d) ĵ−1

)
,

and ĵ1/2 is a suitable square root matrix of ĵ. A pragmatic choice for the degrees of freedom
f could allow for thicker tails and provide improved sampling coverage of extremes. For
our example we simplistically chose the degrees of freedom f to be the degrees of freedom
7 that was used originally to generate the individual coordinates.

We then applied the McMC procedure using the Metropolis-Hastings ratio and sampled
N = 4, 000, 000 times using the dump 50, keep 950 procedure as described earlier; we then
calculated the proportion of values with

t ≤ −1.445634,

or equivalently with
b/s ≤ −.122178.

We obtained the p-value p = .10765 with simulation SD = .000196, along with an acceptance
rate of 76%; see Table 3. Values are also recorded for testing β = 1.5 and β = 2. Our view
verified so far is that the more the proposal mimics the target the higher the acceptance
rate will be. To obtain high accuracy, very large values of N are needed so any increase in
efficiency has merit. We discuss this briefly in the final discussion section.

13 Adaptive McMC

The use of a RWM sampling proposal f (x |y ) as in Section 7 is in its nature adaptive, as it
samples near the most recent sample value. We modify this adaptive procedure by having
the proposal mimic the target g (·), that is by having the same shape at the maximum and
the same drop off to the current value y in hand. We do this by centering and shaping the
proposal as in the preceding section, but also by determining the degrees of freedom f to
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duplicate the drop off

g (y)

g (ŷ)
=

{
1 +

(y − ŷ)′ ĵ (y − ŷ)

f + d

}
−
f+d

2

. (47)

from the maximum to the current point y; we then have that the Student proposal has
the same maximizing value and has the same Hessian as the target, but now also has
the degrees of freedom to duplicate the tail thickness at the current point in hand. For
pragmatic reasons we take f to be the nearest integer to the solution of (47) but restricting
it to the range from say the Cauchy with f = 1 to the near normal with f = 50. If we let
r2 = 2 log {g (ŷ) /g (y)} be the target likelihood ratio quantity and Q2 = (y − ŷ)′ ĵ (y − ŷ)
be the quadratic departure for the Student, we can solve for f + d = f using

f log

(
1 +

Q2

f

)
= r2 (48)

by a simple scan of integer values for f in {1, 2, · · · , 50}.

This adaptive McMC then proceeds as follows: if the ith sample value y i = y, we solve
for an integer f and then f using (48) and (47) and obtain a trial value x for the next

observation by sampling from f (x |y ) taken to be the Studentf
(
ŷ, (f + d) ĵ−1

)
distribution

using one of the data generation methods in (46).

For the Example, we now apply this adaptive procedure to the conditional distribution
(36) in Section 7 and examine the proportion of values with

t ≤ −1.445634

or equivalently with
b/s ≤ −.122178.

With N = 4, 000, 000 and using the dump 50, keep 950 procedure as before we obtain
p = .10792 with SD = .000204, along with an acceptance rate of 82%, substantially more
than with preceding methods. This is recorded in Table 3 together with values for assessing
β=1.5 and β=2.

14 Controversial example: Behrens-Fisher

(with Ye Sun, York University)

In a recent study of controversial examples in statistics (Fraser, Wong, & Sun, 2007), exten-
sive simulations were performed on some recent procedures for the Behrens (1929)-Fisher
(1935) statistical problem. This problem concerns a sample of n1 from a Normal(µ1, σ1) and
a sample of n2 from a Normal(µ2, σ2) and addresses inference for the difference δ = µ1 −µ2

of the population means. The statistical model is simple, just two normals but clearcut
procedures for inference have been elusive.
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Fisher(1935) following Behrens (1929) suggested that the confidence distribution for µ1 be
convolved with the confidence distribution for µ2 to target the difference δ = µ1 − µ2. This
combining of confidence distributions ran contrary to statistical practice at the time and
evoked an extensive literature response which we do not explore here.

Jeffreys (1961) recommended the use of the prior

σ−1
1 σ−1

2 dµ1dσ1dµ2dσ2,

which is the combination of the right invariant priors for the two normal models. Such right
invariant priors are common priors for default Bayesian analysis; also the right invariant
prior for a normal model can be seen to reproduce Fisher’s confidence distribution for the
corresponding mean.

Ghosh & Kim (2001) proposed a second order default prior

σ−3
1 σ−3

2

(
σ2

1/m+ σ2
2/n

)
dµ1dµ2dσ1dσ2,

which has somewhat the form of a weighted average of the two component right invariant
priors.

The signed likelihood ratio (10) examined in Section 3 can provide first order p-values and
confidence intervals. The β-level confidence interval for the difference δ in means has the
form (

δ : z−α/2 < rδ < zα/2
)

where
(
z
−α/2, zα/2

)
is a β = 1 − α interval for the standard normal and rδ is the signed

likelihood ratio (10) for assessing δ.

The third order likelihood methods in Section 6 use the signed likelihood ratio rδ together
with the maximum likelihood departure qδ formula (31), and then combine them using
Barndorff-Nielsen’s (1991) formula (30) to obtain an r∗δ for assessing the Behrens-Fisher δ.
The corresponding β-level confidence interval is

(
δ : z

−α/2 < r∗δ < zα/2
)
.

These methods were compared in Fraser, Wong, & Sun (2007) using a simulation size of
N = 10, 000. The third order methods generally performed well, especially with increasing
sample size.

For presentation here we choose the smallest possible sample sizes n1 = n2 = 2 and the
equal variance case and increased the simulation size to N = 10, 000, 000. Then for central
confidence intervals at levels 99%, 95%, 90% we calculated the %-age of cases with true
parameter value on the left side and on the right side of the confidence interval; the results
are recorded in Table 5; we also record the estimated simulation limits.

The results address a most extreme case of the Behrens-Fisher problem: samples of size
n1 = n2 = 2. The third order performance seems reasonably close to the target. It does
however deviate by more than the simulation limits would suggest; but it does represent a
substantial improvement over available procedures.
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Table 5: For a simulation size of N= 10,000,000, the table records the percentage of simula-
tion cases where the true value was left or right of the confidence interval. The target value
is the corresponding confidence value; the methods are the Bayesian Jeffreys and Ghosh &
Kim and the frequentist likelihood ratio and the third order.

99% CI 95% CI 90% CI

Method Outside left Outside right Outside left Outside right Outside left Outside right

Target value .50% .50% 2.50% 2.50% 5.00% 5.00%

Jeffreys .009% .010% .245% .245% .958% .960%

Ghosh & Kim .022% .023% .543% .545% 2.027% 2.028%

Likelihood ratio 3.884% 4.421% 9.718% 9.247% 13.597% 14.142%

Third order .402% .401% 2.021% 2.023% 4.045% 4.043%

(2 ŜD limits) (± .002%) (± .002%) (± .005%) (± .005%) (± .007%) (± .007%)

15 Discussion

We have surveyed inference procedures for obtaining frequentist p-values and Bayesian pos-
terior survivor s-values, as well as the corresponding confidence intervals and posterior
intervals. Our emphasis has been on the use of higher order likelihood methods to ob-
tain increased accuracy and we have verified the increased accuracy with extensive McMC
simulations.

To motivate the presentation of the procedures we have used a very simple linear model
but with non-normal errors. The example does have an appropriate default prior so the
frequentist and Bayesian methods are comparable.

For a more complex example we have reported on extensive simulations for the most extreme
case of the Behrens-Fisher problem, an example that is simple in the sense of involving only
Normal samples but complex in its long-standing history of defying both frequentist and
Bayesian theoretical approaches. The higher order methods lead to p-values that quite accu-
rately assess the difference in means, the typical parameter of interest; and from simulations
out performs available Bayesian methods.

We have also examined McMC methods from a statistical viewpoint and illustrated them
by extensive assessments of higher order likelihood methods.

In brief we have found that higher order likelihood using MLEs and observed informations
can yield the precision of 4 million simulation steps given a suitable statistic. In addition
they provide focussed accuracy by precisely separating information on almost any scalar
parameter chosen as of interest. Various examples illustrating the theory are also included
with the references.
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Appendix

(i) Regression conditional distribution For the regression model y = Xβ+σz with error
density f (z) =

∏n
i=1 g (zi) we can examine how parameter change affects the n coordinates

yi and how continuity determines a conditional distribution having dimension equal to that
of the parameter. Convenient coordinates (b, s) corresponding to (β, σ) are available from
least squares or maximum likelihood (see for example, Fraser, 1979, 2004); in either case we
have

b (y) = β + σb (z)

s (y) = σs (z)

and then have the standardized residual vector

d (y) = s−1 (y) {y −Xb (y)}
= s−1 (z) {z −Xb (z)} = d (z) .

It follows with observed data y0 that d (z) = d
(
y0
)

which then implies that the appro-
priate model should be conditional. Routine calculations (Fraser, 1979) then give the null
distribution

g (b, s) db ds = c
n∏

i=1

g
(
Xib+ sd0

i

)
sn−r−1db ds,

whereXi is the i-th row ofX and d0
i is the i-th element of the observed standardized residual

d (z) = d
(
y0
)
; the non-null distribution for {b (y) , s (y)} is then

g (b, s;β, σ) db ds = c
n∏

i=1

g
[
σ−1

{
Xi (b− β) + sd0

i

}](sn−r−1

σn

)
db ds;

this can be rewritten directly in terms of the observed likelihood L0
(
β, σ; y0

)
= cf

(
y0;β, σ

)

as

g (b, s;β, σ) db ds = L0 (β∗, σ∗)
db ds

sr+1

where

β∗ = b0 +
s0

s
(β − b)

σ∗ =
s0

s
σ.

(ii) Simulation standard deviation In a Bernoulli sequence the observed proposition p̂

has a standard deviation (pq/N)1/2, which is bounded by 1/2N 1/2. An McMC sequence
will typically have serial correlations; accordingly we worked in batches of B = 1, 000 and
dropped the first 50 and retained the remaining 950 in each batch. We tested and found the
sequence of NB = 4, 000, 000/B = 4, 000 batch means to be essentially free of correlation.
We calculated the usual standard deviation s of the batch means and then obtained an
upper bound estimate s/N

1/2
B for the standard deviation of the overall mean. This can be
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fine-tuned for probabilities away from 1/2 by using p̂ in place of 1/2 in the usual binomial
variance formula.

(iii) The surrogate for ψ(θ) The rotated ϕ coordinate is obtained using a coefficient
vector a applied to the φ-vector,

χ(θ) = a′ϕ (θ) =
ψϕ′(θ̂ψ)

|ψϕ′(θ̂ψ)|
ϕ(θ); (49)

the row vector a′ multiplying ϕ(θ) is the unit vector version of the gradient ψϕ′(θ̂ψ) and is
obtained by evaluating

ψϕ′(θ) =
∂ψ(θ)

∂ϕ′
=
∂ψ(θ)

∂θ′

(
∂ϕ(θ)

∂θ′

)−1

= ψϕ′(θ)ϕ−1
θ′ (θ)

at θ̂ψ, and then normalizing; this gives a unit vector perpendicular in the ϕ coordinates to
ψ{θ(ϕ)} at ϕ̂ψ. The use of the unit vector in (49) produces a rotated coordinate of ϕ (θ)

that agrees with ψ (θ) at θ̂ψ in the sense of being first derivative equivalent to ψ(θ) at the

point θ̂ψ.

(iv) Information determinants The information determinants are recalibrated to the ϕ
parameterization

|ĵϕϕ| = |ĵθθ||ϕθ(θ̂)|−2

|j(λλ)(θ̂ψ)| = |jλλ(θ̂ψ)||ϕλ′(θ̂ψ)|−2 = |jλλ(θ̂ψ)||X|−2 (50)

where the right hand p× (p− 1) determinant |X| = |X ′X|1/2 uses X = ϕλ′(θ̂ψ) and in the
regression context records the volume on the regression surface as a proportion of volume
for the regression coefficients.
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